Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2013

Open Access 01-12-2013 | Original investigation

Antidiabetic treatment restores adiponectin serum levels and APPL1 expression, but does not improve adiponectin-induced vasodilation and endothelial dysfunction in Zucker diabetic fatty rats

Authors: Peter M Schmid, Markus Resch, Christian Schach, Christoph Birner, Guenter A Riegger, Andreas Luchner, Dierk H Endemann

Published in: Cardiovascular Diabetology | Issue 1/2013

Login to get access

Abstract

Background

Adiponectin is able to induce NO-dependent vasodilation in Zucker lean (ZL) rats, but this effect is clearly alleviated in their diabetic littermates, the Zucker diabetic fatty (ZDF) rats. ZDF rats also exhibit hypoadiponectinemia and a suppressed expression of APPL1, an adaptor protein of the adiponectin receptors, in mesenteric resistance arteries. Whether an antidiabetic treatment can restore the vasodilatory effect of adiponectin and improve endothelial function in diabetes mellitus type 2 is not known.

Methods

During our animal experiment from week 11 to 22 in each case seven ZDF rats received an antidiabetic treatment with either insulin (ZDF+I) or metformin (ZDF+M). Six normoglycemic ZL and six untreated ZDF rats served as controls. Blood glucose was measured at least weekly and serum adiponectin levels were quantified via ELISA in week 11 and 22. The direct vasodilatory response of their isolated mesenteric resistance arteries to adiponectin as well as the endothelium-dependent and -independent function was evaluated in a small vessel myograph. Additionally, the expression of different components of the adiponectin signaling pathway in the resistance arteries was quantified by real-time RT-PCR.

Results

In ZDF rats a sufficient blood glucose control could only be reached by treatment with insulin, but both treatments restored the serum levels of adiponectin and the expression of APPL1 in small resistance arteries. Nevertheless, both therapies were not able to improve the vasodilatory response to adiponectin as well as endothelial function in ZDF rats. Concurrently, a downregulation of the adiponectin receptors 1 and 2 as well as endothelial NO-synthase expression was detected in insulin-treated ZDF rats. Metformin-treated ZDF rats showed a reduced expression of adiponectin receptor 2.

Conclusions

An antidiabetic treatment with either insulin or metformin in ZDF rats inhibits the development of hypoadiponectinemia and downregulation of APPL1 in mesenteric resistance arteries, but is not able to improve adiponectin induced vasodilation and endothelial dysfunction. This is possibly due to alterations in the expression of adiponectin receptors and eNOS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF: A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995, 270 (45): 26746-26749. 10.1074/jbc.270.45.26746.CrossRefPubMed Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF: A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995, 270 (45): 26746-26749. 10.1074/jbc.270.45.26746.CrossRefPubMed
2.
go back to reference Hu E, Liang P, Spiegelman BM: AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996, 271 (18): 10697-10703. 10.1074/jbc.271.18.10697.CrossRefPubMed Hu E, Liang P, Spiegelman BM: AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996, 271 (18): 10697-10703. 10.1074/jbc.271.18.10697.CrossRefPubMed
3.
go back to reference Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K: cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996, 221 (2): 286-289. 10.1006/bbrc.1996.0587.CrossRefPubMed Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K: cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996, 221 (2): 286-289. 10.1006/bbrc.1996.0587.CrossRefPubMed
4.
go back to reference Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A, Nakai Y, Ishibashi S: Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism. 2003, 52 (10): 1274-1278. 10.1016/S0026-0495(03)00195-1.CrossRefPubMed Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A, Nakai Y, Ishibashi S: Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism. 2003, 52 (10): 1274-1278. 10.1016/S0026-0495(03)00195-1.CrossRefPubMed
5.
go back to reference Basu R, Pajvani UB, Rizza RA, Scherer PE: Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes. 2007, 56 (8): 2174-2177. 10.2337/db07-0185.CrossRefPubMed Basu R, Pajvani UB, Rizza RA, Scherer PE: Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes. 2007, 56 (8): 2174-2177. 10.2337/db07-0185.CrossRefPubMed
6.
go back to reference Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999, 257 (1): 79-83. 10.1006/bbrc.1999.0255.CrossRefPubMed Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999, 257 (1): 79-83. 10.1006/bbrc.1999.0255.CrossRefPubMed
7.
go back to reference Hajer GR, Van Haeften TW, Visseren FL: Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008, 29 (24): 2959-2971. 10.1093/eurheartj/ehn387.CrossRefPubMed Hajer GR, Van Haeften TW, Visseren FL: Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008, 29 (24): 2959-2971. 10.1093/eurheartj/ehn387.CrossRefPubMed
8.
go back to reference Trujillo ME, Scherer PE: Adiponectin–journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005, 257 (2): 167-175. 10.1111/j.1365-2796.2004.01426.x.CrossRefPubMed Trujillo ME, Scherer PE: Adiponectin–journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005, 257 (2): 167-175. 10.1111/j.1365-2796.2004.01426.x.CrossRefPubMed
9.
go back to reference Lihn AS, Pedersen SB, Richelsen B: Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005, 6 (1): 13-21. 10.1111/j.1467-789X.2005.00159.x.CrossRefPubMed Lihn AS, Pedersen SB, Richelsen B: Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005, 6 (1): 13-21. 10.1111/j.1467-789X.2005.00159.x.CrossRefPubMed
10.
go back to reference Gil-Campos M, Canete RR, Gil A: Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr. 2004, 23 (5): 963-974. 10.1016/j.clnu.2004.04.010.CrossRefPubMed Gil-Campos M, Canete RR, Gil A: Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr. 2004, 23 (5): 963-974. 10.1016/j.clnu.2004.04.010.CrossRefPubMed
11.
go back to reference Zhu W, Cheng KK, Vanhoutte PM, Lam KS, Xu A: Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin Sci (Lond). 2008, 114 (5): 361-374. 10.1042/CS20070347.CrossRef Zhu W, Cheng KK, Vanhoutte PM, Lam KS, Xu A: Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin Sci (Lond). 2008, 114 (5): 361-374. 10.1042/CS20070347.CrossRef
12.
go back to reference Han SH, Quon MJ, Kim JA, Koh KK: Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol. 2007, 49 (5): 531-538. 10.1016/j.jacc.2006.08.061.CrossRefPubMed Han SH, Quon MJ, Kim JA, Koh KK: Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol. 2007, 49 (5): 531-538. 10.1016/j.jacc.2006.08.061.CrossRefPubMed
13.
go back to reference Hopkins TA, Ouchi N, Shibata R, Walsh K: Adiponectin actions in the cardiovascular system. Cardiovasc Res. 2007, 74 (1): 11-18. 10.1016/j.cardiores.2006.10.009.PubMedCentralCrossRefPubMed Hopkins TA, Ouchi N, Shibata R, Walsh K: Adiponectin actions in the cardiovascular system. Cardiovasc Res. 2007, 74 (1): 11-18. 10.1016/j.cardiores.2006.10.009.PubMedCentralCrossRefPubMed
14.
go back to reference Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003, 423 (6941): 762-769. 10.1038/nature01705.CrossRefPubMed Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003, 423 (6941): 762-769. 10.1038/nature01705.CrossRefPubMed
15.
go back to reference Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T: Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007, 13 (3): 332-339. 10.1038/nm1557.CrossRefPubMed Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T: Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007, 13 (3): 332-339. 10.1038/nm1557.CrossRefPubMed
16.
go back to reference Heiker JT, Kosel D, Beck-Sickinger AG: Molecular mechanisms of signal transduction via adiponectin and adiponectin receptors. Biol Chem. 2010, 391 (9): 1005-1018.CrossRefPubMed Heiker JT, Kosel D, Beck-Sickinger AG: Molecular mechanisms of signal transduction via adiponectin and adiponectin receptors. Biol Chem. 2010, 391 (9): 1005-1018.CrossRefPubMed
17.
go back to reference Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY: APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006, 8 (5): 516-523. 10.1038/ncb1404.CrossRefPubMed Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY: APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006, 8 (5): 516-523. 10.1038/ncb1404.CrossRefPubMed
19.
go back to reference Buechler C, Wanninger J, Neumeier M: Adiponectin receptor binding proteins–recent advances in elucidating adiponectin signalling pathways. FEBS Lett. 2010, 584 (20): 4280-4286. 10.1016/j.febslet.2010.09.035.CrossRefPubMed Buechler C, Wanninger J, Neumeier M: Adiponectin receptor binding proteins–recent advances in elucidating adiponectin signalling pathways. FEBS Lett. 2010, 584 (20): 4280-4286. 10.1016/j.febslet.2010.09.035.CrossRefPubMed
20.
go back to reference Hosch SE, Olefsky JM, Kim JJ: APPLied mechanics: uncovering how adiponectin modulates insulin action. Cell Metab. 2006, 4 (1): 5-6. 10.1016/j.cmet.2006.06.003.CrossRefPubMed Hosch SE, Olefsky JM, Kim JJ: APPLied mechanics: uncovering how adiponectin modulates insulin action. Cell Metab. 2006, 4 (1): 5-6. 10.1016/j.cmet.2006.06.003.CrossRefPubMed
21.
go back to reference Wang C, Xin X, Xiang R, Ramos FJ, Liu M, Lee HJ, Chen H, Mao X, Kikani CK, Liu F: Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. J Biol Chem. 2009, 284 (46): 31608-31615. 10.1074/jbc.M109.010355.PubMedCentralCrossRefPubMed Wang C, Xin X, Xiang R, Ramos FJ, Liu M, Lee HJ, Chen H, Mao X, Kikani CK, Liu F: Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. J Biol Chem. 2009, 284 (46): 31608-31615. 10.1074/jbc.M109.010355.PubMedCentralCrossRefPubMed
22.
go back to reference Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ: Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003, 278 (45): 45021-45026. 10.1074/jbc.M307878200.CrossRefPubMed Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ: Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003, 278 (45): 45021-45026. 10.1074/jbc.M307878200.CrossRefPubMed
23.
go back to reference Hattori Y, Suzuki M, Hattori S, Kasai K: Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia. 2003, 46 (11): 1543-1549. 10.1007/s00125-003-1224-3.CrossRefPubMed Hattori Y, Suzuki M, Hattori S, Kasai K: Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia. 2003, 46 (11): 1543-1549. 10.1007/s00125-003-1224-3.CrossRefPubMed
24.
go back to reference Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, Wong C, Xu A: Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007, 56 (5): 1387-1394. 10.2337/db06-1580.CrossRefPubMed Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, Wong C, Xu A: Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007, 56 (5): 1387-1394. 10.2337/db06-1580.CrossRefPubMed
25.
go back to reference Xi W, Satoh H, Kase H, Suzuki K, Hattori Y: Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin. Biochem Biophys Res Commun. 2005, 332 (1): 200-205. 10.1016/j.bbrc.2005.04.111.CrossRefPubMed Xi W, Satoh H, Kase H, Suzuki K, Hattori Y: Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin. Biochem Biophys Res Commun. 2005, 332 (1): 200-205. 10.1016/j.bbrc.2005.04.111.CrossRefPubMed
26.
go back to reference Schmid PM, Resch M, Steege A, Fredersdorf-Hahn S, Stoelcker B, Birner C, Schach C, Buechler C, Riegger GA, Luchner A: Globular and full-length adiponectin induce NO-dependent vasodilation in resistance arteries of Zucker lean but not Zucker diabetic fatty rats. Am J Hypertens. 2011, 24 (3): 270-277. 10.1038/ajh.2010.239.CrossRefPubMed Schmid PM, Resch M, Steege A, Fredersdorf-Hahn S, Stoelcker B, Birner C, Schach C, Buechler C, Riegger GA, Luchner A: Globular and full-length adiponectin induce NO-dependent vasodilation in resistance arteries of Zucker lean but not Zucker diabetic fatty rats. Am J Hypertens. 2011, 24 (3): 270-277. 10.1038/ajh.2010.239.CrossRefPubMed
27.
go back to reference Cao Y, Tao L, Yuan Y, Jiao X, Lau WB, Wang Y, Christopher T, Lopez B, Chan L, Goldstein B: Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol. 2009, 46 (3): 413-419. 10.1016/j.yjmcc.2008.10.014.PubMedCentralCrossRefPubMed Cao Y, Tao L, Yuan Y, Jiao X, Lau WB, Wang Y, Christopher T, Lopez B, Chan L, Goldstein B: Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol. 2009, 46 (3): 413-419. 10.1016/j.yjmcc.2008.10.014.PubMedCentralCrossRefPubMed
28.
go back to reference Deng G, Long Y, Yu YR, Li MR: Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes (Lond). 2010, 34 (1): 165-171. 10.1038/ijo.2009.205.CrossRef Deng G, Long Y, Yu YR, Li MR: Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes (Lond). 2010, 34 (1): 165-171. 10.1038/ijo.2009.205.CrossRef
29.
go back to reference Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, Kumada M, Ohashi K, Okamoto Y, Nishizawa H: Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003, 42 (3): 231-234. 10.1161/01.HYP.0000083488.67550.B8.CrossRefPubMed Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, Kumada M, Ohashi K, Okamoto Y, Nishizawa H: Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003, 42 (3): 231-234. 10.1161/01.HYP.0000083488.67550.B8.CrossRefPubMed
30.
go back to reference Quaile MP, Melich DH, Jordan HL, Nold JB, Chism JP, Polli JW, Smith GA, Rhodes MC: Toxicity and toxicokinetics of metformin in rats. Toxicol Appl Pharmacol. 2010, 243 (3): 340-347. 10.1016/j.taap.2009.11.026.CrossRefPubMed Quaile MP, Melich DH, Jordan HL, Nold JB, Chism JP, Polli JW, Smith GA, Rhodes MC: Toxicity and toxicokinetics of metformin in rats. Toxicol Appl Pharmacol. 2010, 243 (3): 340-347. 10.1016/j.taap.2009.11.026.CrossRefPubMed
31.
go back to reference Tian J, Wang J, Li Y, Villarreal D, Carhart R, Dong Y, Wen Y, Liu K: Endothelial function in patients with newly diagnosed type 2 diabetes receiving early intensive insulin therapy. Am J Hypertens. 2012, 25 (12): 1242-1248.PubMed Tian J, Wang J, Li Y, Villarreal D, Carhart R, Dong Y, Wen Y, Liu K: Endothelial function in patients with newly diagnosed type 2 diabetes receiving early intensive insulin therapy. Am J Hypertens. 2012, 25 (12): 1242-1248.PubMed
32.
go back to reference Metais C, Forcheron F, Abdallah P, Basset A, Del Carmine P, Bricca G, Beylot M: Adiponectin receptors: expression in Zucker diabetic rats and effects of fenofibrate and metformin. Metabolism. 2008, 57 (7): 946-953. 10.1016/j.metabol.2008.02.010.CrossRefPubMed Metais C, Forcheron F, Abdallah P, Basset A, Del Carmine P, Bricca G, Beylot M: Adiponectin receptors: expression in Zucker diabetic rats and effects of fenofibrate and metformin. Metabolism. 2008, 57 (7): 946-953. 10.1016/j.metabol.2008.02.010.CrossRefPubMed
33.
go back to reference Sena CM, Matafome P, Louro T, Nunes E, Fernandes R, Seica RM: Metformin restores endothelial function in aorta of diabetic rats. Br J Pharmacol. 2011, 163 (2): 424-437. 10.1111/j.1476-5381.2011.01230.x.PubMedCentralCrossRefPubMed Sena CM, Matafome P, Louro T, Nunes E, Fernandes R, Seica RM: Metformin restores endothelial function in aorta of diabetic rats. Br J Pharmacol. 2011, 163 (2): 424-437. 10.1111/j.1476-5381.2011.01230.x.PubMedCentralCrossRefPubMed
34.
go back to reference Sartoretto JL, Melo GA, Carvalho MH, Nigro D, Passaglia RT, Scavone C, Cuman RK, Fortes ZB: Metformin treatment restores the altered microvascular reactivity in neonatal streptozotocin-induced diabetic rats increasing NOS activity, but not NOS expression. Life Sci. 2005, 77 (21): 2676-2689. 10.1016/j.lfs.2005.05.022.CrossRefPubMed Sartoretto JL, Melo GA, Carvalho MH, Nigro D, Passaglia RT, Scavone C, Cuman RK, Fortes ZB: Metformin treatment restores the altered microvascular reactivity in neonatal streptozotocin-induced diabetic rats increasing NOS activity, but not NOS expression. Life Sci. 2005, 77 (21): 2676-2689. 10.1016/j.lfs.2005.05.022.CrossRefPubMed
35.
go back to reference Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R: Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002, 290 (3): 1084-1089. 10.1006/bbrc.2001.6307.CrossRefPubMed Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R: Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002, 290 (3): 1084-1089. 10.1006/bbrc.2001.6307.CrossRefPubMed
36.
go back to reference Pereira RI, Draznin B: Inhibition of the phosphatidylinositol 3’-kinase signaling pathway leads to decreased insulin-stimulated adiponectin secretion from 3T3-L1 adipocytes. Metabolism. 2005, 54 (12): 1636-1643. 10.1016/j.metabol.2005.07.002.CrossRefPubMed Pereira RI, Draznin B: Inhibition of the phosphatidylinositol 3’-kinase signaling pathway leads to decreased insulin-stimulated adiponectin secretion from 3T3-L1 adipocytes. Metabolism. 2005, 54 (12): 1636-1643. 10.1016/j.metabol.2005.07.002.CrossRefPubMed
37.
go back to reference Blumer RM, Van Roomen CP, Meijer AJ, Houben-Weerts JH, Sauerwein HP, Dubbelhuis PF: Regulation of adiponectin secretion by insulin and amino acids in 3T3-L1 adipocytes. Metabolism. 2008, 57 (12): 1655-1662. 10.1016/j.metabol.2008.07.020.CrossRefPubMed Blumer RM, Van Roomen CP, Meijer AJ, Houben-Weerts JH, Sauerwein HP, Dubbelhuis PF: Regulation of adiponectin secretion by insulin and amino acids in 3T3-L1 adipocytes. Metabolism. 2008, 57 (12): 1655-1662. 10.1016/j.metabol.2008.07.020.CrossRefPubMed
38.
go back to reference Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006, 116 (7): 1784-1792. 10.1172/JCI29126.PubMedCentralCrossRefPubMed Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006, 116 (7): 1784-1792. 10.1172/JCI29126.PubMedCentralCrossRefPubMed
39.
go back to reference Mohlig M, Wegewitz U, Osterhoff M, Isken F, Ristow M, Pfeiffer AF, Spranger J: Insulin decreases human adiponectin plasma levels. Horm Metab Res. 2002, 34 (11–12): 655-658.CrossRefPubMed Mohlig M, Wegewitz U, Osterhoff M, Isken F, Ristow M, Pfeiffer AF, Spranger J: Insulin decreases human adiponectin plasma levels. Horm Metab Res. 2002, 34 (11–12): 655-658.CrossRefPubMed
40.
go back to reference Fujita H, Fujishima H, Koshimura J, Hosoba M, Yoshioka N, Shimotomai T, Morii T, Narita T, Kakei M, Ito S: Effects of antidiabetic treatment with metformin and insulin on serum and adipose tissue adiponectin levels in db/db mice. Endocr J. 2005, 52 (4): 427-433. 10.1507/endocrj.52.427.CrossRefPubMed Fujita H, Fujishima H, Koshimura J, Hosoba M, Yoshioka N, Shimotomai T, Morii T, Narita T, Kakei M, Ito S: Effects of antidiabetic treatment with metformin and insulin on serum and adipose tissue adiponectin levels in db/db mice. Endocr J. 2005, 52 (4): 427-433. 10.1507/endocrj.52.427.CrossRefPubMed
41.
go back to reference Cui XB, Wang C, Li L, Fan D, Zhou Y, Wu D, Cui QH, Fu FY, Wu LL: Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. Cardiovasc Res. 2012, 93 (1): 69-78. 10.1093/cvr/cvr273.CrossRefPubMed Cui XB, Wang C, Li L, Fan D, Zhou Y, Wu D, Cui QH, Fu FY, Wu LL: Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. Cardiovasc Res. 2012, 93 (1): 69-78. 10.1093/cvr/cvr273.CrossRefPubMed
42.
go back to reference Zulian A, Cancello R, Girola A, Gilardini L, Alberti L, Croci M, Micheletto G, Danelli P, Invitti C: In vitro and in vivo effects of metformin on human adipose tissue adiponectin. Obes Facts. 2011, 4 (1): 27-33. 10.1159/000324582.CrossRefPubMed Zulian A, Cancello R, Girola A, Gilardini L, Alberti L, Croci M, Micheletto G, Danelli P, Invitti C: In vitro and in vivo effects of metformin on human adipose tissue adiponectin. Obes Facts. 2011, 4 (1): 27-33. 10.1159/000324582.CrossRefPubMed
43.
go back to reference Hanefeld M, Pfutzner A, Forst T, Kleine I, Fuchs W: Double-blind, randomized, multicentre, and active comparator controlled investigation of the effect of pioglitazone, metformin, and the combination of both on cardiovascular risk in patients with type 2 diabetes receiving stable basal insulin therapy: the PIOCOMB study. Cardiovasc Diabetol. 2011, 10: 65-10.1186/1475-2840-10-65.PubMedCentralCrossRefPubMed Hanefeld M, Pfutzner A, Forst T, Kleine I, Fuchs W: Double-blind, randomized, multicentre, and active comparator controlled investigation of the effect of pioglitazone, metformin, and the combination of both on cardiovascular risk in patients with type 2 diabetes receiving stable basal insulin therapy: the PIOCOMB study. Cardiovasc Diabetol. 2011, 10: 65-10.1186/1475-2840-10-65.PubMedCentralCrossRefPubMed
44.
go back to reference Doogue MP, Begg EJ, Moore MP, Lunt H, Pemberton CJ, Zhang M: Metformin increases plasma ghrelin in Type 2 diabetes. Br J Clin Pharmacol. 2009, 68 (6): 875-882. 10.1111/j.1365-2125.2009.03372.x.PubMedCentralCrossRefPubMed Doogue MP, Begg EJ, Moore MP, Lunt H, Pemberton CJ, Zhang M: Metformin increases plasma ghrelin in Type 2 diabetes. Br J Clin Pharmacol. 2009, 68 (6): 875-882. 10.1111/j.1365-2125.2009.03372.x.PubMedCentralCrossRefPubMed
45.
go back to reference Tarkun I, Dikmen E, Cetinarslan B, Canturk Z: Impact of treatment with metformin on adipokines in patients with polycystic ovary syndrome. Eur Cytokine Netw. 2010, 21 (4): 272-277.PubMed Tarkun I, Dikmen E, Cetinarslan B, Canturk Z: Impact of treatment with metformin on adipokines in patients with polycystic ovary syndrome. Eur Cytokine Netw. 2010, 21 (4): 272-277.PubMed
46.
go back to reference Sofer E, Boaz M, Matas Z, Mashavi M, Shargorodsky M: Treatment with insulin sensitizer metformin improves arterial properties, metabolic parameters, and liver function in patients with nonalcoholic fatty liver disease: a randomized, placebo-controlled trial. Metabolism. 2011, 60 (9): 1278-1284. 10.1016/j.metabol.2011.01.011.CrossRefPubMed Sofer E, Boaz M, Matas Z, Mashavi M, Shargorodsky M: Treatment with insulin sensitizer metformin improves arterial properties, metabolic parameters, and liver function in patients with nonalcoholic fatty liver disease: a randomized, placebo-controlled trial. Metabolism. 2011, 60 (9): 1278-1284. 10.1016/j.metabol.2011.01.011.CrossRefPubMed
47.
go back to reference Gomez-Diaz RA, Talavera JO, Pool EC, Ortiz-Navarrete FV, Solorzano-Santos F, Mondragon-Gonzalez R, Valladares-Salgado A, Cruz M, Aguilar-Salinas CA, Wacher NH: Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metabolism. 2012, 61 (9): 1247-1255. 10.1016/j.metabol.2012.02.003.CrossRefPubMed Gomez-Diaz RA, Talavera JO, Pool EC, Ortiz-Navarrete FV, Solorzano-Santos F, Mondragon-Gonzalez R, Valladares-Salgado A, Cruz M, Aguilar-Salinas CA, Wacher NH: Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metabolism. 2012, 61 (9): 1247-1255. 10.1016/j.metabol.2012.02.003.CrossRefPubMed
48.
go back to reference Phillips SA, Ciaraldi TP, Kong AP, Bandukwala R, Aroda V, Carter L, Baxi S, Mudaliar SR, Henry RR: Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes. 2003, 52 (3): 667-674. 10.2337/diabetes.52.3.667.CrossRefPubMed Phillips SA, Ciaraldi TP, Kong AP, Bandukwala R, Aroda V, Carter L, Baxi S, Mudaliar SR, Henry RR: Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes. 2003, 52 (3): 667-674. 10.2337/diabetes.52.3.667.CrossRefPubMed
49.
go back to reference Adamia N, Virsaladze D, Charkviani N, Skhirtladze M, Khutsishvili M: Effect of metformin therapy on plasma adiponectin and leptin levels in obese and insulin resistant postmenopausal females with type 2 diabetes. Georgian Med News. 2007, 145: 52-55.PubMed Adamia N, Virsaladze D, Charkviani N, Skhirtladze M, Khutsishvili M: Effect of metformin therapy on plasma adiponectin and leptin levels in obese and insulin resistant postmenopausal females with type 2 diabetes. Georgian Med News. 2007, 145: 52-55.PubMed
50.
go back to reference Mather KJ, Funahashi T, Matsuzawa Y, Edelstein S, Bray GA, Kahn SE, Crandall J, Marcovina S, Goldstein B, Goldberg R: Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program. Diabetes. 2008, 57 (4): 980-986. 10.2337/db07-1419.PubMedCentralCrossRefPubMed Mather KJ, Funahashi T, Matsuzawa Y, Edelstein S, Bray GA, Kahn SE, Crandall J, Marcovina S, Goldstein B, Goldberg R: Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program. Diabetes. 2008, 57 (4): 980-986. 10.2337/db07-1419.PubMedCentralCrossRefPubMed
51.
go back to reference Steiner CA, Janez A, Jensterle M, Reisinger K, Forst T, Pfutzner A: Impact of treatment with rosiglitazone or metformin on biomarkers for insulin resistance and metabolic syndrome in patients with polycystic ovary syndrome. J Diabetes Sci Technol. 2007, 1 (2): 211-217.PubMedCentralCrossRefPubMed Steiner CA, Janez A, Jensterle M, Reisinger K, Forst T, Pfutzner A: Impact of treatment with rosiglitazone or metformin on biomarkers for insulin resistance and metabolic syndrome in patients with polycystic ovary syndrome. J Diabetes Sci Technol. 2007, 1 (2): 211-217.PubMedCentralCrossRefPubMed
52.
go back to reference Sattar AA, Sattar R: Insulin-regulated expression of adiponectin receptors in muscle and fat cells. Cell Biol Int. 2012, 36 (12): 1293-1297. 10.1042/CBI20120294.CrossRefPubMed Sattar AA, Sattar R: Insulin-regulated expression of adiponectin receptors in muscle and fat cells. Cell Biol Int. 2012, 36 (12): 1293-1297. 10.1042/CBI20120294.CrossRefPubMed
53.
go back to reference Sun X, He J, Mao C, Han R, Wang Z, Liu Y, Chen Y: Negative regulation of adiponectin receptor 1 promoter by insulin via a repressive nuclear inhibitory protein element. FEBS Lett. 2008, 582 (23–24): 3401-3407.CrossRefPubMed Sun X, He J, Mao C, Han R, Wang Z, Liu Y, Chen Y: Negative regulation of adiponectin receptor 1 promoter by insulin via a repressive nuclear inhibitory protein element. FEBS Lett. 2008, 582 (23–24): 3401-3407.CrossRefPubMed
54.
go back to reference Zanetti M, Barazzoni R, Stebel M, Roder E, Biolo G, Baralle FE, Cattin L, Guarnieri G: Dysregulation of the endothelial nitric oxide synthase-soluble guanylate cyclase pathway is normalized by insulin in the aorta of diabetic rat. Atherosclerosis. 2005, 181 (1): 69-73. 10.1016/j.atherosclerosis.2005.01.011.CrossRefPubMed Zanetti M, Barazzoni R, Stebel M, Roder E, Biolo G, Baralle FE, Cattin L, Guarnieri G: Dysregulation of the endothelial nitric oxide synthase-soluble guanylate cyclase pathway is normalized by insulin in the aorta of diabetic rat. Atherosclerosis. 2005, 181 (1): 69-73. 10.1016/j.atherosclerosis.2005.01.011.CrossRefPubMed
55.
go back to reference Murthy SN, Pankey EA, Banka AA, Badejo AM, Wekerle R, Vilija V, Izadpanah R, Kadowitz PJ, Fonseca VA: Effects of insulin detemir on balloon catheter injured carotid artery in Zucker fatty rats. J Diabetes Complications. 2012, 26 (6): 470-475. 10.1016/j.jdiacomp.2012.05.019.CrossRefPubMed Murthy SN, Pankey EA, Banka AA, Badejo AM, Wekerle R, Vilija V, Izadpanah R, Kadowitz PJ, Fonseca VA: Effects of insulin detemir on balloon catheter injured carotid artery in Zucker fatty rats. J Diabetes Complications. 2012, 26 (6): 470-475. 10.1016/j.jdiacomp.2012.05.019.CrossRefPubMed
56.
go back to reference Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K: Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol. 2008, 295 (3): H1165-H1176. 10.1152/ajpheart.00486.2008.CrossRefPubMed Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K: Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol. 2008, 295 (3): H1165-H1176. 10.1152/ajpheart.00486.2008.CrossRefPubMed
Metadata
Title
Antidiabetic treatment restores adiponectin serum levels and APPL1 expression, but does not improve adiponectin-induced vasodilation and endothelial dysfunction in Zucker diabetic fatty rats
Authors
Peter M Schmid
Markus Resch
Christian Schach
Christoph Birner
Guenter A Riegger
Andreas Luchner
Dierk H Endemann
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2013
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-12-46

Other articles of this Issue 1/2013

Cardiovascular Diabetology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.