Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Ankylosing Spondylitis | Research

Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics

Authors: Shuming Chen, Weidi Huang, Qiaoqian Wan, Zichun Tang, Xie Li, Fang Zeng, Shuyan Zheng, Zhuo Li, Xiao Liu

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Patients with spondyloarthritis (SpA)/HLA-B27-associated acute anterior uveitis (AAU) experience recurring acute flares, which pose significant visual and financial challenges. Despite established links between SpA and HLA-B27-associated AAU, the exact mechanism involved remains unclear, and further understanding is needed for effective prevention and treatment.

Methods

To investigate the acute pathogenesis of SpA/HLA-B27-associated AAU, Mendelian randomization (MR) and single-cell transcriptomic analyses were employed. The MR incorporated publicly available protein quantitative trait locus data from previous studies, along with genome-wide association study data from public databases. Causal relationships between plasma proteins and anterior uveitis were assessed using two-sample MR. Additionally, colocalization analysis was performed using Bayesian colocalization. Single-cell transcriptome analysis utilized the anterior uveitis dataset from the Gene Expression Omnibus (GEO) database. Dimensionality reduction, clustering, transcription factor analysis, pseudotime analysis, and cell communication analysis were subsequently conducted to explore the underlying mechanisms involved.

Results

Mendelian randomization analysis revealed that circulating levels of AIF1 and VARS were significantly associated with a reduced risk of developing SpA/HLA-B27-associated AAU, with AIF1 showing a robust correlation with anterior uveitis onset. Colocalization analysis supported these findings. Single-cell transcriptome analysis showed predominant AIF1 expression in myeloid cells, which was notably lower in the HLA-B27-positive group. Pseudotime analysis revealed dendritic cell terminal positions in differentiation branches, accompanied by gradual decreases in AIF1 expression. Based on cell communication analysis, CD141+CLEC9A+ classic dendritic cells (cDCs) and the APP pathway play crucial roles in cellular communication in the Spa/HLA-B27 group.

Conclusions

AIF1 is essential for the pathogenesis of SpA/HLA-B27-associated AAU. Myeloid cell differentiation into DCs and decreased AIF1 levels are also pivotal in this process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jabs DA, Acharya NR, Chee S, et al. Classification criteria for spondyloarthritis/HLA-B27-associated anterior uveitis. Am J Ophthalmol. 2021;228:117–25.CrossRef Jabs DA, Acharya NR, Chee S, et al. Classification criteria for spondyloarthritis/HLA-B27-associated anterior uveitis. Am J Ophthalmol. 2021;228:117–25.CrossRef
2.
go back to reference Heiligenhaus A, Rothaus K, Pleyer U. Development of classification criteria for uveitis by the standardization of uveitis nomenclature (SUN) working group. Ophthalmologe. 2021;118(9):913–8.PubMedPubMedCentralCrossRef Heiligenhaus A, Rothaus K, Pleyer U. Development of classification criteria for uveitis by the standardization of uveitis nomenclature (SUN) working group. Ophthalmologe. 2021;118(9):913–8.PubMedPubMedCentralCrossRef
3.
go back to reference Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. Surv Ophthalmol. 2005;50(4):364–88.PubMedCrossRef Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. Surv Ophthalmol. 2005;50(4):364–88.PubMedCrossRef
4.
go back to reference Lyons JL, Rosenbaum JT. Uveitis associated with inflammatory bowel disease compared with uveitis associated with spondyloarthropathy. Arch Ophthalmol. 1997;115(1):61–4.PubMedCrossRef Lyons JL, Rosenbaum JT. Uveitis associated with inflammatory bowel disease compared with uveitis associated with spondyloarthropathy. Arch Ophthalmol. 1997;115(1):61–4.PubMedCrossRef
6.
go back to reference Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990;11(4):137–42.PubMedCrossRef Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990;11(4):137–42.PubMedCrossRef
7.
go back to reference Breban M, Fernández-Sueiro JL, Richardson JA, et al. T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J Immunol. 1996;156(2):794–803.PubMedCrossRef Breban M, Fernández-Sueiro JL, Richardson JA, et al. T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J Immunol. 1996;156(2):794–803.PubMedCrossRef
9.
go back to reference Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84.PubMedCrossRef Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84.PubMedCrossRef
10.
go back to reference Yang C, Farias F, Ibanez L, et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci. 2021;24(9):1302–12.PubMedPubMedCentralCrossRef Yang C, Farias F, Ibanez L, et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci. 2021;24(9):1302–12.PubMedPubMedCentralCrossRef
11.
go back to reference Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.PubMedCrossRef Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.PubMedCrossRef
13.
go back to reference Zheng J, Haberland V, Baird D, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2019.CrossRef Zheng J, Haberland V, Baird D, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2019.CrossRef
14.
go back to reference Buniello A, MacArthur J, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005-12.PubMedCrossRef Buniello A, MacArthur J, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005-12.PubMedCrossRef
15.
go back to reference Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.PubMedCrossRef Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.PubMedCrossRef
18.
19.
go back to reference Ferkingstad E, Sulem P, Atlason BA, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21.PubMedCrossRef Ferkingstad E, Sulem P, Atlason BA, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21.PubMedCrossRef
20.
go back to reference Cortes A, Hadler J, Pointon JP, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8.PubMedPubMedCentralCrossRef Cortes A, Hadler J, Pointon JP, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8.PubMedPubMedCentralCrossRef
21.
go back to reference Jiang L, Zheng Z, Fang H, Yang J. A generalized linear mixed model association tool for biobank-scale data. Nat Genet. 2021;53(11):1616–21.PubMedCrossRef Jiang L, Zheng Z, Fang H, Yang J. A generalized linear mixed model association tool for biobank-scale data. Nat Genet. 2021;53(11):1616–21.PubMedCrossRef
22.
go back to reference Bowden J, Del GMF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728–42.PubMedCrossRef Bowden J, Del GMF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728–42.PubMedCrossRef
23.
go back to reference Hemani G, Tilling K, Davey SG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11):e1007081.PubMedPubMedCentralCrossRef Hemani G, Tilling K, Davey SG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11):e1007081.PubMedPubMedCentralCrossRef
24.
go back to reference Foley CN, Staley JR, Breen PG, et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nat Commun. 2021;12(1):764.ADSPubMedPubMedCentralCrossRef Foley CN, Staley JR, Breen PG, et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nat Commun. 2021;12(1):764.ADSPubMedPubMedCentralCrossRef
25.
go back to reference Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-82.PubMedCrossRef Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-82.PubMedCrossRef
26.
go back to reference Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-46.PubMedCrossRef Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-46.PubMedCrossRef
27.
28.
go back to reference Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat Commun. 2022;13(1):1246.ADSPubMedPubMedCentralCrossRef Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat Commun. 2022;13(1):1246.ADSPubMedPubMedCentralCrossRef
29.
go back to reference Wu H, Gonzalez VR, Yao X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 2022;34(7):1064–78.PubMedPubMedCentralCrossRef Wu H, Gonzalez VR, Yao X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 2022;34(7):1064–78.PubMedPubMedCentralCrossRef
30.
go back to reference Van de Sande B, Flerin C, Davie K, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15(7):2247–76.PubMedCrossRef Van de Sande B, Flerin C, Davie K, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15(7):2247–76.PubMedCrossRef
31.
33.
go back to reference Domínguez CC, Xu C, Jarvis LB, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. SCIENCE. 2022;376(6594):eabl5197.CrossRef Domínguez CC, Xu C, Jarvis LB, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. SCIENCE. 2022;376(6594):eabl5197.CrossRef
35.
go back to reference Utans U, Quist WC, McManus BM, et al. Allograft inflammatory factory-1: a cytokine-responsive macrophage molecule expressed in transplanted human hearts. Transplantation. 1996;61(9):1387–92.PubMedCrossRef Utans U, Quist WC, McManus BM, et al. Allograft inflammatory factory-1: a cytokine-responsive macrophage molecule expressed in transplanted human hearts. Transplantation. 1996;61(9):1387–92.PubMedCrossRef
36.
go back to reference Kohler C. Allograft inflammatory factor-1/Ionized calcium-binding adapter molecule 1 is specifically expressed by most subpopulations of macrophages and spermatids in testis. Cell Tissue Res. 2007;330(2):291–302.PubMedCrossRef Kohler C. Allograft inflammatory factor-1/Ionized calcium-binding adapter molecule 1 is specifically expressed by most subpopulations of macrophages and spermatids in testis. Cell Tissue Res. 2007;330(2):291–302.PubMedCrossRef
37.
go back to reference Iris FJ, Bougueleret L, Prieur S, et al. Dense Alu clustering and a potential new member of the NF kappa B family within a 90 kilobase HLA class III segment. Nat Genet. 1993;3(2):137.PubMedCrossRef Iris FJ, Bougueleret L, Prieur S, et al. Dense Alu clustering and a potential new member of the NF kappa B family within a 90 kilobase HLA class III segment. Nat Genet. 1993;3(2):137.PubMedCrossRef
38.
39.
go back to reference Tsubata Y, Sakatsume M, Ogawa A, et al. Expression of allograft inflammatory factor-1 in kidneys: a novel molecular component of podocyte. Kidney Int. 2006;70(11):1948–54.PubMedCrossRef Tsubata Y, Sakatsume M, Ogawa A, et al. Expression of allograft inflammatory factor-1 in kidneys: a novel molecular component of podocyte. Kidney Int. 2006;70(11):1948–54.PubMedCrossRef
40.
go back to reference Piotrowska K, Sluczanowska-Glabowska S, Kurzawski M, et al. Over-expression of allograft inflammatory factor-1 (AIF-1) in patients with rheumatoid arthritis. Biomolecules. 2020;10(7):1064.PubMedPubMedCentralCrossRef Piotrowska K, Sluczanowska-Glabowska S, Kurzawski M, et al. Over-expression of allograft inflammatory factor-1 (AIF-1) in patients with rheumatoid arthritis. Biomolecules. 2020;10(7):1064.PubMedPubMedCentralCrossRef
41.
go back to reference Schluesener HJ, Seid K, Kretzschmar J, Meyermann R. Allograft-inflammatory factor-1 in rat experimental autoimmune encephalomyelitis, neuritis, and uveitis: expression by activated macrophages and microglial cells. Glia. 1998;24(2):244–51.PubMedCrossRef Schluesener HJ, Seid K, Kretzschmar J, Meyermann R. Allograft-inflammatory factor-1 in rat experimental autoimmune encephalomyelitis, neuritis, and uveitis: expression by activated macrophages and microglial cells. Glia. 1998;24(2):244–51.PubMedCrossRef
42.
go back to reference Zhou X, He Z, Henegar J, Allen B, Bigler S. Expression of allograft inflammatory factor-1 (AIF-1) in acute cellular rejection of cardiac allografts. Cardiovasc Pathol. 2011;20(5):e177-84.PubMedCrossRef Zhou X, He Z, Henegar J, Allen B, Bigler S. Expression of allograft inflammatory factor-1 (AIF-1) in acute cellular rejection of cardiac allografts. Cardiovasc Pathol. 2011;20(5):e177-84.PubMedCrossRef
43.
go back to reference Elizondo DM, Andargie TE, Yang D, Kacsinta AD, Lipscomb MW. Inhibition of allograft inflammatory factor-1 in dendritic cells restrains CD4(+) T cell effector responses and induces CD25(+)Foxp3(+) T regulatory subsets. Front Immunol. 2017;8:1502.PubMedPubMedCentralCrossRef Elizondo DM, Andargie TE, Yang D, Kacsinta AD, Lipscomb MW. Inhibition of allograft inflammatory factor-1 in dendritic cells restrains CD4(+) T cell effector responses and induces CD25(+)Foxp3(+) T regulatory subsets. Front Immunol. 2017;8:1502.PubMedPubMedCentralCrossRef
44.
go back to reference Chen W, Zhao B, Jiang R, et al. Cytokine expression profile in aqueous humor and sera of patients with acute anterior uveitis. Curr Mol Med. 2015;15(6):543–9.PubMedCrossRef Chen W, Zhao B, Jiang R, et al. Cytokine expression profile in aqueous humor and sera of patients with acute anterior uveitis. Curr Mol Med. 2015;15(6):543–9.PubMedCrossRef
45.
go back to reference Buckman LB, Hasty AH, Flaherty DK, et al. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun. 2014;35:33–42.PubMedCrossRef Buckman LB, Hasty AH, Flaherty DK, et al. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun. 2014;35:33–42.PubMedCrossRef
46.
go back to reference Sasaki Y, Ohsawa K, Kanazawa H, Kohsaka S, Imai Y. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Bioph Res Commun. 2001;286(2):292–7.CrossRef Sasaki Y, Ohsawa K, Kanazawa H, Kohsaka S, Imai Y. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Bioph Res Commun. 2001;286(2):292–7.CrossRef
47.
go back to reference Gao Y, Ottaway N, Schriever SC, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62(1):17–25.PubMedCrossRef Gao Y, Ottaway N, Schriever SC, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62(1):17–25.PubMedCrossRef
48.
go back to reference Walker DG, Lue LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther. 2015;7(1):56.PubMedPubMedCentralCrossRef Walker DG, Lue LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther. 2015;7(1):56.PubMedPubMedCentralCrossRef
49.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90.PubMedCrossRef Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90.PubMedCrossRef
50.
go back to reference Cai W, Hu M, Li C, et al. FOXP3+ macrophage represses acute ischemic stroke-induced neural inflammation. Autophagy. 2023;19(4):1144–63.PubMedCrossRef Cai W, Hu M, Li C, et al. FOXP3+ macrophage represses acute ischemic stroke-induced neural inflammation. Autophagy. 2023;19(4):1144–63.PubMedCrossRef
51.
go back to reference Yang S, Zhang X, Chen J, et al. Induced, but not natural, regulatory T cells retain phenotype and function following exposure to inflamed synovial fibroblasts. Sci Adv. 2020;6(44):eabb0606.ADSPubMedPubMedCentralCrossRef Yang S, Zhang X, Chen J, et al. Induced, but not natural, regulatory T cells retain phenotype and function following exposure to inflamed synovial fibroblasts. Sci Adv. 2020;6(44):eabb0606.ADSPubMedPubMedCentralCrossRef
52.
go back to reference Mumaw CL, Levesque S, McGraw C, et al. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. FASEB J. 2016;30(5):1880–91.PubMedPubMedCentralCrossRef Mumaw CL, Levesque S, McGraw C, et al. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. FASEB J. 2016;30(5):1880–91.PubMedPubMedCentralCrossRef
53.
go back to reference Su WP, Wang WJ, Chang JY, et al. Therapeutic Zfra4–10 or WWOX7–21 peptide induces complex formation of WWOX with selective protein targets in organs that leads to cancer suppression and spleen cytotoxic memory Z cell activation in vivo. Cancers. 2020;12(8):2189.MathSciNetPubMedPubMedCentralCrossRef Su WP, Wang WJ, Chang JY, et al. Therapeutic Zfra4–10 or WWOX7–21 peptide induces complex formation of WWOX with selective protein targets in organs that leads to cancer suppression and spleen cytotoxic memory Z cell activation in vivo. Cancers. 2020;12(8):2189.MathSciNetPubMedPubMedCentralCrossRef
54.
go back to reference Del GF, Maul GG, Jiménez SA, Artlett CM. Expression of allograft inflammatory factor 1 in tissues from patients with systemic sclerosis and in vitro differential expression of its isoforms in response to transforming growth factor beta. Arthritis Rheum. 2006;54(8):2616–25.CrossRef Del GF, Maul GG, Jiménez SA, Artlett CM. Expression of allograft inflammatory factor 1 in tissues from patients with systemic sclerosis and in vitro differential expression of its isoforms in response to transforming growth factor beta. Arthritis Rheum. 2006;54(8):2616–25.CrossRef
55.
go back to reference Vilalta A, Donovan D, Wood L, Vogeli G, Yang DC. Cloning, sequencing and expression of a cDNA encoding mammalian valyl-tRNA synthetase. Gene. 1993;123(2):181.PubMedCrossRef Vilalta A, Donovan D, Wood L, Vogeli G, Yang DC. Cloning, sequencing and expression of a cDNA encoding mammalian valyl-tRNA synthetase. Gene. 1993;123(2):181.PubMedCrossRef
56.
go back to reference Karaca E, Harel T, Pehlivan D, et al. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron. 2015;88(3):499–513.PubMedPubMedCentralCrossRef Karaca E, Harel T, Pehlivan D, et al. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron. 2015;88(3):499–513.PubMedPubMedCentralCrossRef
57.
go back to reference Huang K, Aggarwal R. Antisynthetase syndrome: a distinct disease spectrum. J Scleroderma Relat. 2020;5(3):178–91.CrossRef Huang K, Aggarwal R. Antisynthetase syndrome: a distinct disease spectrum. J Scleroderma Relat. 2020;5(3):178–91.CrossRef
58.
go back to reference Targoff IN, Trieu EP, Miller FW. Reaction of anti-OJ autoantibodies with components of the multi-enzyme complex of aminoacyl-tRNA synthetases in addition to isoleucyl-tRNA synthetase. J Clin Invest. 1993;91(6):2556–64.PubMedPubMedCentralCrossRef Targoff IN, Trieu EP, Miller FW. Reaction of anti-OJ autoantibodies with components of the multi-enzyme complex of aminoacyl-tRNA synthetases in addition to isoleucyl-tRNA synthetase. J Clin Invest. 1993;91(6):2556–64.PubMedPubMedCentralCrossRef
59.
go back to reference Muro Y, Yamashita Y, Koizumi H, et al. Two novel anti-aminoacyl tRNA synthetase antibodies: autoantibodies against cysteinyl-tRNA synthetase and valyl-tRNA synthetase. Autoimmun Rev. 2022;21(12):103204.PubMedCrossRef Muro Y, Yamashita Y, Koizumi H, et al. Two novel anti-aminoacyl tRNA synthetase antibodies: autoantibodies against cysteinyl-tRNA synthetase and valyl-tRNA synthetase. Autoimmun Rev. 2022;21(12):103204.PubMedCrossRef
60.
go back to reference Yang P, Wan W, Du L, et al. Clinical features of HLA-B27-positive acute anterior uveitis with or without ankylosing spondylitis in a Chinese cohort. Br J Ophthalmol. 2018;102(2):215–9.PubMedCrossRef Yang P, Wan W, Du L, et al. Clinical features of HLA-B27-positive acute anterior uveitis with or without ankylosing spondylitis in a Chinese cohort. Br J Ophthalmol. 2018;102(2):215–9.PubMedCrossRef
Metadata
Title
Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics
Authors
Shuming Chen
Weidi Huang
Qiaoqian Wan
Zichun Tang
Xie Li
Fang Zeng
Shuyan Zheng
Zhuo Li
Xiao Liu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-05077-y

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.