Skip to main content
Top
Published in: Current Diabetes Reports 10/2017

Open Access 01-10-2017 | Microvascular Complications—Retinopathy (JK Sun and PS Silva, Section Editors)

Animal Models of Diabetic Retinopathy

Authors: Ana Maria Olivares, Kristen Althoff, Gloria Fanghua Chen, Siqi Wu, Margaux A. Morrisson, Margaret M. DeAngelis, Neena Haider

Published in: Current Diabetes Reports | Issue 10/2017

Login to get access

Abstract

Purpose of Review

Diabetic retinopathy (DR) is one of the most common complications associated with chronic hyperglycemia seen in patients with diabetes mellitus. While many facets of DR are still not fully understood, animal studies have contributed significantly to understanding the etiology and progression of human DR. This review provides a comprehensive discussion of the induced and genetic DR models in different species and the advantages and disadvantages of each model.

Recent Findings

Rodents are the most commonly used models, though dogs develop the most similar morphological retinal lesions as those seen in humans, and pigs and zebrafish have similar vasculature and retinal structures to humans. Nonhuman primates can also develop diabetes mellitus spontaneously or have focal lesions induced to simulate retinal neovascular disease observed in individuals with DR.

Summary

DR results in vascular changes and dysfunction of the neural, glial, and pancreatic β cells. Currently, no model completely recapitulates the full pathophysiology of neuronal and vascular changes that occur at each stage of diabetic retinopathy; however, each model recapitulates many of the disease phenotypes.
Literature
11.
go back to reference •• Cho H, Sobrin L. Genetics of diabetic retinopathy. Curr Diab Rep [Internet]. 2014;14(8):515. doi:10.1007/s11892-014-0515-z. This is an important reference because it provides insight on how genetics plays a role in diabetic retinopathy. Understanding this will give more information on future development of therapies for treatment of this area. CrossRef •• Cho H, Sobrin L. Genetics of diabetic retinopathy. Curr Diab Rep [Internet]. 2014;14(8):515. doi:10.​1007/​s11892-014-0515-z. This is an important reference because it provides insight on how genetics plays a role in diabetic retinopathy. Understanding this will give more information on future development of therapies for treatment of this area. CrossRef
12.
go back to reference Karalliedde J, Gnudi L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant [Internet]. 2016;31(2):206–13. doi:10.1093/ndt/gfu405. Karalliedde J, Gnudi L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant [Internet]. 2016;31(2):206–13. doi:10.​1093/​ndt/​gfu405.
13.
go back to reference Kowluru RA, Santos JM, Mishra M. Epigenetic modifications and diabetic retinopathy. Biomed Res Int Hindawi Publishing Corporation; 2013;2013. Kowluru RA, Santos JM, Mishra M. Epigenetic modifications and diabetic retinopathy. Biomed Res Int Hindawi Publishing Corporation; 2013;2013.
14.
go back to reference Torres JM, Cox NJ, Philipson LH. Genome wide association studies for diabetes: perspective on results and challenges. Pediatr Diabetes Wiley Online Library. 2013;14(2):90–6.CrossRef Torres JM, Cox NJ, Philipson LH. Genome wide association studies for diabetes: perspective on results and challenges. Pediatr Diabetes Wiley Online Library. 2013;14(2):90–6.CrossRef
15.
go back to reference Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord Springer. 2008;9(4):315–27.CrossRef Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord Springer. 2008;9(4):315–27.CrossRef
16.
go back to reference Santos JM, Tewari S, Goldberg AFX, Kowluru RA. Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radic Biol Med Elsevier. 2011;51(10):1849–60.CrossRef Santos JM, Tewari S, Goldberg AFX, Kowluru RA. Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radic Biol Med Elsevier. 2011;51(10):1849–60.CrossRef
17.
go back to reference Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal [Internet]. 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA: Mary Ann Liebert, Inc.; 2010 15;13(6):797–805 Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935337/. Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal [Internet]. 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA: Mary Ann Liebert, Inc.; 2010 15;13(6):797–805 Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC2935337/​.
19.
go back to reference Cunha-Vaz J. Characterization and relevance of different diabetic retinopathy phenotypes. Dev Ophthalmol. 2007;39:13–30.PubMedCrossRef Cunha-Vaz J. Characterization and relevance of different diabetic retinopathy phenotypes. Dev Ophthalmol. 2007;39:13–30.PubMedCrossRef
21.
go back to reference Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29:1–13.PubMed Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29:1–13.PubMed
23.
go back to reference • Pearson JA, Wong FS, Wen L. The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun [Internet]. 2016;66:76–88. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765310/. The article discusses the use of a nonobese diabetic animal model. The use of this model has helped uncover the significance of environmental factors in the DR disease. It is also an important model to understanding autoimmune diseases in diabetes and identify the role of the immune system in disease progression. CrossRef • Pearson JA, Wong FS, Wen L. The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun [Internet]. 2016;66:76–88. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC4765310/​. The article discusses the use of a nonobese diabetic animal model. The use of this model has helped uncover the significance of environmental factors in the DR disease. It is also an important model to understanding autoimmune diseases in diabetes and identify the role of the immune system in disease progression. CrossRef
26.
go back to reference Miyamoto K, Hiroshiba N, Tsujikawa A, Ogura Y. In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1998;39(11):2190–4. Miyamoto K, Hiroshiba N, Tsujikawa A, Ogura Y. In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1998;39(11):2190–4.
27.
go back to reference Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res. Hindawi Publishing Corporation; 2013;2013. Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res. Hindawi Publishing Corporation; 2013;2013.
28.
go back to reference Engerman RL, Bloodworth JMB. Experimental diabetic retinopathy in dogs. Arch Ophthalmol Am Med Assoc. 1965;73(2):205–10.CrossRef Engerman RL, Bloodworth JMB. Experimental diabetic retinopathy in dogs. Arch Ophthalmol Am Med Assoc. 1965;73(2):205–10.CrossRef
29.
go back to reference Kador PF, Takahashi Y, Wyman M, Ferris F. Diabeteslike proliferative retinal changes in galactose-fed dogs. Arch Ophthalmol Am Med Assoc. 1995;113(3):352–4.CrossRef Kador PF, Takahashi Y, Wyman M, Ferris F. Diabeteslike proliferative retinal changes in galactose-fed dogs. Arch Ophthalmol Am Med Assoc. 1995;113(3):352–4.CrossRef
30.
go back to reference Kobayashi T, Kubo E, Takahashi Y, Kasahara T, Yonezawa H, Akagi Y. Retinal vessel changes in galactose-fed dogs. Arch Ophthalmol Am Med Assoc. 1998;116(6):785–9.CrossRef Kobayashi T, Kubo E, Takahashi Y, Kasahara T, Yonezawa H, Akagi Y. Retinal vessel changes in galactose-fed dogs. Arch Ophthalmol Am Med Assoc. 1998;116(6):785–9.CrossRef
31.
go back to reference Tso MO, Kurosawa A, Benhamou E, Bauman A, Jeffrey J, Jonasson O. Microangiopathic retinopathy in experimental diabetic monkeys. Trans Am Ophthalmol Soc Am Ophthalmol Soc. 1988;86:389. Tso MO, Kurosawa A, Benhamou E, Bauman A, Jeffrey J, Jonasson O. Microangiopathic retinopathy in experimental diabetic monkeys. Trans Am Ophthalmol Soc Am Ophthalmol Soc. 1988;86:389.
32.
go back to reference Linsenmeier RA, Braun RD, McRipley MA, Padnick LB, Ahmed J, Hatchell DL, et al. Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1998;39(9):1647–57. Linsenmeier RA, Braun RD, McRipley MA, Padnick LB, Ahmed J, Hatchell DL, et al. Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1998;39(9):1647–57.
33.
go back to reference Jo DH, Cho CS, Kim JH, Jun HO, Kim JH. Animal models of diabetic retinopathy: doors to investigate pathogenesis and potential therapeutics. J Biomed Sci BioMed Central. 2013;20(1):38.CrossRef Jo DH, Cho CS, Kim JH, Jun HO, Kim JH. Animal models of diabetic retinopathy: doors to investigate pathogenesis and potential therapeutics. J Biomed Sci BioMed Central. 2013;20(1):38.CrossRef
34.
go back to reference Goldsmith JR, Jobin C. Think small: zebrafish as a model system of human pathology. Biomed Res Int. Hindawi Publishing Corporation; 2012;2012. Goldsmith JR, Jobin C. Think small: zebrafish as a model system of human pathology. Biomed Res Int. Hindawi Publishing Corporation; 2012;2012.
35.
go back to reference Banting FG, Best CH. The internal secretion of the pancreas. Indian J Med Res Indian Counc Med Res. 2007;125(3):L251. Banting FG, Best CH. The internal secretion of the pancreas. Indian J Med Res Indian Counc Med Res. 2007;125(3):L251.
36.
go back to reference Sirek A. Handbook of diabetes mellitus. Pathophysiology and clinical considerations. Pfeiffer E, Verlag L, editors. Annals of internal medicine. München; 1968. 727–743 p. Sirek A. Handbook of diabetes mellitus. Pathophysiology and clinical considerations. Pfeiffer E, Verlag L, editors. Annals of internal medicine. München; 1968. 727–743 p.
37.
go back to reference Kumar S, Singh R, Vasudeva N, Sharma S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol BioMed Central. 2012;11(1):9.CrossRef Kumar S, Singh R, Vasudeva N, Sharma S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol BioMed Central. 2012;11(1):9.CrossRef
38.
go back to reference McLetchie NG. Alloxan diabetes: a discovery, albeit a minor one. 2001. McLetchie NG. Alloxan diabetes: a discovery, albeit a minor one. 2001.
40.
go back to reference Cooperstein S, Watkins D. Alloxan. In The islets of Langerhans. Press A, editor. New York; 1981. 388–411 p. Cooperstein S, Watkins D. Alloxan. In The islets of Langerhans. Press A, editor. New York; 1981. 388–411 p.
41.
go back to reference Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 1963;29:91–8. Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 1963;29:91–8.
42.
go back to reference Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord BioMed Central. 2013;12(1):60.CrossRef Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord BioMed Central. 2013;12(1):60.CrossRef
43.
go back to reference Engerman RL, Kern TS. Experimental galactosemia produces diabetic-like retinopathy. Diabetes Am Diabetes Assoc. 1984;33(1):97–100. Engerman RL, Kern TS. Experimental galactosemia produces diabetic-like retinopathy. Diabetes Am Diabetes Assoc. 1984;33(1):97–100.
44.
go back to reference Joussen AM, Doehmen S, Le ML, Koizumi K, Radetzky S, Krohne TU, et al. TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Molecular Vision; 2009. Joussen AM, Doehmen S, Le ML, Koizumi K, Radetzky S, Krohne TU, et al. TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Molecular Vision; 2009.
45.
go back to reference Stone J, Itin A, Alon T, Pe’Er J, Gnessin H, Chan-Ling T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci Soc Neurosci. 1995;15(7):4738–47. Stone J, Itin A, Alon T, Pe’Er J, Gnessin H, Chan-Ling T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci Soc Neurosci. 1995;15(7):4738–47.
46.
go back to reference Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res Elsevier. 2010;29(6):500–19.CrossRef Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res Elsevier. 2010;29(6):500–19.CrossRef
47.
go back to reference Reiser HJ, Whitworth UG Jr, Hatchell DL, Sutherland FS, Nanda S, McAdoo T, et al. Experimental diabetes in cats induced by partial pancreatectomy alone or combined with local injection of alloxan. Lab Anim Sci. 1987;37(4):449–52. Reiser HJ, Whitworth UG Jr, Hatchell DL, Sutherland FS, Nanda S, McAdoo T, et al. Experimental diabetes in cats induced by partial pancreatectomy alone or combined with local injection of alloxan. Lab Anim Sci. 1987;37(4):449–52.
48.
go back to reference Mansour SZ, Hatchell DL, Chandler D, Saloupis P, Hatchell MC. Reduction of basement membrane thickening in diabetic cat retina by sulindac. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1990;31(3):457–63. Mansour SZ, Hatchell DL, Chandler D, Saloupis P, Hatchell MC. Reduction of basement membrane thickening in diabetic cat retina by sulindac. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1990;31(3):457–63.
49.
go back to reference Hatchell DL, Toth CA, Barden CA, Saloupis P. Diabetic retinopathy in a cat. Exp Eye Res Academic Press. 1995;60(5):591–3. Hatchell DL, Toth CA, Barden CA, Saloupis P. Diabetic retinopathy in a cat. Exp Eye Res Academic Press. 1995;60(5):591–3.
50.
go back to reference Jonasson O, Jones CW, Bauman A, John E, Manaligod J, Tso MO, et al. Ann Surg Lippincott, Williams, and Wilkins. 1985;201(1):27. Jonasson O, Jones CW, Bauman A, John E, Manaligod J, Tso MO, et al. Ann Surg Lippincott, Williams, and Wilkins. 1985;201(1):27.
51.
go back to reference • Weerasekera LY, Balmer LA, Ram R, Morahan G. Characterization of retinal vascular and neural damage in a novel model of diabetic retinopathy. A novel mouse model of DR. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2015;56(6):3721–30. Using the recently developed “Collaborative Cross” mouse resource, this study showed for the first time that alloxan-induced DR in mice could manifest in cellular lesions. The creation of mouse strains with high genetic diversity allows for development of new DR models that recapitulate more phenotypes of human disease than were previously possible. CrossRef • Weerasekera LY, Balmer LA, Ram R, Morahan G. Characterization of retinal vascular and neural damage in a novel model of diabetic retinopathy. A novel mouse model of DR. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2015;56(6):3721–30. Using the recently developed “Collaborative Cross” mouse resource, this study showed for the first time that alloxan-induced DR in mice could manifest in cellular lesions. The creation of mouse strains with high genetic diversity allows for development of new DR models that recapitulate more phenotypes of human disease than were previously possible. CrossRef
52.
go back to reference Gaucher D, Chiappore J-A, Pâques M, Simonutti M, Boitard C, Sahel JA, et al. Microglial changes occur without neural cell death in diabetic retinopathy. Vis Res Elsevier. 2007;47(5):612–23.CrossRef Gaucher D, Chiappore J-A, Pâques M, Simonutti M, Boitard C, Sahel JA, et al. Microglial changes occur without neural cell death in diabetic retinopathy. Vis Res Elsevier. 2007;47(5):612–23.CrossRef
53.
go back to reference Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. Diabetes Am Diabetes Assoc. 2001;50(8):1938–42. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. Diabetes Am Diabetes Assoc. 2001;50(8):1938–42.
54.
go back to reference Schröder S, Palinski W, Schmid-Schönbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol Am Soc Investig Pathol. 1991;139(1):81. Schröder S, Palinski W, Schmid-Schönbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol Am Soc Investig Pathol. 1991;139(1):81.
55.
go back to reference Doczi-Keresztesi Z, Jung J, Kiss I, Mezei T, Szabo L, Ember I. Retinal and renal vascular permeability changes caused by stem cell stimulation in alloxan-induced diabetic rats, measured by extravasation of fluorescein. In Vivo (Brooklyn) Int Inst Anticancer Res. 2012;26(3):427–35. Doczi-Keresztesi Z, Jung J, Kiss I, Mezei T, Szabo L, Ember I. Retinal and renal vascular permeability changes caused by stem cell stimulation in alloxan-induced diabetic rats, measured by extravasation of fluorescein. In Vivo (Brooklyn) Int Inst Anticancer Res. 2012;26(3):427–35.
56.
go back to reference Yang Y, Hayden MR, Sowers S, Bagree SV, Sowers JR. Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. Oxid Med Cell Longev Hindawi Publishing Corporation. 2010;3(6):392–403.CrossRef Yang Y, Hayden MR, Sowers S, Bagree SV, Sowers JR. Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. Oxid Med Cell Longev Hindawi Publishing Corporation. 2010;3(6):392–403.CrossRef
57.
go back to reference DiPietro DL, Weinhouse S. Hepatic glucokinase in the fed, fasted, and alloxan-diabetic rat. J Biol Chem ASBMB. 1960;235(9):2542–5. DiPietro DL, Weinhouse S. Hepatic glucokinase in the fed, fasted, and alloxan-diabetic rat. J Biol Chem ASBMB. 1960;235(9):2542–5.
58.
go back to reference Crane RK. An effect of alloxan-diabetes on the active transport of sugars by rat small intestine, in vitro. Biochem Biophys Res Commun Elsevier. 1961;4(6):436–40.CrossRef Crane RK. An effect of alloxan-diabetes on the active transport of sugars by rat small intestine, in vitro. Biochem Biophys Res Commun Elsevier. 1961;4(6):436–40.CrossRef
59.
go back to reference Spadella CT, Machado JLM, Lerco MM, Ortolan EVP, Schellini SA, Gregório EA. Temporal relationship between successful pancreas transplantation and control of ocular complications in alloxan-induced diabetic rats. In: Transplantation proceedings. Elsevier; 2008. p. 518–23. Spadella CT, Machado JLM, Lerco MM, Ortolan EVP, Schellini SA, Gregório EA. Temporal relationship between successful pancreas transplantation and control of ocular complications in alloxan-induced diabetic rats. In: Transplantation proceedings. Elsevier; 2008. p. 518–23.
60.
go back to reference Kern TS, Engerman RL. Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr Eye Res Taylor & Francis. 1994;13(12):863–7. Kern TS, Engerman RL. Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr Eye Res Taylor & Francis. 1994;13(12):863–7.
61.
go back to reference King JL, Mason JO, Cartner SC, Guidry C. The influence of alloxan-induced diabetes on Müller cell contraction-promoting activities in vitreous. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2011;52(10):7485–91. King JL, Mason JO, Cartner SC, Guidry C. The influence of alloxan-induced diabetes on Müller cell contraction-promoting activities in vitreous. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2011;52(10):7485–91.
62.
63.
go back to reference Kumar S, Zhuo L. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model. Exp Eye Res Elsevier. 2010;91(4):530–6.CrossRef Kumar S, Zhuo L. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model. Exp Eye Res Elsevier. 2010;91(4):530–6.CrossRef
64.
go back to reference Drago F, La Manna C, Emmi I, Marino A. Effects of sulfinpyrazone on retinal damage induced by experimental diabetes mellitus in rabbits. Pharmacol Res Elsevier. 1998;38(2):97–100.CrossRef Drago F, La Manna C, Emmi I, Marino A. Effects of sulfinpyrazone on retinal damage induced by experimental diabetes mellitus in rabbits. Pharmacol Res Elsevier. 1998;38(2):97–100.CrossRef
65.
go back to reference Lee SE, Ma W, Rattigan EM, Aleshin A, Chen L, Johnson LL, et al. Ultrastructural features of retinal capillary basement membrane thickening in diabetic swine. Ultrastruct Pathol Taylor & Francis. 2010;34(1):35–41. Lee SE, Ma W, Rattigan EM, Aleshin A, Chen L, Johnson LL, et al. Ultrastructural features of retinal capillary basement membrane thickening in diabetic swine. Ultrastruct Pathol Taylor & Francis. 2010;34(1):35–41.
67.
go back to reference Li L, Li Y, Zhou Y, Ge Z, Wang L, Li Z, et al. Jiangtang Xiaozhi recipe (降糖消脂方) prevents diabetic retinopathy in streptozotocin-induced diabetic rats. Chin J Integr Med Springer. 2016:1–8. Li L, Li Y, Zhou Y, Ge Z, Wang L, Li Z, et al. Jiangtang Xiaozhi recipe (降糖消脂方) prevents diabetic retinopathy in streptozotocin-induced diabetic rats. Chin J Integr Med Springer. 2016:1–8.
68.
go back to reference Anderson HR, Stitt AW, Gardiner TA, Lloyd SJ, Archer DB. Induction of alloxan/streptozotocin diabetes in dogs: a revised experimental technique. Lab Anim SAGE Publications Sage UK: London, England. 1993;27(3):281–5. Anderson HR, Stitt AW, Gardiner TA, Lloyd SJ, Archer DB. Induction of alloxan/streptozotocin diabetes in dogs: a revised experimental technique. Lab Anim SAGE Publications Sage UK: London, England. 1993;27(3):281–5.
69.
go back to reference Olsen AS, Sarras MP, Intine RV. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound repair Regen Wiley Online Library. 2010;18(5):532–42. Olsen AS, Sarras MP, Intine RV. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound repair Regen Wiley Online Library. 2010;18(5):532–42.
70.
go back to reference Intine RV, Olsen AS, Sarras Jr MP. A zebrafish model of diabetes mellitus and metabolic memory. JoVE J Vis Exp. 2013;(72):e50232–e50232. Intine RV, Olsen AS, Sarras Jr MP. A zebrafish model of diabetes mellitus and metabolic memory. JoVE J Vis Exp. 2013;(72):e50232–e50232.
71.
go back to reference Feit-Leichman RA, Kinouchi R, Takeda M, Fan Z, Mohr S, Kern TS, et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2005;46(11):4281–7. Feit-Leichman RA, Kinouchi R, Takeda M, Fan Z, Mohr S, Kern TS, et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2005;46(11):4281–7.
72.
go back to reference Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2004;45(9):3330–6. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2004;45(9):3330–6.
73.
go back to reference Su L, Ji J, Bian J, Fu Y, Ge Y, Yuan Z. Tacrolimus (FK506) prevents early retinal neovascularization in streptozotocin-induced diabetic mice. Int Immunopharmacol Elsevier. 2012;14(4):606–12. Su L, Ji J, Bian J, Fu Y, Ge Y, Yuan Z. Tacrolimus (FK506) prevents early retinal neovascularization in streptozotocin-induced diabetic mice. Int Immunopharmacol Elsevier. 2012;14(4):606–12.
74.
go back to reference Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2008;49(2):732–42.CrossRef Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2008;49(2):732–42.CrossRef
75.
go back to reference Rungger-Brändle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2000;41(7):1971–80. Rungger-Brändle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2000;41(7):1971–80.
76.
go back to reference Gardiner TA, Stitt AW, Anderson HR, Archer DB. Selective loss of vascular smooth muscle cells in the retinal microcirculation of diabetic dogs. Br J Ophthalmol BMJ Publishing Group Ltd. 1994;78(1):54–60.CrossRef Gardiner TA, Stitt AW, Anderson HR, Archer DB. Selective loss of vascular smooth muscle cells in the retinal microcirculation of diabetic dogs. Br J Ophthalmol BMJ Publishing Group Ltd. 1994;78(1):54–60.CrossRef
77.
go back to reference Hainsworth DP, Katz ML, Sanders DA, Sanders DN, Wright EJ, Sturek M. Retinal capillary basement membrane thickening in a porcine model of diabetes mellitus. Comp Med Am Assoc Lab Anim Sci. 2002;52(6):523–9. Hainsworth DP, Katz ML, Sanders DA, Sanders DN, Wright EJ, Sturek M. Retinal capillary basement membrane thickening in a porcine model of diabetes mellitus. Comp Med Am Assoc Lab Anim Sci. 2002;52(6):523–9.
78.
go back to reference Kern TS, Engerman RL. A mouse model of diabetic retinopathy. Arch Ophthalmol Am Med Assoc. 1996;114(8):986–90.CrossRef Kern TS, Engerman RL. A mouse model of diabetic retinopathy. Arch Ophthalmol Am Med Assoc. 1996;114(8):986–90.CrossRef
79.
go back to reference Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J FASEB. 2004;18(12):1450–2. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J FASEB. 2004;18(12):1450–2.
80.
go back to reference Engerman RL, Kern TS. Retinopathy in animal models of diabetes. Diabetes Metab Res Rev Wiley Online Library. 1995;11(2):109–20. Engerman RL, Kern TS. Retinopathy in animal models of diabetes. Diabetes Metab Res Rev Wiley Online Library. 1995;11(2):109–20.
81.
go back to reference Helfenstein T, Fonseca FA, Ihara SS, Bottos JM, Moreira FT, Pott H Jr, et al. Impaired glucose tolerance plus hyperlipidaemia induced by diet promotes retina microaneurysms in New Zealand rabbits. Int J Exp Pathol Wiley Online Library. 2011;92(1):40–9.CrossRef Helfenstein T, Fonseca FA, Ihara SS, Bottos JM, Moreira FT, Pott H Jr, et al. Impaired glucose tolerance plus hyperlipidaemia induced by diet promotes retina microaneurysms in New Zealand rabbits. Int J Exp Pathol Wiley Online Library. 2011;92(1):40–9.CrossRef
82.
go back to reference Gleeson M, Connaughton V, Arneson LS. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol Springer. 2007;44(3):157–63.CrossRef Gleeson M, Connaughton V, Arneson LS. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol Springer. 2007;44(3):157–63.CrossRef
83.
go back to reference Hyoung Kim J, Suk Yu Y, Kim K, Hun KJ. Investigation of barrier characteristics in the hyaloid-retinal vessel of zebrafish. J Neurosci Res Wiley Online Library. 2011;89(6):921–8.CrossRef Hyoung Kim J, Suk Yu Y, Kim K, Hun KJ. Investigation of barrier characteristics in the hyaloid-retinal vessel of zebrafish. J Neurosci Res Wiley Online Library. 2011;89(6):921–8.CrossRef
84.
go back to reference Cusick M, Chew EY, Ferris F, Cox TA, Chan C-C, Kador PF. Effects of aldose reductase inhibitors and galactose withdrawal on fluorescein angiographic lesions in galactose-fed dogs. Arch Ophthalmol Am Med Assoc. 2003;121(12):1745–51.CrossRef Cusick M, Chew EY, Ferris F, Cox TA, Chan C-C, Kador PF. Effects of aldose reductase inhibitors and galactose withdrawal on fluorescein angiographic lesions in galactose-fed dogs. Arch Ophthalmol Am Med Assoc. 2003;121(12):1745–51.CrossRef
85.
go back to reference Dollery CT, Bulpitt CJ, Kohner EM. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1969;8(6):588–94. Dollery CT, Bulpitt CJ, Kohner EM. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1969;8(6):588–94.
87.
go back to reference Chen X, Ouyang L, Yin Z, Xia Y, Chen X, Shi H, et al. Effects of microRNA-29a on retinopathy of prematurity by targeting AGT in a mouse model. Am J Transl Res. 2017;9(2):791–801. Chen X, Ouyang L, Yin Z, Xia Y, Chen X, Shi H, et al. Effects of microRNA-29a on retinopathy of prematurity by targeting AGT in a mouse model. Am J Transl Res. 2017;9(2):791–801.
88.
go back to reference Zhang P, Wang H, Cao H, Xu X, Sun T. Insulin-like growth factor binding protein-related protein 1 inhibit retinal neovascularization in the mouse model of oxygen-induced retinopathy. J Ocul Pharmacol Ther. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2017. Zhang P, Wang H, Cao H, Xu X, Sun T. Insulin-like growth factor binding protein-related protein 1 inhibit retinal neovascularization in the mouse model of oxygen-induced retinopathy. J Ocul Pharmacol Ther. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2017.
89.
go back to reference van Wijngaarden P, Coster DJ, Brereton HM, Gibbins IL, Williams KA. Strain-dependent differences in oxygen-induced retinopathy in the inbred rat. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2005;46(4):1445–52.CrossRef van Wijngaarden P, Coster DJ, Brereton HM, Gibbins IL, Williams KA. Strain-dependent differences in oxygen-induced retinopathy in the inbred rat. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2005;46(4):1445–52.CrossRef
90.
go back to reference Penn JS, Henry MM, Tolman BL. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res Nature Publishing Group. 1994;36(6):724–31. Penn JS, Henry MM, Tolman BL. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res Nature Publishing Group. 1994;36(6):724–31.
91.
go back to reference Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia Wiley Online Library. 2008;56(10):1076–90. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia Wiley Online Library. 2008;56(10):1076–90.
92.
go back to reference Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol Wiley Online Library. 2007;504(4):404–17.CrossRef Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol Wiley Online Library. 2007;504(4):404–17.CrossRef
93.
go back to reference Fulton AB, Reynaud X, Hansen RM, Lemere CA, Parker C, Williams TP. Rod photoreceptors in infant rats with a history of oxygen exposure. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1999;40(1):168–74. Fulton AB, Reynaud X, Hansen RM, Lemere CA, Parker C, Williams TP. Rod photoreceptors in infant rats with a history of oxygen exposure. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1999;40(1):168–74.
94.
go back to reference Cao Z, Jensen LD, Rouhi P, Hosaka K, Länne T, Steffensen JF, et al. Hypoxia-induced retinopathy model in adult zebrafish. Nat Protoc Nature Publishing Group. 2010;5(12):1903–10.CrossRef Cao Z, Jensen LD, Rouhi P, Hosaka K, Länne T, Steffensen JF, et al. Hypoxia-induced retinopathy model in adult zebrafish. Nat Protoc Nature Publishing Group. 2010;5(12):1903–10.CrossRef
95.
go back to reference Cao R, Jensen LDE, Söll I, Hauptmann G, Cao Y. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLoS One Public Library of Science. 2008;3(7):e2748.CrossRef Cao R, Jensen LDE, Söll I, Hauptmann G, Cao Y. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLoS One Public Library of Science. 2008;3(7):e2748.CrossRef
96.
go back to reference Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol. 1994;145(3):574–84.PubMedPubMedCentral Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol. 1994;145(3):574–84.PubMedPubMedCentral
97.
go back to reference Liu G, Zhang W, Xiao Y, Lu P. Critical role of IP-10 on reducing experimental corneal neovascularization. CurrEye Res. 2014;3683(1460–2202 (Electronic)):1–11. Liu G, Zhang W, Xiao Y, Lu P. Critical role of IP-10 on reducing experimental corneal neovascularization. CurrEye Res. 2014;3683(1460–2202 (Electronic)):1–11.
98.
go back to reference Weir GC, Marselli L, Marchetti P, Katsuta H, Jung MH, Bonner-Weir S. Towards better understanding of the contributions of overwork and glucotoxicity to the β-cell inadequacy of type 2 diabetes. Diabetes Obes Metab Wiley Online Library. 2009;11(s4):82–90.CrossRef Weir GC, Marselli L, Marchetti P, Katsuta H, Jung MH, Bonner-Weir S. Towards better understanding of the contributions of overwork and glucotoxicity to the β-cell inadequacy of type 2 diabetes. Diabetes Obes Metab Wiley Online Library. 2009;11(s4):82–90.CrossRef
101.
go back to reference Barber AJ, Antonetti DA, Kern TS, Reiter CEN, Soans RS, Krady JK, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci [Internet]. 2005;46(6):2210–8. doi:10.1167/iovs.04-1340. Barber AJ, Antonetti DA, Kern TS, Reiter CEN, Soans RS, Krady JK, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci [Internet]. 2005;46(6):2210–8. doi:10.​1167/​iovs.​04-1340.
103.
go back to reference Gastinger MJ, Singh RSJ, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci [Internet]. 2006;47(7):3143–50. doi:10.1167/iovs.05-1376.PubMedCrossRef Gastinger MJ, Singh RSJ, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci [Internet]. 2006;47(7):3143–50. doi:10.​1167/​iovs.​05-1376.PubMedCrossRef
104.
go back to reference Gastinger MJ, Kunselman AR, Conboy EE, Bronson SK, Barber AJ. Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2Akita diabetic mice. Invest Ophthalmol Vis Sci [Internet]. 2008;49(6):2635–42. doi:10.1167/iovs.07-0683.CrossRef Gastinger MJ, Kunselman AR, Conboy EE, Bronson SK, Barber AJ. Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2Akita diabetic mice. Invest Ophthalmol Vis Sci [Internet]. 2008;49(6):2635–42. doi:10.​1167/​iovs.​07-0683.CrossRef
105.
go back to reference Leiter EH. The NOD mouse: a model for analyzing the interplay between heredity and environment in development of autoimmune disease. ILAR J [Internet]. 1993 Jan 1;35(1):4–14. doi:10.1093/ilar.35.1.4.CrossRef Leiter EH. The NOD mouse: a model for analyzing the interplay between heredity and environment in development of autoimmune disease. ILAR J [Internet]. 1993 Jan 1;35(1):4–14. doi:10.​1093/​ilar.​35.​1.​4.CrossRef
108.
go back to reference Leiter EH, Prochazka M, Coleman DL. The non-obese diabetic (NOD) mouse. Am J Pathol Am Soc Investig Pathol. 1987;128(2):380. Leiter EH, Prochazka M, Coleman DL. The non-obese diabetic (NOD) mouse. Am J Pathol Am Soc Investig Pathol. 1987;128(2):380.
109.
go back to reference Simpson PB, Mistry MS, Maki RA, Yang W, Schwarz DA, Johnson EB, et al. Cutting edge: diabetes-associated quantitative trait locus, Idd4, is responsible for the IL-12p40 overexpression defect in nonobese diabetic (NOD) mice. J Immunol Am Assoc Immnol. 2003;171(7):3333–7. Simpson PB, Mistry MS, Maki RA, Yang W, Schwarz DA, Johnson EB, et al. Cutting edge: diabetes-associated quantitative trait locus, Idd4, is responsible for the IL-12p40 overexpression defect in nonobese diabetic (NOD) mice. J Immunol Am Assoc Immnol. 2003;171(7):3333–7.
111.
go back to reference Shaw SG, Boden JP, Biecker E, Reichen J, Rothen B. Endothelin antagonism prevents diabetic retinopathy in NOD mice: a potential role of the angiogenic factor adrenomedullin. Exp Biol Med SAGE Publications. 2006;231(6):1101–5. Shaw SG, Boden JP, Biecker E, Reichen J, Rothen B. Endothelin antagonism prevents diabetic retinopathy in NOD mice: a potential role of the angiogenic factor adrenomedullin. Exp Biol Med SAGE Publications. 2006;231(6):1101–5.
115.
go back to reference Leiter EH, Coleman DL, Eppig JJ. Endocrine pancreatic cells of postatal “diabetes” (DB) mice in cell culture. In Vitro Springer. 1979;15(7):507–21.CrossRef Leiter EH, Coleman DL, Eppig JJ. Endocrine pancreatic cells of postatal “diabetes” (DB) mice in cell culture. In Vitro Springer. 1979;15(7):507–21.CrossRef
116.
go back to reference Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, et al. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp Biol Med SAGE Publications Sage UK: London, England. 2011;236(9):1051–63. Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, et al. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp Biol Med SAGE Publications Sage UK: London, England. 2011;236(9):1051–63.
117.
go back to reference Clements RS, Robison WG, Cohen MP. Anti-glycated albumin therapy ameliorates early retinal microvascular pathology in db/db mice. J Diabetes Complicat Elsevier. 1998;12(1):28–33.CrossRef Clements RS, Robison WG, Cohen MP. Anti-glycated albumin therapy ameliorates early retinal microvascular pathology in db/db mice. J Diabetes Complicat Elsevier. 1998;12(1):28–33.CrossRef
118.
go back to reference Cheung AKH, Fung MKL, Lo ACY, Lam TTL, So KF, Chung SSM, et al. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes Am Diabetes Assoc. 2005;54(11):3119–25. Cheung AKH, Fung MKL, Lo ACY, Lam TTL, So KF, Chung SSM, et al. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes Am Diabetes Assoc. 2005;54(11):3119–25.
119.
go back to reference Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Metab Am Physiol Soc. 2000;279(5):E1104–13. Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Metab Am Physiol Soc. 2000;279(5):E1104–13.
120.
go back to reference Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes Am Diabetes Assoc. 2003;52(2):434–41. Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes Am Diabetes Assoc. 2003;52(2):434–41.
121.
go back to reference Okamoto N, Tobe T, Hackett SF, Ozaki H, Vinores MA, LaRochelle W, et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol Am Soc Investig Pathol. 1997;151(1):281. Okamoto N, Tobe T, Hackett SF, Ozaki H, Vinores MA, LaRochelle W, et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol Am Soc Investig Pathol. 1997;151(1):281.
122.
go back to reference Tee LBG, Penrose MA, O’Shea JE, Lai CM, Rakoczy EP, Dunlop SA. VEGF-induced choroidal damage in a murine model of retinal neovascularisation. Br J Ophthalmol BMJ Publishing Group Ltd. 2008;92(6):832–8.CrossRef Tee LBG, Penrose MA, O’Shea JE, Lai CM, Rakoczy EP, Dunlop SA. VEGF-induced choroidal damage in a murine model of retinal neovascularisation. Br J Ophthalmol BMJ Publishing Group Ltd. 2008;92(6):832–8.CrossRef
123.
go back to reference van Eeden PE, LBG T, Lukehurst S, Lai C-M, Rakoczy EP, Beazley LD, et al. Early vascular and neuronal changes in a VEGF transgenic mouse model of retinal neovascularization. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2006;47(10):4638–45.CrossRef van Eeden PE, LBG T, Lukehurst S, Lai C-M, Rakoczy EP, Beazley LD, et al. Early vascular and neuronal changes in a VEGF transgenic mouse model of retinal neovascularization. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 2006;47(10):4638–45.CrossRef
124.
go back to reference Shen W-Y, Lai CM, Graham CE, Binz N, Lai YKY, Eade J, et al. Long-term global retinal microvascular changes in a transgenic vascular endothelial growth factor mouse model. Diabetologia Springer. 2006;49(7):1690–701.CrossRef Shen W-Y, Lai CM, Graham CE, Binz N, Lai YKY, Eade J, et al. Long-term global retinal microvascular changes in a transgenic vascular endothelial growth factor mouse model. Diabetologia Springer. 2006;49(7):1690–701.CrossRef
125.
go back to reference Rakoczy EP, Rahman ISA, Binz N, Li C-R, Vagaja NN, de Pinho M, et al. Characterization of a mouse model of hyperglycemia and retinal neovascularization. Am J Pathol Elsevier. 2010;177(5):2659–70.CrossRef Rakoczy EP, Rahman ISA, Binz N, Li C-R, Vagaja NN, de Pinho M, et al. Characterization of a mouse model of hyperglycemia and retinal neovascularization. Am J Pathol Elsevier. 2010;177(5):2659–70.CrossRef
126.
go back to reference McLenachan S, Magno AL, Ramos D, Catita J, McMenamin PG, Chen FK, et al. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice. Exp Eye Res Elsevier. 2015;138:6–21.CrossRef McLenachan S, Magno AL, Ramos D, Catita J, McMenamin PG, Chen FK, et al. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice. Exp Eye Res Elsevier. 2015;138:6–21.CrossRef
127.
go back to reference Wisniewska-Kruk J, Klaassen I, Vogels IMC, Magno AL, Lai C-M, Van Noorden CJF, et al. Molecular analysis of blood–retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Exp Eye Res Elsevier. 2014;122:123–31.CrossRef Wisniewska-Kruk J, Klaassen I, Vogels IMC, Magno AL, Lai C-M, Van Noorden CJF, et al. Molecular analysis of blood–retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Exp Eye Res Elsevier. 2014;122:123–31.CrossRef
128.
go back to reference Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker diabetic fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol Elsevier. 2003;163(1):21–8.CrossRef Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker diabetic fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol Elsevier. 2003;163(1):21–8.CrossRef
129.
go back to reference Seino S. A novel rat model of type 2 diabetes: the Zucker fatty diabetes mellitus ZFDM rat. Exp Diabetes Res Hindawi Publishing Corporation. 2013;2013 Seino S. A novel rat model of type 2 diabetes: the Zucker fatty diabetes mellitus ZFDM rat. Exp Diabetes Res Hindawi Publishing Corporation. 2013;2013
130.
go back to reference Danis RP, Yang Y. Microvascular retinopathy in the Zucker diabetic fatty rat. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1993;34(7):2367–71. Danis RP, Yang Y. Microvascular retinopathy in the Zucker diabetic fatty rat. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1993;34(7):2367–71.
131.
go back to reference Watanabe TK, Suzuki M, Yamasaki Y, Okuno S, Hishigaki H, Ono T, et al. Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF Rat. Clin Exp Pharmacol Physiol Wiley Online Library. 2005;32(5–6):355–66. Watanabe TK, Suzuki M, Yamasaki Y, Okuno S, Hishigaki H, Ono T, et al. Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF Rat. Clin Exp Pharmacol Physiol Wiley Online Library. 2005;32(5–6):355–66.
132.
go back to reference Lu Z-Y, Bhutto IA, Amemiya T. Retinal changes in Otsuka Long-Evans Tokushima fatty rats (spontaneously diabetic rat)—possibility of a new experimental model for diabetic retinopathy. Jpn J Ophthalmol Elsevier. 2003;47(1):28–35. Lu Z-Y, Bhutto IA, Amemiya T. Retinal changes in Otsuka Long-Evans Tokushima fatty rats (spontaneously diabetic rat)—possibility of a new experimental model for diabetic retinopathy. Jpn J Ophthalmol Elsevier. 2003;47(1):28–35.
133.
go back to reference Miyamura N, Bhutto IA, Amemiya T. Retinal capillary changes in Otsuka Long-Evans Tokushima fatty rats (spontaneously diabetic strain). Ophthalmic Res Karger Publishers. 1999;31(5):358–66. Miyamura N, Bhutto IA, Amemiya T. Retinal capillary changes in Otsuka Long-Evans Tokushima fatty rats (spontaneously diabetic strain). Ophthalmic Res Karger Publishers. 1999;31(5):358–66.
134.
go back to reference Bhutto IA, Lu Z-Y, Takami Y, Amemiya T. Retinal and choroidal vasculature in rats with spontaneous diabetes type 2 treated with the angiotensin-converting enzyme inhibitor cilazapril: corrosion cast and electron-microscopic study. Ophthalmic Res Karger Publishers. 2002;34(4):220–31. Bhutto IA, Lu Z-Y, Takami Y, Amemiya T. Retinal and choroidal vasculature in rats with spontaneous diabetes type 2 treated with the angiotensin-converting enzyme inhibitor cilazapril: corrosion cast and electron-microscopic study. Ophthalmic Res Karger Publishers. 2002;34(4):220–31.
135.
go back to reference Sima AAF, Chakrabarti S, Garcia-Salinas R, Basu PK. The BB-rat—an authentic model of human diabetic retinopathy. Curr Eye Res Taylor & Francis. 1985;4(10):1087–92. Sima AAF, Chakrabarti S, Garcia-Salinas R, Basu PK. The BB-rat—an authentic model of human diabetic retinopathy. Curr Eye Res Taylor & Francis. 1985;4(10):1087–92.
136.
go back to reference Wallis RH, Wang K, Marandi L, Hsieh E, Ning T, Chao GYC, et al. Type 1 diabetes in the BB rat: a polygenic disease. Diabetes Am Diabetes Assoc. 2009;58(4):1007–17. Wallis RH, Wang K, Marandi L, Hsieh E, Ning T, Chao GYC, et al. Type 1 diabetes in the BB rat: a polygenic disease. Diabetes Am Diabetes Assoc. 2009;58(4):1007–17.
137.
go back to reference MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, Gohlke P, et al. Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res Cold Spring Harbor Lab. 2002;12(7):1029–39. MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, Gohlke P, et al. Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res Cold Spring Harbor Lab. 2002;12(7):1029–39.
138.
go back to reference Hornum L, Rømer J, Markholst H. The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. Diabetes Am Diabetes Assoc. 2002;51(6):1972–9. Hornum L, Rømer J, Markholst H. The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. Diabetes Am Diabetes Assoc. 2002;51(6):1972–9.
139.
go back to reference Rutledge EA, Fuller JM, Van Yserloo B, Moralejo DH, Ettinger RA, Gaur P, et al. Sequence variation and expression of the Gimap gene family in the BB rat. Exp Diabetes Res Hindawi Publishing Corporation. 2009;2009 Rutledge EA, Fuller JM, Van Yserloo B, Moralejo DH, Ettinger RA, Gaur P, et al. Sequence variation and expression of the Gimap gene family in the BB rat. Exp Diabetes Res Hindawi Publishing Corporation. 2009;2009
140.
go back to reference Ash S, Yarkoni S, Askenasy N. Lymphopenia is detrimental to therapeutic approaches to type 1 diabetes using regulatory T cells. Immunol Res Springer. 2014;58(1):101–5.CrossRef Ash S, Yarkoni S, Askenasy N. Lymphopenia is detrimental to therapeutic approaches to type 1 diabetes using regulatory T cells. Immunol Res Springer. 2014;58(1):101–5.CrossRef
141.
go back to reference von Känel R, Mills PJ, Dimsdale JE. Short-term hyperglycemia induces lymphopenia and lymphocyte subset redistribution. Life Sci Elsevier. 2001;69(3):255–62.CrossRef von Känel R, Mills PJ, Dimsdale JE. Short-term hyperglycemia induces lymphopenia and lymphocyte subset redistribution. Life Sci Elsevier. 2001;69(3):255–62.CrossRef
142.
go back to reference Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res AACR. 2009;69(13):5383–91.CrossRef Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res AACR. 2009;69(13):5383–91.CrossRef
143.
go back to reference Grossman SA, Ellsworth S, Campian J, Wild AT, Herman JM, Laheru D, et al. Survival in patients with severe lymphopenia following treatment with radiation and chemotherapy for newly diagnosed solid tumors. J Natl Compr Cancer Netw. Harborside press, LLC; 2015;13(10):1225–1231. Grossman SA, Ellsworth S, Campian J, Wild AT, Herman JM, Laheru D, et al. Survival in patients with severe lymphopenia following treatment with radiation and chemotherapy for newly diagnosed solid tumors. J Natl Compr Cancer Netw. Harborside press, LLC; 2015;13(10):1225–1231.
144.
go back to reference Schulze-Koops H. Lymphopenia and autoimmune diseases. Arthritis Res Ther BioMed Central. 2004;6(4):178.CrossRef Schulze-Koops H. Lymphopenia and autoimmune diseases. Arthritis Res Ther BioMed Central. 2004;6(4):178.CrossRef
145.
go back to reference Miyamura N, Amemiya T. Lens and retinal changes in the WBN/Kob rat (spontaneously diabetic strain). Ophthalmic Res Karger Publishers. 1998;30(4):221–32.CrossRef Miyamura N, Amemiya T. Lens and retinal changes in the WBN/Kob rat (spontaneously diabetic strain). Ophthalmic Res Karger Publishers. 1998;30(4):221–32.CrossRef
146.
go back to reference Tsuji N, Matsuura T, Ozaki K, Tomoya S, Narama I. Diabetic retinopathy and choroidal angiopathy in diabetic rats (WBN/Kob). Exp Anim. Japanese Association for Laboratory Animal Science; 2009;58(5):481–7. Tsuji N, Matsuura T, Ozaki K, Tomoya S, Narama I. Diabetic retinopathy and choroidal angiopathy in diabetic rats (WBN/Kob). Exp Anim. Japanese Association for Laboratory Animal Science; 2009;58(5):481–7.
147.
go back to reference Tsuji A, Nishikawa T, Mori M, Suda K, Nishimori I, Nishimura M. Quantitative trait locus analysis for chronic pancreatitis and diabetes mellitus in the WBN/Kob rat. Genomics Elsevier. 2001;74(3):365–9.CrossRef Tsuji A, Nishikawa T, Mori M, Suda K, Nishimori I, Nishimura M. Quantitative trait locus analysis for chronic pancreatitis and diabetes mellitus in the WBN/Kob rat. Genomics Elsevier. 2001;74(3):365–9.CrossRef
148.
go back to reference Xiaoying FU, Lei C, Zhang G, Higuchi K. Hereditary pancreatitis model WBN/Kob rat strain has a unique haplotype in the Pdwk1 region on chromosome 7. Exp Anim Japanese Assoc Lab Anim Sci. 2009;58(4):409–13. Xiaoying FU, Lei C, Zhang G, Higuchi K. Hereditary pancreatitis model WBN/Kob rat strain has a unique haplotype in the Pdwk1 region on chromosome 7. Exp Anim Japanese Assoc Lab Anim Sci. 2009;58(4):409–13.
149.
go back to reference Yamada H, Yamada E, Higuchi A, Matsumura M. Retinal neovascularisation without ischaemia in the spontaneously diabetic Torii rat. Diabetologia. Springer. 2005;48(8):1663–8.CrossRef Yamada H, Yamada E, Higuchi A, Matsumura M. Retinal neovascularisation without ischaemia in the spontaneously diabetic Torii rat. Diabetologia. Springer. 2005;48(8):1663–8.CrossRef
150.
go back to reference Shinohara M, Masuyama T, Shoda T, Takahashi T, Katsuda Y, Komeda K, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. J Diabetes Res Hindawi Publishing Corporation. 2000;1(2):89–100. Shinohara M, Masuyama T, Shoda T, Takahashi T, Katsuda Y, Komeda K, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. J Diabetes Res Hindawi Publishing Corporation. 2000;1(2):89–100.
151.
go back to reference Sasase T, Morinaga H, Abe T, Miyajima K, Ohta T, Shinohara M, et al. Protein kinase C beta inhibitor prevents diabetic peripheral neuropathy, but not histopathological abnormalities of retina in spontaneously diabetic Torii rat. Diabetes Obes Metab Wiley Online Library. 2009;(11):11, 1084–1017. Sasase T, Morinaga H, Abe T, Miyajima K, Ohta T, Shinohara M, et al. Protein kinase C beta inhibitor prevents diabetic peripheral neuropathy, but not histopathological abnormalities of retina in spontaneously diabetic Torii rat. Diabetes Obes Metab Wiley Online Library. 2009;(11):11, 1084–1017.
152.
go back to reference Matsuoka M, Ogata N, Minamino K, Matsumura M. Leukostasis and pigment epithelium-derived factor in rat models of diabetic retinopathy. Mol Vis Citeseer. 2007;13:1058–65. Matsuoka M, Ogata N, Minamino K, Matsumura M. Leukostasis and pigment epithelium-derived factor in rat models of diabetic retinopathy. Mol Vis Citeseer. 2007;13:1058–65.
153.
go back to reference Fukuda M, Nakanishi Y, Fuse M, Yokoi N, Hamada Y, Fukagawa M, et al. Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Exp Eye Res Elsevier. 2010;90(1):17–25.CrossRef Fukuda M, Nakanishi Y, Fuse M, Yokoi N, Hamada Y, Fukagawa M, et al. Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Exp Eye Res Elsevier. 2010;90(1):17–25.CrossRef
154.
go back to reference Kakehashi A, Saito Y, Mori K, Sugi N, Ono R, Yamagami H, et al. Characteristics of diabetic retinopathy in SDT rats. Diabetes Metab Res Rev Wiley Online Library. 2006;22(6):455–61.CrossRef Kakehashi A, Saito Y, Mori K, Sugi N, Ono R, Yamagami H, et al. Characteristics of diabetic retinopathy in SDT rats. Diabetes Metab Res Rev Wiley Online Library. 2006;22(6):455–61.CrossRef
155.
go back to reference Masuyama T, Fuse M, Yokoi N, Shinohara M, Tsujii H, Kanazawa M, et al. Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, spontaneously diabetic Torii rat. Biochem Biophys Res Commun Elsevier. 2003;304(1):196–206.CrossRef Masuyama T, Fuse M, Yokoi N, Shinohara M, Tsujii H, Kanazawa M, et al. Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, spontaneously diabetic Torii rat. Biochem Biophys Res Commun Elsevier. 2003;304(1):196–206.CrossRef
156.
go back to reference Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat). In: Prediabetes. Springer; 1988. p. 29–31. Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat). In: Prediabetes. Springer; 1988. p. 29–31.
157.
go back to reference Agardh C-D, Agardh E, Zhang H, Östenson C-G. Altered endothelial/pericyte ratio in Goto-Kakizaki rat retina. J Diabetes Complications Elsevier. 1997;11(3):158–62.CrossRef Agardh C-D, Agardh E, Zhang H, Östenson C-G. Altered endothelial/pericyte ratio in Goto-Kakizaki rat retina. J Diabetes Complications Elsevier. 1997;11(3):158–62.CrossRef
158.
go back to reference Miyamoto K, Ogura Y, Nishiwaki H, Matsuda N, Honda Y, Kato S, et al. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1996;37(5):898–905. Miyamoto K, Ogura Y, Nishiwaki H, Matsuda N, Honda Y, Kato S, et al. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes. Invest Ophthalmol Vis Sci Assoc Res Vis Ophthalmol. 1996;37(5):898–905.
159.
go back to reference Carmo A, Cunha-Vaz JG, Carvalho AP, Lopes MC. Nitric oxide synthase activity in retinas from non-insulin-dependent diabetic Goto-Kakizaki rats: correlation with blood–retinal barrier permeability. Nitric Oxide Elsevier. 2000;4(6):590–6.CrossRef Carmo A, Cunha-Vaz JG, Carvalho AP, Lopes MC. Nitric oxide synthase activity in retinas from non-insulin-dependent diabetic Goto-Kakizaki rats: correlation with blood–retinal barrier permeability. Nitric Oxide Elsevier. 2000;4(6):590–6.CrossRef
160.
go back to reference Kakizaki M, Masaki N. Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad The Japan Academy. 1975;51(1):80–5. Kakizaki M, Masaki N. Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad The Japan Academy. 1975;51(1):80–5.
161.
go back to reference Liu T, Li H, Ding G, Wang Z, Chen Y, Liu L, et al. Comparative genome of GK and Wistar rats reveals genetic basis of type 2 diabetes. PLoS One Public Library of Science. 2015;10(11):e0141859.CrossRef Liu T, Li H, Ding G, Wang Z, Chen Y, Liu L, et al. Comparative genome of GK and Wistar rats reveals genetic basis of type 2 diabetes. PLoS One Public Library of Science. 2015;10(11):e0141859.CrossRef
Metadata
Title
Animal Models of Diabetic Retinopathy
Authors
Ana Maria Olivares
Kristen Althoff
Gloria Fanghua Chen
Siqi Wu
Margaux A. Morrisson
Margaret M. DeAngelis
Neena Haider
Publication date
01-10-2017
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 10/2017
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-017-0913-0

Other articles of this Issue 10/2017

Current Diabetes Reports 10/2017 Go to the issue

Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

Tolerogenic Nanoparticles to Treat Islet Autoimmunity

Therapies and New Technologies in the Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)

Multivariable Adaptive Artificial Pancreas System in Type 1 Diabetes

Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)

Cardiovascular and Mortality Risks in Migrant South Asians with Type 2 Diabetes: Are We Winning the Battle?

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.