Skip to main content
Top
Published in: Current Diabetes Reports 10/2017

01-10-2017 | Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

Tolerogenic Nanoparticles to Treat Islet Autoimmunity

Authors: Tobias Neef, Stephen D. Miller

Published in: Current Diabetes Reports | Issue 10/2017

Login to get access

Abstract

Purpose of Review

The current standard therapy for type 1 diabetes (T1D) is insulin replacement. Autoimmune diseases are typically treated with broad immunosuppression, but this has multiple disadvantages. Induction of antigen-specific tolerance is preferable. The application of nanomedicine to the problem of T1D can take different forms, but one promising way is the development of tolerogenic nanoparticles, the aim of which is to mitigate the islet-destroying autoimmunity. We review the topic and highlight recent strategies to produce tolerogenic nanoparticles for the purpose of treating T1D.

Recent Findings

Several groups are making progress in applying tolerogenic nanoparticles to rodent models of T1D, while others are using nanotechnology to aid other potential T1D treatments such as islet transplant and islet encapsulation.

Summary

The strategies behind how nanoparticles achieve tolerance are varied. It is likely the future will see even greater diversity in tolerance induction strategies as well as a greater focus on how to translate this technology from preclinical use in mice to treatment of T1D in humans.
Literature
2.
3.
go back to reference Kyi M, Wentworth JM, Nankervis AJ, Fourlanos S, Colman PG. Recent advances in type 1 diabetes. Med J Aust. 2015;203(7):290–3.PubMedCrossRef Kyi M, Wentworth JM, Nankervis AJ, Fourlanos S, Colman PG. Recent advances in type 1 diabetes. Med J Aust. 2015;203(7):290–3.PubMedCrossRef
7.
go back to reference Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest. 1992;90(5):1901–10. doi:10.1172/JCI116067.PubMedPubMedCentralCrossRef Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest. 1992;90(5):1901–10. doi:10.​1172/​JCI116067.PubMedPubMedCentralCrossRef
8.
go back to reference Lernmark A, Kloppel G, Stenger D, Vathanaprida C, Falt K, Landin-Olsson M, et al. Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus. Virchows Arch. 1995;425(6):631–40.PubMedCrossRef Lernmark A, Kloppel G, Stenger D, Vathanaprida C, Falt K, Landin-Olsson M, et al. Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus. Virchows Arch. 1995;425(6):631–40.PubMedCrossRef
10.
12.
go back to reference Pihoker C, Gilliam LK, Hampe CS, Lernmark A. Autoantibodies in diabetes. Diabetes. 2005;54(Suppl 2):S52–61.PubMedCrossRef Pihoker C, Gilliam LK, Hampe CS, Lernmark A. Autoantibodies in diabetes. Diabetes. 2005;54(Suppl 2):S52–61.PubMedCrossRef
14.
go back to reference Wenzlau JM, Liu Y, Yu L, Moua O, Fowler KT, Rangasamy S, et al. A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes. 2008;57(10):2693–7. doi:10.2337/db08-0522.PubMedPubMedCentralCrossRef Wenzlau JM, Liu Y, Yu L, Moua O, Fowler KT, Rangasamy S, et al. A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes. 2008;57(10):2693–7. doi:10.​2337/​db08-0522.PubMedPubMedCentralCrossRef
15.
go back to reference Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983;222(4630):1337–9.PubMedCrossRef Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983;222(4630):1337–9.PubMedCrossRef
16.
go back to reference Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990;347(6289):151–6. doi:10.1038/347151a0.PubMedCrossRef Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990;347(6289):151–6. doi:10.​1038/​347151a0.PubMedCrossRef
17.
go back to reference Lampasona V, Bearzatto M, Genovese S, Bosi E, Ferrari M, Bonifacio E. Autoantibodies in insulin-dependent diabetes recognize distinct cytoplasmic domains of the protein tyrosine phosphatase-like IA-2 autoantigen. J Immunol. 1996;157(6):2707–11.PubMed Lampasona V, Bearzatto M, Genovese S, Bosi E, Ferrari M, Bonifacio E. Autoantibodies in insulin-dependent diabetes recognize distinct cytoplasmic domains of the protein tyrosine phosphatase-like IA-2 autoantigen. J Immunol. 1996;157(6):2707–11.PubMed
18.
go back to reference Bingley PJ, Christie MR, Bonifacio E, Bonfanti R, Shattock M, Fonte MT, et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes. 1994;43(11):1304–10.PubMedCrossRef Bingley PJ, Christie MR, Bonifacio E, Bonfanti R, Shattock M, Fonte MT, et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes. 1994;43(11):1304–10.PubMedCrossRef
21.
go back to reference Vives M, Somoza N, Soldevila G, Gomis R, Lucas A, Sanmarti A, et al. Reevaluation of autoantibodies to islet cell membrane in IDDM. Failure to detect islet cell surface antibodies using human islet cells as substrate. Diabetes. 1992;41(12):1624–31.PubMedCrossRef Vives M, Somoza N, Soldevila G, Gomis R, Lucas A, Sanmarti A, et al. Reevaluation of autoantibodies to islet cell membrane in IDDM. Failure to detect islet cell surface antibodies using human islet cells as substrate. Diabetes. 1992;41(12):1624–31.PubMedCrossRef
22.
go back to reference Koczwara K, Bonifacio E, Ziegler AG. Transmission of maternal islet antibodies and risk of autoimmune diabetes in offspring of mothers with type 1 diabetes. Diabetes. 2004;53(1):1–4.PubMedCrossRef Koczwara K, Bonifacio E, Ziegler AG. Transmission of maternal islet antibodies and risk of autoimmune diabetes in offspring of mothers with type 1 diabetes. Diabetes. 2004;53(1):1–4.PubMedCrossRef
23.
go back to reference Pathiraja V, Kuehlich JP, Campbell PD, Krishnamurthy B, Loudovaris T, Coates PT, et al. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes. 2015;64(1):172–82. doi:10.2337/db14-0858.PubMedCrossRef Pathiraja V, Kuehlich JP, Campbell PD, Krishnamurthy B, Loudovaris T, Coates PT, et al. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes. 2015;64(1):172–82. doi:10.​2337/​db14-0858.PubMedCrossRef
24.
go back to reference Skowera A, Ellis RJ, Varela-Calvino R, Arif S, Huang GC, Van-Krinks C, et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest. 2008;118(10):3390–402. doi:10.1172/JCI35449.PubMedPubMedCentral Skowera A, Ellis RJ, Varela-Calvino R, Arif S, Huang GC, Van-Krinks C, et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest. 2008;118(10):3390–402. doi:10.​1172/​JCI35449.PubMedPubMedCentral
25.
go back to reference Panina-Bordignon P, Lang R, van Endert PM, Benazzi E, Felix AM, Pastore RM, et al. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med. 1995;181(5):1923–7.PubMedCrossRef Panina-Bordignon P, Lang R, van Endert PM, Benazzi E, Felix AM, Pastore RM, et al. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med. 1995;181(5):1923–7.PubMedCrossRef
28.
go back to reference •• Babon JA, ME DN, Blodgett DM, Crevecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22(12):1482–7. doi:10.1038/nm.4203. The first comprehensive description of specificity of islet-infiltrating T cells from human donors with T1D. PubMedPubMedCentralCrossRef •• Babon JA, ME DN, Blodgett DM, Crevecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22(12):1482–7. doi:10.​1038/​nm.​4203. The first comprehensive description of specificity of islet-infiltrating T cells from human donors with T1D. PubMedPubMedCentralCrossRef
29.
go back to reference Jayasimhan A, Mansour KP, Slattery RM. Advances in our understanding of the pathophysiology of type 1 diabetes: lessons from the NOD mouse. Clin Sci (Lond). 2014;126(1):1–18. doi:10.1042/CS20120627.CrossRef Jayasimhan A, Mansour KP, Slattery RM. Advances in our understanding of the pathophysiology of type 1 diabetes: lessons from the NOD mouse. Clin Sci (Lond). 2014;126(1):1–18. doi:10.​1042/​CS20120627.CrossRef
31.
go back to reference •• Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435(7039):220–3. Genetic evidence indicating that an autoimmune response to an insulin epitope drives development of T1D in NOD mice. PubMedPubMedCentralCrossRef •• Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435(7039):220–3. Genetic evidence indicating that an autoimmune response to an insulin epitope drives development of T1D in NOD mice. PubMedPubMedCentralCrossRef
32.
go back to reference •• Prasad S, Kohm AP, JS MM, Luo X, Miller SD. Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. J Autoimmun. 2012;39(4):347–53. doi:10.1016/j.jaut.2012.04.005. Tolerogenic evidence that an autoimmune response to a dominant insulin epitope drives development of T1D in NOD mice and evidence for epitope spreading as disease progresses. PubMedPubMedCentralCrossRef •• Prasad S, Kohm AP, JS MM, Luo X, Miller SD. Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. J Autoimmun. 2012;39(4):347–53. doi:10.​1016/​j.​jaut.​2012.​04.​005. Tolerogenic evidence that an autoimmune response to a dominant insulin epitope drives development of T1D in NOD mice and evidence for epitope spreading as disease progresses. PubMedPubMedCentralCrossRef
34.
go back to reference • Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity, 2010. 32(4):488–99. doi:10.1016/j.immuni.2010.04.002. A comprehensive review of immune-based clinical trials in T1D patients. • Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity, 2010. 32(4):488–99. doi:10.​1016/​j.​immuni.​2010.​04.​002. A comprehensive review of immune-based clinical trials in T1D patients.
35.
go back to reference Berry G, Waldner H. Accelerated type 1 diabetes induction in mice by adoptive transfer of diabetogenic CD4+ T cells. J Vis Exp. 2013;75:e50389. doi:10.3791/50389. Berry G, Waldner H. Accelerated type 1 diabetes induction in mice by adoptive transfer of diabetogenic CD4+ T cells. J Vis Exp. 2013;75:e50389. doi:10.​3791/​50389.
36.
go back to reference Presa M, Chen YG, Grier AE, Leiter EH, Brehm MA, Greiner DL, et al. The presence and preferential activation of regulatory T cells diminish adoptive transfer of autoimmune diabetes by polyclonal nonobese diabetic (NOD) T cell effectors into NSG versus NOD-scid mice. J Immunol. 2015;195(7):3011–9. doi:10.4049/jimmunol.1402446.PubMedPubMedCentralCrossRef Presa M, Chen YG, Grier AE, Leiter EH, Brehm MA, Greiner DL, et al. The presence and preferential activation of regulatory T cells diminish adoptive transfer of autoimmune diabetes by polyclonal nonobese diabetic (NOD) T cell effectors into NSG versus NOD-scid mice. J Immunol. 2015;195(7):3011–9. doi:10.​4049/​jimmunol.​1402446.PubMedPubMedCentralCrossRef
39.
go back to reference Haskins K, Portas M, Bradley B, Wegmann D, Lafferty K. T-lymphocyte clone specific for pancreatic islet antigen. Diabetes. 1988;37(10):1444–8.PubMedCrossRef Haskins K, Portas M, Bradley B, Wegmann D, Lafferty K. T-lymphocyte clone specific for pancreatic islet antigen. Diabetes. 1988;37(10):1444–8.PubMedCrossRef
40.
go back to reference Katz JD, Wang B, Haskins K, Benoist C, Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993;74(6):1089–100.PubMedCrossRef Katz JD, Wang B, Haskins K, Benoist C, Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993;74(6):1089–100.PubMedCrossRef
42.
go back to reference Hansen CH, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sorensen SJ, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285–94. doi:10.1007/s00125-012-2564-7.PubMedCrossRef Hansen CH, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sorensen SJ, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285–94. doi:10.​1007/​s00125-012-2564-7.PubMedCrossRef
45.
47.
go back to reference Plesner A, Worsaae A, Dyrberg T, Gotfredsen C, Michelsen BK, Petersen JS. Immunization of diabetes-prone or non-diabetes-prone mice with GAD65 does not induce diabetes or islet cell pathology. J Autoimmun. 1998;11(4):335–41. doi:10.1006/jaut.1998.0206.PubMedCrossRef Plesner A, Worsaae A, Dyrberg T, Gotfredsen C, Michelsen BK, Petersen JS. Immunization of diabetes-prone or non-diabetes-prone mice with GAD65 does not induce diabetes or islet cell pathology. J Autoimmun. 1998;11(4):335–41. doi:10.​1006/​jaut.​1998.​0206.PubMedCrossRef
50.
51.
go back to reference Ludvigsson J, Hjorth M, Cheramy M, Axelsson S, Pihl M, Forsander G, et al. Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial. Diabetologia. 2011;54(3):634–40. doi:10.1007/s00125-010-1988-1.PubMedCrossRef Ludvigsson J, Hjorth M, Cheramy M, Axelsson S, Pihl M, Forsander G, et al. Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial. Diabetologia. 2011;54(3):634–40. doi:10.​1007/​s00125-010-1988-1.PubMedCrossRef
52.
go back to reference Cheramy M, Skoglund C, Johansson I, Ludvigsson J, Hampe CS, Casas R. GAD-alum treatment in patients with type 1 diabetes and the subsequent effect on GADA IgG subclass distribution, GAD65 enzyme activity and humoral response. Clin Immunol. 2010;137(1):31–40. doi:10.1016/j.clim.2010.06.001.PubMedCrossRef Cheramy M, Skoglund C, Johansson I, Ludvigsson J, Hampe CS, Casas R. GAD-alum treatment in patients with type 1 diabetes and the subsequent effect on GADA IgG subclass distribution, GAD65 enzyme activity and humoral response. Clin Immunol. 2010;137(1):31–40. doi:10.​1016/​j.​clim.​2010.​06.​001.PubMedCrossRef
54.
go back to reference Harrison LC, Honeyman MC, Steele CE, Stone NL, Sarugeri E, Bonifacio E, et al. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care. 2004;27(10):2348–55.PubMedCrossRef Harrison LC, Honeyman MC, Steele CE, Stone NL, Sarugeri E, Bonifacio E, et al. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care. 2004;27(10):2348–55.PubMedCrossRef
56.
go back to reference Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial—type 1. Diabetes Care. 2005;28(5):1068–76.PubMedCrossRef Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial—type 1. Diabetes Care. 2005;28(5):1068–76.PubMedCrossRef
58.
go back to reference Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crino A, et al. No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB group. Diabetologia. 2000;43(8):1000–4.PubMedCrossRef Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crino A, et al. No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB group. Diabetologia. 2000;43(8):1000–4.PubMedCrossRef
63.
go back to reference Weber SE, Harbertson J, Godebu E, Mros GA, Padrick RC, Carson BD, et al. Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo. J Immunol. 2006;176(8):4730–9.PubMedCrossRef Weber SE, Harbertson J, Godebu E, Mros GA, Padrick RC, Carson BD, et al. Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo. J Immunol. 2006;176(8):4730–9.PubMedCrossRef
64.
go back to reference Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes. 2005;54(2):306–10.PubMedCrossRef Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes. 2005;54(2):306–10.PubMedCrossRef
66.
go back to reference Xia CQ, Peng R, Qiu Y, Annamalai M, Gordon D, Clare-Salzler MJ. Transfusion of apoptotic beta-cells induces immune tolerance to beta-cell antigens and prevents type 1 diabetes in NOD mice. Diabetes. 2007;56(8):2116–23. doi:10.2337/db06-0825.PubMedCrossRef Xia CQ, Peng R, Qiu Y, Annamalai M, Gordon D, Clare-Salzler MJ. Transfusion of apoptotic beta-cells induces immune tolerance to beta-cell antigens and prevents type 1 diabetes in NOD mice. Diabetes. 2007;56(8):2116–23. doi:10.​2337/​db06-0825.PubMedCrossRef
69.
go back to reference Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–54.PubMedCrossRef Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–54.PubMedCrossRef
76.
go back to reference Fromen CA, Robbins GR, Shen TW, Kai MP, Ting JP, DeSimone JM. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci U S A. 2015;112(2):488–93. doi:10.1073/pnas.1422923112.PubMedCrossRef Fromen CA, Robbins GR, Shen TW, Kai MP, Ting JP, DeSimone JM. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci U S A. 2015;112(2):488–93. doi:10.​1073/​pnas.​1422923112.PubMedCrossRef
77.
go back to reference Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA. Co-encapsulation of antigen and toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine. 2011;29(5):1045–52. doi:10.1016/j.vaccine.2010.11.061.PubMedCrossRef Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA. Co-encapsulation of antigen and toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine. 2011;29(5):1045–52. doi:10.​1016/​j.​vaccine.​2010.​11.​061.PubMedCrossRef
80.
go back to reference Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000;65(1–2):133–48.PubMedCrossRef Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000;65(1–2):133–48.PubMedCrossRef
82.
87.
go back to reference Chao Y, Makale M, Karmali PP, Sharikov Y, Tsigelny I, Merkulov S, et al. Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug Chem. 2012;23(5):1003–9. doi:10.1021/bc200685a.PubMedPubMedCentralCrossRef Chao Y, Makale M, Karmali PP, Sharikov Y, Tsigelny I, Merkulov S, et al. Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug Chem. 2012;23(5):1003–9. doi:10.​1021/​bc200685a.PubMedPubMedCentralCrossRef
93.
go back to reference Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A, Shang H, et al. A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res Treat. 2011;2011:126794. doi:10.1155/2011/126794.PubMed Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A, Shang H, et al. A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res Treat. 2011;2011:126794. doi:10.​1155/​2011/​126794.PubMed
96.
98.
go back to reference • Smarr CB, Yap WT, Neef TP, Pearson RM, Hunter ZN, Ifergan I, et al. Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proc Natl Acad Sci USA. 2016;113(18):5059–64. doi:10.1073/pnas.1505782113. Demonstration that infusion of antigen-encapsulating PLG nanoparticles induce tolerance in Th2 cells useful in prevention and treatment in an animal model of allergic airway disease. PubMedPubMedCentralCrossRef • Smarr CB, Yap WT, Neef TP, Pearson RM, Hunter ZN, Ifergan I, et al. Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proc Natl Acad Sci USA. 2016;113(18):5059–64. doi:10.​1073/​pnas.​1505782113. Demonstration that infusion of antigen-encapsulating PLG nanoparticles induce tolerance in Th2 cells useful in prevention and treatment in an animal model of allergic airway disease. PubMedPubMedCentralCrossRef
102.
105.
go back to reference •• Clemente-Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S, Fandos C, et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature. 2016;530(7591):434–40. doi:10.1038/nature16962. Demonstration that iron oxide nanoparticles expressing peptide-MHC molecules can induce tolerance for treatment of autoimmune disease. PubMedCrossRef •• Clemente-Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S, Fandos C, et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature. 2016;530(7591):434–40. doi:10.​1038/​nature16962. Demonstration that iron oxide nanoparticles expressing peptide-MHC molecules can induce tolerance for treatment of autoimmune disease. PubMedCrossRef
106.
go back to reference Singha S, Shao K, Yang Y, Clemente-Casares X, Sole P, Clemente A, et al. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat Nanotechnol. 2017; doi:10.1038/nnano.2017.56. Singha S, Shao K, Yang Y, Clemente-Casares X, Sole P, Clemente A, et al. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat Nanotechnol. 2017; doi:10.​1038/​nnano.​2017.​56.
108.
go back to reference Schutz C, Fleck M, Schneck JP, Oelke M. Killer artificial antigen presenting cells (KaAPC) for efficient in vitro depletion of human antigen-specific T cells. J Vis Exp. 2014;90:e51859. doi:10.3791/51859. Schutz C, Fleck M, Schneck JP, Oelke M. Killer artificial antigen presenting cells (KaAPC) for efficient in vitro depletion of human antigen-specific T cells. J Vis Exp. 2014;90:e51859. doi:10.​3791/​51859.
109.
go back to reference Maldonado RA, LaMothe RA, Ferrari JD, Zhang AH, Rossi RJ, Kolte PN, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A. 2015;112(2):E156–65. doi:10.1073/pnas.1408686111.PubMedCrossRef Maldonado RA, LaMothe RA, Ferrari JD, Zhang AH, Rossi RJ, Kolte PN, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A. 2015;112(2):E156–65. doi:10.​1073/​pnas.​1408686111.PubMedCrossRef
111.
112.
go back to reference •• Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE, Patel B, et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci Signal. 2016;9(433):ra61. doi:10.1126/scisignal.aad0612. Demonstration that gold nanoparticles expressing antigen and an AhR agonist can prevent development of T1D in NOD mice. PubMedCrossRef •• Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE, Patel B, et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci Signal. 2016;9(433):ra61. doi:10.​1126/​scisignal.​aad0612. Demonstration that gold nanoparticles expressing antigen and an AhR agonist can prevent development of T1D in NOD mice. PubMedCrossRef
113.
116.
go back to reference •• Getts DR, Martin AJ, DP MC, Terry RL, Hunter ZN, Yap WT, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30(12):1217–24. doi:10.1038/nbt.2434. Initial description that antigen coupled to polystyrene and PLG nanoparticles can induce tolerance active in prevention of EAE. PubMedPubMedCentralCrossRef •• Getts DR, Martin AJ, DP MC, Terry RL, Hunter ZN, Yap WT, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30(12):1217–24. doi:10.​1038/​nbt.​2434. Initial description that antigen coupled to polystyrene and PLG nanoparticles can induce tolerance active in prevention of EAE. PubMedPubMedCentralCrossRef
117.
go back to reference •• Hunter Z, DP MC, Yap WT, Harp CT, Getts DR, Shea LD, et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano. 2014;8(3):2148–60. doi:10.1021/nn405033r. Description of the ability of antigen-coupled PLG nanoparticles to treat ongoing EAE. PubMedPubMedCentralCrossRef •• Hunter Z, DP MC, Yap WT, Harp CT, Getts DR, Shea LD, et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano. 2014;8(3):2148–60. doi:10.​1021/​nn405033r. Description of the ability of antigen-coupled PLG nanoparticles to treat ongoing EAE. PubMedPubMedCentralCrossRef
118.
go back to reference •• McCarthy DP, Yap JW, Harp CT, Song WK, Chen J, Pearson RM, et al. An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine. 2017;13(1):191–200. doi:10.1016/j.nano.2016.09.007. Description of the ability of antigen-encapsulating PLG nanoparticles to prevent and treat EAE. •• McCarthy DP, Yap JW, Harp CT, Song WK, Chen J, Pearson RM, et al. An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine. 2017;13(1):191–200. doi:10.​1016/​j.​nano.​2016.​09.​007. Description of the ability of antigen-encapsulating PLG nanoparticles to prevent and treat EAE.
119.
go back to reference • Hlavaty KA, DP MC, Saito E, Yap WT, Miller SD, Shea LD. Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials. 2016;76:1–10. doi:10.1016/j.biomaterials.2015.10.041. Description of the ability of either antigen-coupled or antigen encapsulating nanoparticles to prevent bone marrow transplant rejection. • Hlavaty KA, DP MC, Saito E, Yap WT, Miller SD, Shea LD. Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials. 2016;76:1–10. doi:10.​1016/​j.​biomaterials.​2015.​10.​041. Description of the ability of either antigen-coupled or antigen encapsulating nanoparticles to prevent bone marrow transplant rejection.
120.
go back to reference •• Miller SD, Prasad S, Neef T. Antigen-encapsulating PLG nanoparticles induce long-lived regulatory T cell control of activated diabetogenic CD4 and CD8 T cells (Abstract). Immunology of Diabetes Society 15th International Congress. 2017. Demonstration of nanoparticle tolerance for the treatment of adoptive transfer models of T1D. •• Miller SD, Prasad S, Neef T. Antigen-encapsulating PLG nanoparticles induce long-lived regulatory T cell control of activated diabetogenic CD4 and CD8 T cells (Abstract). Immunology of Diabetes Society 15th International Congress. 2017. Demonstration of nanoparticle tolerance for the treatment of adoptive transfer models of T1D.
121.
go back to reference • Bryant J, Hlavaty KA, Zhang X, Yap WT, Zhang L, Shea LD, et al. Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. Biomaterials. 2014;35(31):8887–94. doi:10.1016/j.biomaterials.2014.06.044. Demonstration that antigen-coupled nanoparticles can induce tolerance to protect transplanted allogeneic islets. PubMedPubMedCentralCrossRef • Bryant J, Hlavaty KA, Zhang X, Yap WT, Zhang L, Shea LD, et al. Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. Biomaterials. 2014;35(31):8887–94. doi:10.​1016/​j.​biomaterials.​2014.​06.​044. Demonstration that antigen-coupled nanoparticles can induce tolerance to protect transplanted allogeneic islets. PubMedPubMedCentralCrossRef
123.
go back to reference Chopra S, Bertrand N, Lim JM, Wang A, Farokhzad OC, Karnik R. Design of insulin-loaded nanoparticles enabled by multistep control of nanoprecipitation and zinc chelation. ACS Appl Mater Interfaces. 2017;9(13):11440–50. doi:10.1021/acsami.6b16854.PubMedCrossRef Chopra S, Bertrand N, Lim JM, Wang A, Farokhzad OC, Karnik R. Design of insulin-loaded nanoparticles enabled by multistep control of nanoprecipitation and zinc chelation. ACS Appl Mater Interfaces. 2017;9(13):11440–50. doi:10.​1021/​acsami.​6b16854.PubMedCrossRef
124.
go back to reference • Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, et al. ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci U S A. 2008;105(38):14527–32. doi:10.1073/pnas.0805204105. Description of the ability of tolerance induced by the i.v. infusion of apoptotic donor leukocytes to long-term survival of transplanted donor islets. PubMedPubMedCentralCrossRef • Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, et al. ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci U S A. 2008;105(38):14527–32. doi:10.​1073/​pnas.​0805204105. Description of the ability of tolerance induced by the i.v. infusion of apoptotic donor leukocytes to long-term survival of transplanted donor islets. PubMedPubMedCentralCrossRef
Metadata
Title
Tolerogenic Nanoparticles to Treat Islet Autoimmunity
Authors
Tobias Neef
Stephen D. Miller
Publication date
01-10-2017
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 10/2017
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-017-0914-z

Other articles of this Issue 10/2017

Current Diabetes Reports 10/2017 Go to the issue

Microvascular Complications—Retinopathy (JK Sun and PS Silva, Section Editors)

Intraocular Inflammation in Diabetic Populations

Therapies and New Technologies in the Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)

Multivariable Adaptive Artificial Pancreas System in Type 1 Diabetes

Microvascular Complications—Retinopathy (JK Sun and PS Silva, Section Editors)

Diabetic Eye Screening: Knowledge and Perspectives from Providers and Patients

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (B Conway and H Keenan, Section Editors)

The Effects of Chronic Aerobic Exercise on Cardiovascular Risk Factors in Persons with Diabetes Mellitus

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine