Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2020

01-12-2020 | Angiography | Research

Assessment of carotid atherosclerotic disease using three-dimensional cardiovascular magnetic resonance vessel wall imaging: comparison with digital subtraction angiography

Authors: Zhenjia Wang, Mi Lu, Wen Liu, Tiejin Zheng, Debiao Li, Wei Yu, Zhaoyang Fan

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2020

Login to get access

Abstract

Background

A three-dimensional (3D) cardiovascular magnetic resonance (CMR) vessel wall imaging (VWI) technique based on 3D T1 weighted (T1w) Sampling Perfection with Application-optimized Contrast using different flip angle Evolutions (SPACE) has recently been used as a promising CMR imaging modality for evaluating extra-cranial and intra-cranial vessel walls. However, this technique is yet to be validated against the current diagnostic imaging standard. We therefore aimed to evaluate the diagnostic performance of 3D CMR VWI in characterizing carotid disease using intra-arterial digital subtraction angiography (DSA) as a reference.

Methods

Consecutive patients with at least unilateral > 50% carotid stenosis on ultrasound were scheduled to undergo interventional therapy were invited to participate. The following metrics were measured using 3D CMR VWI and DSA: lumen diameter of the common carotid artery (CCA) and segments C1–C7, stenosis diameter, reference diameter, lesion length, stenosis degree, and ulceration. We assessed the diagnostic sensitivity, specificity, accuracy, and receiver operating characteristic (ROC) curve of 3D CMR VWI, and used Cohen’s kappa, the intraclass correlation coefficient (ICC), and Bland-Altman analyses to assess the diagnostic agreement between 3D CMR VWI and DSA.

Results

The ICC (all ICCs ≥0.96) and Bland-Altman plots indicated excellent inter-reader agreement in all individual morphologic measurements by 3D CMR VWI. Excellent agreement in all individual morphologic measurements were also found between 3D CMR VWI and DSA. In addition, 3D CMR VWI had high sensitivity (98.4, 97.4, 80.0, 100.0%), specificity (100.0, 94.5, 99.1, 98.0%), and Cohen’s kappa (0.99, 0.89, 0.84, 0.96) for detecting stenosis > 50%, stenosis > 70%, ulceration, and total occlusion, respectively, using DSA as the standard. The AUC of 3D CMR VWI for predicting stenosis > 50 and > 70% were 0.998 and 0.999, respectively.

Conclusions

The 3D CMR VWI technique enables accurate diagnosis and luminal feature assessment of carotid artery atherosclerosis, suggesting that this imaging modality may be useful for routine imaging workups and provide comprehensive information for both the vessel wall and lumen.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barnett HJ, Gunton RW, Eliasziw M, et al. Causes and severity of ischemic stroke in patients with internal carotid artery stenosis. JAMA. 2000;283(11):1429–36.CrossRef Barnett HJ, Gunton RW, Eliasziw M, et al. Causes and severity of ischemic stroke in patients with internal carotid artery stenosis. JAMA. 2000;283(11):1429–36.CrossRef
2.
go back to reference GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–80.CrossRef GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–80.CrossRef
4.
go back to reference Yamada K, Yoshimura S, Shirakawa M, et al. Asymptomatic moderate carotid artery stenosis with intraplaque hemorrhage: progression of degree of stenosis and new ischemic stroke. J Clin Neurosci. 2019;6(3):95–9.CrossRef Yamada K, Yoshimura S, Shirakawa M, et al. Asymptomatic moderate carotid artery stenosis with intraplaque hemorrhage: progression of degree of stenosis and new ischemic stroke. J Clin Neurosci. 2019;6(3):95–9.CrossRef
5.
go back to reference Gogela SL, Gozal YM, Zhang B, et al. Severe carotid stenosis and delay of reperfusion in endovascular stroke treatment: an interventional Management of Stroke-III study. J Neurosurg. 2018;128(1):94–9.CrossRef Gogela SL, Gozal YM, Zhang B, et al. Severe carotid stenosis and delay of reperfusion in endovascular stroke treatment: an interventional Management of Stroke-III study. J Neurosurg. 2018;128(1):94–9.CrossRef
6.
go back to reference Liem MI, Kennedy F, Bonati LH, et al. Investigations of carotid stenosis to identify vulnerable atherosclerotic plaque and determine individual stroke risk. Circ J. 2017;81(9):1246–53.CrossRef Liem MI, Kennedy F, Bonati LH, et al. Investigations of carotid stenosis to identify vulnerable atherosclerotic plaque and determine individual stroke risk. Circ J. 2017;81(9):1246–53.CrossRef
7.
go back to reference North American Symptomatic Carotid Endarterectomy Trial. Methods, patient characteristics, and progress. Stroke. 1991;22(6):711–20.CrossRef North American Symptomatic Carotid Endarterectomy Trial. Methods, patient characteristics, and progress. Stroke. 1991;22(6):711–20.CrossRef
8.
go back to reference Moore WS, Barnett HJ, Beebe HG, et al. Guidelines for carotid endarterectomy. A multidisciplinary consensus statement from the ad hoc committee, American Heart Association. Circulation. 1995;91(2):566–79.CrossRef Moore WS, Barnett HJ, Beebe HG, et al. Guidelines for carotid endarterectomy. A multidisciplinary consensus statement from the ad hoc committee, American Heart Association. Circulation. 1995;91(2):566–79.CrossRef
9.
go back to reference Bettmann MA, Heeren T, Greenfield A, Goudey C. Adverse events with radiographic contrast agents: results of the SCVIR contrast agent registry. Radiology. 1997;203(3):611–20.CrossRef Bettmann MA, Heeren T, Greenfield A, Goudey C. Adverse events with radiographic contrast agents: results of the SCVIR contrast agent registry. Radiology. 1997;203(3):611–20.CrossRef
10.
go back to reference Yamauchi K, Enomoto Y, Otani K, Egashira Y, Iwama T. Prediction of hyperperfusion phenomenon after carotid artery stenting and carotid angioplasty using quantitative DSA with cerebral circulation time imaging. J Neurointerv Surg. 2018;10(6):576–9.CrossRef Yamauchi K, Enomoto Y, Otani K, Egashira Y, Iwama T. Prediction of hyperperfusion phenomenon after carotid artery stenting and carotid angioplasty using quantitative DSA with cerebral circulation time imaging. J Neurointerv Surg. 2018;10(6):576–9.CrossRef
11.
go back to reference Saba L, Yuan C, Hatsukami TS, et al. Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2018;39(2):E9–9E31.CrossRef Saba L, Yuan C, Hatsukami TS, et al. Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2018;39(2):E9–9E31.CrossRef
12.
go back to reference Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106(11):1368–73.CrossRef Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106(11):1368–73.CrossRef
13.
go back to reference Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112(22):3437–44.CrossRef Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112(22):3437–44.CrossRef
14.
go back to reference Saam T, Raya JG, Cyran CC, et al. High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils. J Cardiovasc Magn Reson. 2009;11:41.CrossRef Saam T, Raya JG, Cyran CC, et al. High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils. J Cardiovasc Magn Reson. 2009;11:41.CrossRef
15.
go back to reference Yoshida K, Narumi O, Chin M, et al. Characterization of carotid atherosclerosis and detection of soft plaque with use of black-blood MR imaging. AJNR Am J Neuroradiol. 2008;29(5):868–74.CrossRef Yoshida K, Narumi O, Chin M, et al. Characterization of carotid atherosclerosis and detection of soft plaque with use of black-blood MR imaging. AJNR Am J Neuroradiol. 2008;29(5):868–74.CrossRef
16.
go back to reference Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 tesla. J Magn Reson Imaging. 2011;34(1):22–30.CrossRef Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 tesla. J Magn Reson Imaging. 2011;34(1):22–30.CrossRef
17.
go back to reference Li L, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology. 2014;273(2):560–9.CrossRef Li L, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology. 2014;273(2):560–9.CrossRef
18.
go back to reference Li F, Yarnykh VL, Hatsukami TS, et al. Scan-rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. J Magn Reson Imaging. 2010;31(1):168–76.CrossRef Li F, Yarnykh VL, Hatsukami TS, et al. Scan-rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. J Magn Reson Imaging. 2010;31(1):168–76.CrossRef
19.
go back to reference Lu M, Peng P, Cui Y, et al. Association of Progression of carotid Artery Wall volume and recurrent transient ischemic attack or stroke: a magnetic resonance imaging study. Stroke. 2018;49(3):614–20.CrossRef Lu M, Peng P, Cui Y, et al. Association of Progression of carotid Artery Wall volume and recurrent transient ischemic attack or stroke: a magnetic resonance imaging study. Stroke. 2018;49(3):614–20.CrossRef
20.
go back to reference Zhao H, Wang J, Liu X, et al. Assessment of carotid artery atherosclerotic disease by using three-dimensional fast black-blood MR imaging: comparison with DSA. Radiology. 2015;274(2):508–16.CrossRef Zhao H, Wang J, Liu X, et al. Assessment of carotid artery atherosclerotic disease by using three-dimensional fast black-blood MR imaging: comparison with DSA. Radiology. 2015;274(2):508–16.CrossRef
21.
go back to reference Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology. 2014;271(2):534–42.CrossRef Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology. 2014;271(2):534–42.CrossRef
22.
go back to reference Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med. 2016;75(6):2286–94.CrossRef Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med. 2016;75(6):2286–94.CrossRef
23.
go back to reference Fan Z, Yang Q, Deng Z, et al. Whole-brain intracranial vessel wall imaging at 3 tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med. 2017;77(3):1142–50.CrossRef Fan Z, Yang Q, Deng Z, et al. Whole-brain intracranial vessel wall imaging at 3 tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med. 2017;77(3):1142–50.CrossRef
24.
go back to reference Yang Q, Deng Z, Bi X, et al. Whole-brain vessel wall MRI: a parameter tune-up solution to improve the scan efficiency of three-dimensional variable flip-angle turbo spin-echo. J Magn Reson Imaging. 2017;46(3):751–7.CrossRef Yang Q, Deng Z, Bi X, et al. Whole-brain vessel wall MRI: a parameter tune-up solution to improve the scan efficiency of three-dimensional variable flip-angle turbo spin-echo. J Magn Reson Imaging. 2017;46(3):751–7.CrossRef
25.
go back to reference Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging. 2010;31(3):645–54.CrossRef Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging. 2010;31(3):645–54.CrossRef
26.
go back to reference Fan Z, Zuehlsdorff S, Liu X, Li D. Prospective self-gating for swallowing motion: a feasibility study in carotid artery wall MRI using three-dimensional variable-flip-angle turbo spin-echo. Magn Reson Med. 2012;67(2):490–8.CrossRef Fan Z, Zuehlsdorff S, Liu X, Li D. Prospective self-gating for swallowing motion: a feasibility study in carotid artery wall MRI using three-dimensional variable-flip-angle turbo spin-echo. Magn Reson Med. 2012;67(2):490–8.CrossRef
27.
go back to reference Zhang N, Zhang F, Deng Z, et al. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions. J Cardiovasc Magn Reson. 2018;20(1):39.CrossRef Zhang N, Zhang F, Deng Z, et al. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions. J Cardiovasc Magn Reson. 2018;20(1):39.CrossRef
28.
go back to reference Underhill HR, Yuan C, Terry JG, et al. Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2008;10:31.CrossRef Underhill HR, Yuan C, Terry JG, et al. Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2008;10:31.CrossRef
29.
go back to reference Sun B, Zhao H, Liu X, et al. Elevated hemoglobin A1c is associated with carotid plaque vulnerability: novel findings from magnetic resonance imaging study in hypertensive stroke patients. Sci Rep. 2016;6:33246.CrossRef Sun B, Zhao H, Liu X, et al. Elevated hemoglobin A1c is associated with carotid plaque vulnerability: novel findings from magnetic resonance imaging study in hypertensive stroke patients. Sci Rep. 2016;6:33246.CrossRef
30.
go back to reference Bouthillier A, van Loveren HR, Keller JT. Segments of the internal carotid artery: a new classification. Neurosurgery. 1996;38(3):425–32 discussion 432-433.PubMed Bouthillier A, van Loveren HR, Keller JT. Segments of the internal carotid artery: a new classification. Neurosurgery. 1996;38(3):425–32 discussion 432-433.PubMed
31.
go back to reference Haynes RB, Taylor DW, Sackett DL, Thorpe K, Ferguson GG, Barnett HJ. Prevention of functional impairment by endarterectomy for symptomatic high-grade carotid stenosis. North American symptomatic carotid Endarterectomy trial collaborators. JAMA. 1994;271(16):1256–9.CrossRef Haynes RB, Taylor DW, Sackett DL, Thorpe K, Ferguson GG, Barnett HJ. Prevention of functional impairment by endarterectomy for symptomatic high-grade carotid stenosis. North American symptomatic carotid Endarterectomy trial collaborators. JAMA. 1994;271(16):1256–9.CrossRef
32.
go back to reference Curvo-Semedo L, Lambregts DM, Maas M, et al. Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy--conventional MR volumetry versus diffusion-weighted MR imaging. Radiology. 2011;260(3):734–43.CrossRef Curvo-Semedo L, Lambregts DM, Maas M, et al. Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy--conventional MR volumetry versus diffusion-weighted MR imaging. Radiology. 2011;260(3):734–43.CrossRef
33.
go back to reference Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.CrossRef Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.CrossRef
34.
go back to reference Liu T, Maurovich-Horvat P, Mayrhofer T, et al. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial. Int J Cardiovasc Imaging. 2018;34(2):311–9.CrossRef Liu T, Maurovich-Horvat P, Mayrhofer T, et al. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial. Int J Cardiovasc Imaging. 2018;34(2):311–9.CrossRef
35.
go back to reference Etesami M, Hoi Y, Steinman DA, et al. Comparison of carotid plaque ulcer detection using contrast-enhanced and time-of-flight MRA techniques. AJNR Am J Neuroradiol. 2013;34(1):177–84.CrossRef Etesami M, Hoi Y, Steinman DA, et al. Comparison of carotid plaque ulcer detection using contrast-enhanced and time-of-flight MRA techniques. AJNR Am J Neuroradiol. 2013;34(1):177–84.CrossRef
36.
go back to reference Hasan D, Zanaty M, Starke RM, et al. Feasibility, safety, and changes in systolic blood pressure associated with endovascular revascularization of symptomatic and chronically occluded cervical internal carotid artery using a newly suggested radiographic classification of chronically occluded cervical internal carotid artery: pilot study. J Neurosurg. 2018:1–10. Hasan D, Zanaty M, Starke RM, et al. Feasibility, safety, and changes in systolic blood pressure associated with endovascular revascularization of symptomatic and chronically occluded cervical internal carotid artery using a newly suggested radiographic classification of chronically occluded cervical internal carotid artery: pilot study. J Neurosurg. 2018:1–10.
Metadata
Title
Assessment of carotid atherosclerotic disease using three-dimensional cardiovascular magnetic resonance vessel wall imaging: comparison with digital subtraction angiography
Authors
Zhenjia Wang
Mi Lu
Wen Liu
Tiejin Zheng
Debiao Li
Wei Yu
Zhaoyang Fan
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Angiography
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2020
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-020-0604-x

Other articles of this Issue 1/2020

Journal of Cardiovascular Magnetic Resonance 1/2020 Go to the issue