Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2020

Open Access 01-12-2020 | Technical notes

Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping

Authors: Haikun Qi, Aurelien Bustin, Thomas Kuestner, Reza Hajhosseiny, Gastao Cruz, Karl Kunze, Radhouene Neji, René M. Botnar, Claudia Prieto

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2020

Login to get access

Abstract

Background

Cardiovascular magnetic resonance (CMR) T1ρ mapping can be used to detect ischemic or non-ischemic cardiomyopathy without the need of exogenous contrast agents. Current 2D myocardial T1ρ mapping requires multiple breath-holds and provides limited coverage. Respiratory gating by diaphragmatic navigation has recently been exploited to enable free-breathing 3D T1ρ mapping, which, however, has low acquisition efficiency and may result in unpredictable and long scan times. This study aims to develop a fast respiratory motion-compensated 3D whole-heart myocardial T1ρ mapping technique with high spatial resolution and predictable scan time.

Methods

The proposed electrocardiogram (ECG)-triggered T1ρ mapping sequence is performed under free-breathing using an undersampled variable-density 3D Cartesian sampling with spiral-like order. Preparation pulses with different T1ρ spin-lock times are employed to acquire multiple T1ρ-weighted images. A saturation prepulse is played at the start of each heartbeat to reset the magnetization before T1ρ preparation. Image navigators are employed to enable beat-to-beat 2D translational respiratory motion correction of the heart for each T1ρ-weighted dataset, after which, 3D translational registration is performed to align all T1ρ-weighted volumes. Undersampled reconstruction is performed using a multi-contrast 3D patch-based low-rank algorithm. The accuracy of the proposed technique was tested in phantoms and in vivo in 11 healthy subjects in comparison with 2D T1ρ mapping. The feasibility of the proposed technique was further investigated in 3 patients with suspected cardiovascular disease. Breath-hold late-gadolinium enhanced (LGE) images were acquired in patients as reference for scar detection.

Results

Phantoms results revealed that the proposed technique provided accurate T1ρ values over a wide range of simulated heart rates in comparison to a 2D T1ρ mapping reference. Homogeneous 3D T1ρ maps were obtained for healthy subjects, with septal T1ρ of 58.0 ± 4.1 ms which was comparable to 2D breath-hold measurements (57.6 ± 4.7 ms, P = 0.83). Myocardial scar was detected in 1 of the 3 patients, and increased T1ρ values (87.4 ± 5.7 ms) were observed in the infarcted region.

Conclusions

An accelerated free-breathing 3D whole-heart T1ρ mapping technique was developed with high respiratory scan efficiency and near-isotropic spatial resolution (1.7 × 1.7 × 2 mm3) in a clinically feasible scan time of ~ 6 mins. Preliminary patient results suggest that the proposed technique may find applications in non-contrast myocardial tissue characterization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sutton MGS, Sharpe N. Left ventricular remodeling after myocardial infarction - pathophysiology and therapy. Circulation. 2000;101(25):2981–8.PubMedCrossRef Sutton MGS, Sharpe N. Left ventricular remodeling after myocardial infarction - pathophysiology and therapy. Circulation. 2000;101(25):2981–8.PubMedCrossRef
2.
go back to reference Holtackers RJ, Van De Heyning CM, Nazir MS, Rashid I, Ntalas I, Rahman H, et al. Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. J Cardiovasc Magn Reson. 2019;21(1):44.PubMedPubMedCentralCrossRef Holtackers RJ, Van De Heyning CM, Nazir MS, Rashid I, Ntalas I, Rahman H, et al. Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. J Cardiovasc Magn Reson. 2019;21(1):44.PubMedPubMedCentralCrossRef
3.
go back to reference Holtackers RJ, Chiribiri A, Schneider T, Higgins DM, Botnar RM. Dark-blood late gadolinium enhancement without additional magnetization preparation. J Cardiovasc Magn Reson. 2017;19(1):64.PubMedPubMedCentralCrossRef Holtackers RJ, Chiribiri A, Schneider T, Higgins DM, Botnar RM. Dark-blood late gadolinium enhancement without additional magnetization preparation. J Cardiovasc Magn Reson. 2017;19(1):64.PubMedPubMedCentralCrossRef
4.
go back to reference Ledneva E, Karie S, Launay-Vacher V, Janus N, Deray G. Renal safety of gadolinium-based contrast Media in Patients with chronic renal insufficiency. Radiology. 2009;250(3):618–28.PubMedCrossRef Ledneva E, Karie S, Launay-Vacher V, Janus N, Deray G. Renal safety of gadolinium-based contrast Media in Patients with chronic renal insufficiency. Radiology. 2009;250(3):618–28.PubMedCrossRef
5.
go back to reference Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and Globus Pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41.PubMedCrossRef Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and Globus Pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41.PubMedCrossRef
6.
go back to reference Wang L, Yuan J, Zhang SJ, Gao M, Wang YC, Wang YX, et al. Myocardial T1rho mapping of patients with end-stage renal disease and its comparison with T1 mapping and T2 mapping: a feasibility and reproducibility study. J Magn Reson Imaging. 2016;44(3):723–31.PubMedCrossRef Wang L, Yuan J, Zhang SJ, Gao M, Wang YC, Wang YX, et al. Myocardial T1rho mapping of patients with end-stage renal disease and its comparison with T1 mapping and T2 mapping: a feasibility and reproducibility study. J Magn Reson Imaging. 2016;44(3):723–31.PubMedCrossRef
7.
go back to reference Witschey WRT, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:37.PubMedPubMedCentralCrossRef Witschey WRT, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:37.PubMedPubMedCentralCrossRef
9.
go back to reference Witschey WRT, Borthakur A, Fenty M, Kneeland BJ, Lonner JH, McArdle EL, et al. T1 rho MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82.PubMedPubMedCentralCrossRef Witschey WRT, Borthakur A, Fenty M, Kneeland BJ, Lonner JH, McArdle EL, et al. T1 rho MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82.PubMedPubMedCentralCrossRef
10.
go back to reference Wang LG, Chang G, Xu J, Vieira RLR, Krasnokutsky S, Abramson S, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol. 2012;81(9):2329–36.PubMedCrossRef Wang LG, Chang G, Xu J, Vieira RLR, Krasnokutsky S, Abramson S, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol. 2012;81(9):2329–36.PubMedCrossRef
11.
go back to reference Chen WB, Chen X, Yang L, Wang GB, Li JQ, Wang SS, et al. Quantitative assessment of liver function with whole-liver T1rho mapping at 3.0 T. Magn Reson Imaging. 2018;46:75–80.PubMedCrossRef Chen WB, Chen X, Yang L, Wang GB, Li JQ, Wang SS, et al. Quantitative assessment of liver function with whole-liver T1rho mapping at 3.0 T. Magn Reson Imaging. 2018;46:75–80.PubMedCrossRef
12.
go back to reference Allkemper T, Sagmeister F, Cicinnati V, Beckebaum S, Kooijman H, Kanthak C, et al. Evaluation of fibrotic liver disease with whole-liver T1 rho MR imaging: a feasibility study at 1.5 T. Radiology. 2014;271(2):408–15.PubMedCrossRef Allkemper T, Sagmeister F, Cicinnati V, Beckebaum S, Kooijman H, Kanthak C, et al. Evaluation of fibrotic liver disease with whole-liver T1 rho MR imaging: a feasibility study at 1.5 T. Radiology. 2014;271(2):408–15.PubMedCrossRef
13.
go back to reference Grohn OHJ, Kettunen MI, Makela HI, Penttonen M, Pitkanen A, Lukkarinen JA, et al. Early detection of irreversible cerebral ischemia in the rat using dispersion of the magnetic resonance imaging relaxation time, T-1p. J Cerebr Blood F Met. 2000;20(10):1457–66.CrossRef Grohn OHJ, Kettunen MI, Makela HI, Penttonen M, Pitkanen A, Lukkarinen JA, et al. Early detection of irreversible cerebral ischemia in the rat using dispersion of the magnetic resonance imaging relaxation time, T-1p. J Cerebr Blood F Met. 2000;20(10):1457–66.CrossRef
14.
go back to reference Muthupillai R, Flamm SD, Wilson JM, Pettigrew RI, Dixon WT. Acute myocardial infarction: tissue characterization with T1(rho)-weighted MR imaging - initial experience. Radiology. 2004;232(2):606–10.PubMedCrossRef Muthupillai R, Flamm SD, Wilson JM, Pettigrew RI, Dixon WT. Acute myocardial infarction: tissue characterization with T1(rho)-weighted MR imaging - initial experience. Radiology. 2004;232(2):606–10.PubMedCrossRef
15.
go back to reference Berisha S, Han J, Shahid M, Han YC, Witschey WRT. Measurement of Myocardial T-1 rho with a motion corrected, parametric mapping sequence in humans. PLoS One. 2016;11(3):e0151144.PubMedPubMedCentralCrossRef Berisha S, Han J, Shahid M, Han YC, Witschey WRT. Measurement of Myocardial T-1 rho with a motion corrected, parametric mapping sequence in humans. PLoS One. 2016;11(3):e0151144.PubMedPubMedCentralCrossRef
16.
go back to reference Iyer SK, Moon B, Hwuang E, Han YC, Solomon M, Litt H, et al. Accelerated free-breathing 3D T1 cardiovascular magnetic resonance using multicoil compressed sensing. J Cardiovasc Magn Reson. 2019;21(1):5.CrossRef Iyer SK, Moon B, Hwuang E, Han YC, Solomon M, Litt H, et al. Accelerated free-breathing 3D T1 cardiovascular magnetic resonance using multicoil compressed sensing. J Cardiovasc Magn Reson. 2019;21(1):5.CrossRef
17.
go back to reference Ding HY, Fernandez-De-Manuel L, Schar M, Schuleri KH, Halperin H, He L, et al. Three-dimensional whole-heart T2 mapping at 3T. Magn Reson Med. 2015;74(3):803–16.PubMedCrossRef Ding HY, Fernandez-De-Manuel L, Schar M, Schuleri KH, Halperin H, He L, et al. Three-dimensional whole-heart T2 mapping at 3T. Magn Reson Med. 2015;74(3):803–16.PubMedCrossRef
18.
go back to reference Prieto C, Doneva M, Usman M, Henningsson M, Greil G, Schaeffter T, et al. Highly efficient respiratory motion compensated free-breathing coronary MRA using Golden-step Cartesian acquisition. J Magn Reson Imaging. 2015;41(3):738–46.PubMedCrossRef Prieto C, Doneva M, Usman M, Henningsson M, Greil G, Schaeffter T, et al. Highly efficient respiratory motion compensated free-breathing coronary MRA using Golden-step Cartesian acquisition. J Magn Reson Imaging. 2015;41(3):738–46.PubMedCrossRef
19.
go back to reference Henningsson M, Koken P, Stehning C, Razavi R, Prieto C, Botnar RM. Whole-heart coronary MR angiography with 2D self-navigated image reconstruction. Magn Reson Med. 2012;67(2):437–45.PubMedCrossRef Henningsson M, Koken P, Stehning C, Razavi R, Prieto C, Botnar RM. Whole-heart coronary MR angiography with 2D self-navigated image reconstruction. Magn Reson Med. 2012;67(2):437–45.PubMedCrossRef
20.
go back to reference Bustin A, Lima da Cruz G, Jaubert O, Lopez K, Botnar RM, Prieto C. High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI. Magn Reson Med. 2019;81(6):3705–19.PubMedPubMedCentralCrossRef Bustin A, Lima da Cruz G, Jaubert O, Lopez K, Botnar RM, Prieto C. High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI. Magn Reson Med. 2019;81(6):3705–19.PubMedPubMedCentralCrossRef
21.
go back to reference Gram M, Gensler D, Xu A, Nordbeck P, Bauer WR, Jakob PM, et al. A totally balanced spin lock preparation module for accurate and artifact-free T1ρ-mapping. Montreal: ISMRM; 2019. p. 1215. Gram M, Gensler D, Xu A, Nordbeck P, Bauer WR, Jakob PM, et al. A totally balanced spin lock preparation module for accurate and artifact-free T1ρ-mapping. Montreal: ISMRM; 2019. p. 1215.
22.
go back to reference Guo R, Si D, Luo J, Ding HY. Two-dimensional simultaneous myocardial T1 and T1rho Mapping at 3T. Seattle: SCMR; 2019. p. 070. Guo R, Si D, Luo J, Ding HY. Two-dimensional simultaneous myocardial T1 and T1rho Mapping at 3T. Seattle: SCMR; 2019. p. 070.
23.
go back to reference Aitken AP, Henningsson M, Botnar RM, Schaeffter T, Prieto C. 100% efficient three-dimensional coronary MR angiography with two-dimensional beat-to-beat translational and bin-to-bin affine motion correction. Magn Reson Med. 2015;74(3):756–64.PubMedCrossRef Aitken AP, Henningsson M, Botnar RM, Schaeffter T, Prieto C. 100% efficient three-dimensional coronary MR angiography with two-dimensional beat-to-beat translational and bin-to-bin affine motion correction. Magn Reson Med. 2015;74(3):756–64.PubMedCrossRef
24.
go back to reference Roes SD, Korosoglou G, Schar M, Westenberg JJ, van Osch MJP, de Roos A, et al. Correction for heart rate variability during 3D whole heart MR coronary angiography. J Magn Reson Imaging. 2008;27(5):1046–53.PubMedCrossRef Roes SD, Korosoglou G, Schar M, Westenberg JJ, van Osch MJP, de Roos A, et al. Correction for heart rate variability during 3D whole heart MR coronary angiography. J Magn Reson Imaging. 2008;27(5):1046–53.PubMedCrossRef
25.
go back to reference Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN. Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson. 2004;6(3):663–73.PubMedCrossRef Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN. Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson. 2004;6(3):663–73.PubMedCrossRef
26.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Am Soc Echocardiog. 2002;15(5):463–7.CrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Am Soc Echocardiog. 2002;15(5):463–7.CrossRef
27.
go back to reference Scott AD, Keegan J, Firmin DN. Motion in cardiovascular MR imaging. Radiology. 2009;250(2):331–51.PubMedCrossRef Scott AD, Keegan J, Firmin DN. Motion in cardiovascular MR imaging. Radiology. 2009;250(2):331–51.PubMedCrossRef
28.
go back to reference Manke D, Nehrke K, Bornert P, Rosch P, Dossel O. Respiratory motion in coronary magnetic resonance angiography: a comparison of different motion models. J Magn Reson Imaging. 2002;15(6):661–71.PubMedCrossRef Manke D, Nehrke K, Bornert P, Rosch P, Dossel O. Respiratory motion in coronary magnetic resonance angiography: a comparison of different motion models. J Magn Reson Imaging. 2002;15(6):661–71.PubMedCrossRef
29.
go back to reference Bustin A, Ginami G, Cruz G, Correia T, Ismail TF, Rashid I, et al. Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med. 2019;81(1):102–15.PubMedCrossRef Bustin A, Ginami G, Cruz G, Correia T, Ismail TF, Rashid I, et al. Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med. 2019;81(1):102–15.PubMedCrossRef
30.
go back to reference Witschey WR 2nd, Borthakur A, Elliott MA, Mellon E, Niyogi S, Wallman DJ, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186(1):75–85.PubMedPubMedCentralCrossRef Witschey WR 2nd, Borthakur A, Elliott MA, Mellon E, Niyogi S, Wallman DJ, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186(1):75–85.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Charagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T-1 rho-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson. 2003;162(1):113–21.PubMedCrossRef Charagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T-1 rho-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson. 2003;162(1):113–21.PubMedCrossRef
33.
go back to reference Mangia S, Liimatainen T, Garwood M, Michaeli S. Rotating frame relaxation during adiabatic pulses vs. conventional spin lock: simulations and experimental results at 4 T. Magn Reson Imaging. 2009;27(8):1074–87.PubMedPubMedCentralCrossRef Mangia S, Liimatainen T, Garwood M, Michaeli S. Rotating frame relaxation during adiabatic pulses vs. conventional spin lock: simulations and experimental results at 4 T. Magn Reson Imaging. 2009;27(8):1074–87.PubMedPubMedCentralCrossRef
Metadata
Title
Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping
Authors
Haikun Qi
Aurelien Bustin
Thomas Kuestner
Reza Hajhosseiny
Gastao Cruz
Karl Kunze
Radhouene Neji
René M. Botnar
Claudia Prieto
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2020
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-020-0597-5

Other articles of this Issue 1/2020

Journal of Cardiovascular Magnetic Resonance 1/2020 Go to the issue