Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2014

01-01-2014 | Original Article

Analysis of electrode deformations in deep brain stimulation surgery

Authors: Florent Lalys, Claire Haegelen, Tiziano D’albis, Pierre Jannin

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2014

Login to get access

Abstract

Purpose

Deep brain stimulation (DBS) surgery is used to reduce motor symptoms when movement disorders are refractory to medical treatment. Post-operative brain morphology can induce electrode deformations as the brain recovers from an intervention. The inverse brain shift has a direct impact on accuracy of the targeting stage, so analysis of electrode deformations is needed to predict final positions.

Methods

DBS electrode curvature was evaluated in 76 adults with movement disorders who underwent bilateral stimulation, and the key variables that affect electrode deformations were identified. Non-linear modelling of the electrode axis was performed using post-operative computed tomography (CT) images. A mean curvature index was estimated for each patient electrode. Multivariate analysis was performed using a regression decision tree to create a hierarchy of predictive variables. The identification and classification of key variables that determine electrode curvature were validated with statistical analysis.

Results

The principal variables affecting electrode deformations were found to be the date of the post-operative CT scan and the stimulation target location. The main pathology, patient’s gender, and disease duration had a smaller although important impact on brain shift.

Conclusions

The principal determinants of electrode location accuracy during DBS procedures were identified and validated. These results may be useful for improved electrode targeting with the help of mathematical models.
Literature
1.
go back to reference Benabid AL, Krack P, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55:40–44 Benabid AL, Krack P, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55:40–44
2.
go back to reference Mink JW, Walkup J, Frey KA et al (2006) Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome. Mov Disord 21(11):1831–1838PubMedCrossRef Mink JW, Walkup J, Frey KA et al (2006) Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome. Mov Disord 21(11):1831–1838PubMedCrossRef
3.
go back to reference Lakhan SE, Callaway H (2010) Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review. MBM Res Notes 4 3(1):60CrossRef Lakhan SE, Callaway H (2010) Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review. MBM Res Notes 4 3(1):60CrossRef
4.
go back to reference Biseul M, Sauleau P, Haegelen C, Trebon P, Drapier D, Raoul S, Drapier S, Lallement F, Rivier I, Lajat Y, Verin M (2005) Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson’s disease. Neuropsychologia 43:1054–1059PubMedCrossRef Biseul M, Sauleau P, Haegelen C, Trebon P, Drapier D, Raoul S, Drapier S, Lallement F, Rivier I, Lajat Y, Verin M (2005) Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson’s disease. Neuropsychologia 43:1054–1059PubMedCrossRef
5.
go back to reference Alegret M, Junque C, Valldeoriola F, Vendrell P, Pilleri M, Rumia J, Tolosa E (2001) Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol 58:1223–1227PubMedCrossRef Alegret M, Junque C, Valldeoriola F, Vendrell P, Pilleri M, Rumia J, Tolosa E (2001) Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol 58:1223–1227PubMedCrossRef
6.
go back to reference Dujardin K, Blairy S, Defebvre L, Krystkowiak P, Hess U, Blond S, Destee A (2004) Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:202–208 Dujardin K, Blairy S, Defebvre L, Krystkowiak P, Hess U, Blond S, Destee A (2004) Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:202–208
7.
go back to reference Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123:2091–2108PubMedCrossRef Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123:2091–2108PubMedCrossRef
8.
go back to reference Elias WJ, Fu KM, Frysinger RC (2007) Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 107:983–988PubMedCrossRef Elias WJ, Fu KM, Frysinger RC (2007) Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 107:983–988PubMedCrossRef
9.
go back to reference Winkler D, Tittgemeyer M, Schwarz J, Preul C, Strecker K (2005) The first evaluation of brain shift during functional neurosurgery by deformation field analysis. J Neurol Neurosurg Psychiatry 76:1161–1163PubMedCrossRef Winkler D, Tittgemeyer M, Schwarz J, Preul C, Strecker K (2005) The first evaluation of brain shift during functional neurosurgery by deformation field analysis. J Neurol Neurosurg Psychiatry 76:1161–1163PubMedCrossRef
10.
go back to reference Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, Zrinzo L (2010) Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 67:213–221CrossRef Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, Zrinzo L (2010) Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 67:213–221CrossRef
11.
go back to reference Sillay KA, Kumbier LM, Ross C, Brady M, Alexander A, Gupta A, Adluru N, Miranpuri GS, Williams JC (2013) Perioperative brain shift and deep brain stimulation electrode deformation analysis: implications for rigid and non-rigid devices. Ann Biomed Eng 41(2):293–304 Sillay KA, Kumbier LM, Ross C, Brady M, Alexander A, Gupta A, Adluru N, Miranpuri GS, Williams JC (2013) Perioperative brain shift and deep brain stimulation electrode deformation analysis: implications for rigid and non-rigid devices. Ann Biomed Eng 41(2):293–304
12.
go back to reference Starr PA (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–790PubMedCentralPubMedCrossRef Starr PA (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–790PubMedCentralPubMedCrossRef
13.
go back to reference Chen I, Coffrey AM, Ding S, Dumpuri P, Dawant BM, Thompson RC, Miga MI (2011) Intraoperative brain shift compensation: accounting for dural septa. IEEE TMI 58(3):499–508 Chen I, Coffrey AM, Ding S, Dumpuri P, Dawant BM, Thompson RC, Miga MI (2011) Intraoperative brain shift compensation: accounting for dural septa. IEEE TMI 58(3):499–508
14.
go back to reference Miga M, Paulsen K, Hoopes P, Kennedy F Jr, Hartov A, Roberts D (2000) In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. Biomed Eng 47(2):266–273 Miga M, Paulsen K, Hoopes P, Kennedy F Jr, Hartov A, Roberts D (2000) In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. Biomed Eng 47(2):266–273
15.
go back to reference Bucki M, Lobos C, Payan Y (2007) Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation. In: IEEE engineering in medicine and biology society, pp 872–875 Bucki M, Lobos C, Payan Y (2007) Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation. In: IEEE engineering in medicine and biology society, pp 872–875
16.
go back to reference Clatz O, Delingette H, Talos IF, Golby AJ, Kikinis R, Jolesz FA, Ayache N, Warfield SK (2005) Robust nonrigid registration to capture brain shift from intra-operative MRI. IEEE Trans Med Imaging 24(11):1417–1427PubMedCentralPubMedCrossRef Clatz O, Delingette H, Talos IF, Golby AJ, Kikinis R, Jolesz FA, Ayache N, Warfield SK (2005) Robust nonrigid registration to capture brain shift from intra-operative MRI. IEEE Trans Med Imaging 24(11):1417–1427PubMedCentralPubMedCrossRef
17.
go back to reference Zhang C, Wang M, Song Z (2011) A brain-deformation framework based on a linear elastic model and evaluation using clinical data. Trans Biomed Eng 58(1):1–9CrossRef Zhang C, Wang M, Song Z (2011) A brain-deformation framework based on a linear elastic model and evaluation using clinical data. Trans Biomed Eng 58(1):1–9CrossRef
18.
go back to reference Pallavaram S, D’Haese PF, Remple MS, Neimat JS, Kao C, Rui Li, Konrad PE, Dawant BM (2009) Detecting brain shift during deep brain stimulation surgery using intra-operative data and functional atlases: a preliminary study. In: ISBI, pp 362–365 Pallavaram S, D’Haese PF, Remple MS, Neimat JS, Kao C, Rui Li, Konrad PE, Dawant BM (2009) Detecting brain shift during deep brain stimulation surgery using intra-operative data and functional atlases: a preliminary study. In: ISBI, pp 362–365
19.
go back to reference Pallavaram S, Dawant BM, Remple MS, Neimat JS, Kao C, Konrad PE, D’Haese PF (2010) Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery. Int J Comput Assist Radiol Surg 5(3):221PubMedCentralPubMedCrossRef Pallavaram S, Dawant BM, Remple MS, Neimat JS, Kao C, Konrad PE, D’Haese PF (2010) Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery. Int J Comput Assist Radiol Surg 5(3):221PubMedCentralPubMedCrossRef
20.
go back to reference Bilger A, Dequidt J, Duriez C, Cotin S (2011) Biomechanical simulation of electrode migration for deep brain stimulation. Int Conf Med Image Comput Comput-Assist Interv 6891:339–346 Bilger A, Dequidt J, Duriez C, Cotin S (2011) Biomechanical simulation of electrode migration for deep brain stimulation. Int Conf Med Image Comput Comput-Assist Interv 6891:339–346
21.
go back to reference Miyagi Y, Shima F, Sasaki T (2007) Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107:989–997 Miyagi Y, Shima F, Sasaki T (2007) Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107:989–997
22.
go back to reference Halpern CH, Danish SF, Baltuch GH, Jaggi JL (2008) Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg 86(1):37–43 Halpern CH, Danish SF, Baltuch GH, Jaggi JL (2008) Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg 86(1):37–43
23.
go back to reference Khan MF, Mewes K, Gross RE, Skrinjar O (2008) Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86(1):44–23PubMedCrossRef Khan MF, Mewes K, Gross RE, Skrinjar O (2008) Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86(1):44–23PubMedCrossRef
24.
go back to reference Kim YH, Kim HJ, Kim C, Kim DG, Jeon BS, Paek SH (2010) Comparison of electrode location between immediate postoperative day and 6 months after bilateral subthalamic nucleus stimulation. Acta Neurochir 152(12):2037–2045 Kim YH, Kim HJ, Kim C, Kim DG, Jeon BS, Paek SH (2010) Comparison of electrode location between immediate postoperative day and 6 months after bilateral subthalamic nucleus stimulation. Acta Neurochir 152(12):2037–2045
25.
go back to reference van den Munckhof P, Contarino MF, Bour LJ, Speelman JD, die Bie RM, Schuuman PR (2010) Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift. Neurosurgery 67:49–53PubMedCrossRef van den Munckhof P, Contarino MF, Bour LJ, Speelman JD, die Bie RM, Schuuman PR (2010) Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift. Neurosurgery 67:49–53PubMedCrossRef
26.
go back to reference Obuchi T, Katayama Y, Kobayashi K, Oshima H, Fukaya C, Yamamoto T (2008) Direction and predictive factors for the shift of brain structure during deep brain stimulation electrode implantation for advanced Parkinson’s disease. Neuromodulation 11:302–310PubMedCrossRef Obuchi T, Katayama Y, Kobayashi K, Oshima H, Fukaya C, Yamamoto T (2008) Direction and predictive factors for the shift of brain structure during deep brain stimulation electrode implantation for advanced Parkinson’s disease. Neuromodulation 11:302–310PubMedCrossRef
27.
go back to reference Azmi H, Machado A, Deogaonkar M, Rezai A (2011) Intracranial air correlates with preoperative cerebral atrophy and stereotactic error during bilateral STN DBS surgery for Parkinson’s disease. Sterotact Funct Neurosurg 89(4):246–252CrossRef Azmi H, Machado A, Deogaonkar M, Rezai A (2011) Intracranial air correlates with preoperative cerebral atrophy and stereotactic error during bilateral STN DBS surgery for Parkinson’s disease. Sterotact Funct Neurosurg 89(4):246–252CrossRef
28.
go back to reference Nazzaro JM, Lyons KE, Honea RA, Mayo MS, Cook-Wiens G, Harsha A, Burns JM, Pahwa R (2010) Head positioning and risk of pneumocephalus, air embolism, and hemorrhage during subthalamic deep brain stimulation surgery. Acta Neurochir 152:2047–2052PubMedCrossRef Nazzaro JM, Lyons KE, Honea RA, Mayo MS, Cook-Wiens G, Harsha A, Burns JM, Pahwa R (2010) Head positioning and risk of pneumocephalus, air embolism, and hemorrhage during subthalamic deep brain stimulation surgery. Acta Neurochir 152:2047–2052PubMedCrossRef
29.
go back to reference Slotty PJ, Kamp MA, Wille C, Kinfe TM, Steiger HJ, Vesper J (2012) The impact of brain-shift in deep-brain stimulation surgery: observation and obviation. Acta Neurochi 154(11):2063–2071 Slotty PJ, Kamp MA, Wille C, Kinfe TM, Steiger HJ, Vesper J (2012) The impact of brain-shift in deep-brain stimulation surgery: observation and obviation. Acta Neurochi 154(11):2063–2071
31.
go back to reference Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, Watts R (1992) Core assessment program for intracerebral transplantation (CAPIT). Mov Dis 7(1):2–13CrossRef Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, Watts R (1992) Core assessment program for intracerebral transplantation (CAPIT). Mov Dis 7(1):2–13CrossRef
32.
go back to reference Krack P, Pollak P, Limousin P, Hoffmann D, Xie J, Benazzouz A, Benabid AL (1998) Subthalamic nucleus or internal pallidal stimulation in Young onset Parkinson’s disease. Brain 121:451–457PubMedCrossRef Krack P, Pollak P, Limousin P, Hoffmann D, Xie J, Benazzouz A, Benabid AL (1998) Subthalamic nucleus or internal pallidal stimulation in Young onset Parkinson’s disease. Brain 121:451–457PubMedCrossRef
33.
go back to reference Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE TMI 24:425–441 Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE TMI 24:425–441
34.
go back to reference Powell M (2004) The NEWUOA Software for Unconstrained Optimization without Derivatives. In: Di Pillo G, Roma M (eds) Workshop on large scale nonlinear optimization, nonconvex optimization and Its applications 83. Springer, Berlin Powell M (2004) The NEWUOA Software for Unconstrained Optimization without Derivatives. In: Di Pillo G, Roma M (eds) Workshop on large scale nonlinear optimization, nonconvex optimization and Its applications 83. Springer, Berlin
35.
36.
go back to reference Lalys F, Haegelen C, Mehri M, Drapier S, Vérin M, Jannin P. Anatomic-clinical atlases correlate clinical data and electrode contact coordinates : application to subthalamic deep brain stimulation. J Neurosci Methods (E-pub ahead of print) Lalys F, Haegelen C, Mehri M, Drapier S, Vérin M, Jannin P. Anatomic-clinical atlases correlate clinical data and electrode contact coordinates : application to subthalamic deep brain stimulation. J Neurosci Methods (E-pub ahead of print)
37.
go back to reference Gray A, Abbena E, Salamon S (1997) Modern differential geometry of curves and surfaces with mathematica. The Gaussian and mean curvatures, 2nd edn. CRC Press, Boca Raton, pp 373–380 Gray A, Abbena E, Salamon S (1997) Modern differential geometry of curves and surfaces with mathematica. The Gaussian and mean curvatures, 2nd edn. CRC Press, Boca Raton, pp 373–380
38.
go back to reference Breiman L, Friedman J, Olshen R, Stone C (1984) CART: Classification and regession trees. Wadsworth International Breiman L, Friedman J, Olshen R, Stone C (1984) CART: Classification and regession trees. Wadsworth International
39.
go back to reference Haegelen C, Coupe P, Fonov V, Guizard N, Jannin P, Morandi X, Collins DL (2012) Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s Disease. In: IJCARS Haegelen C, Coupe P, Fonov V, Guizard N, Jannin P, Morandi X, Collins DL (2012) Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s Disease. In: IJCARS
Metadata
Title
Analysis of electrode deformations in deep brain stimulation surgery
Authors
Florent Lalys
Claire Haegelen
Tiziano D’albis
Pierre Jannin
Publication date
01-01-2014
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2014
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-013-0911-x

Other articles of this Issue 1/2014

International Journal of Computer Assisted Radiology and Surgery 1/2014 Go to the issue