Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2014

01-10-2014 | Preclinical study

An improved syngeneic orthotopic murine model of human breast cancer progression

Authors: Omar M. Rashid, Masayuki Nagahashi, Suburamaniam Ramachandran, Catherine Dumur, Julia Schaum, Akimitsu Yamada, Krista P. Terracina, Sheldon Milstien, Sarah Spiegel, Kazuaki Takabe

Published in: Breast Cancer Research and Treatment | Issue 3/2014

Login to get access

Abstract

Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous (OP) injection in the area of the nipple, or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. ODV produced less variable-sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development .
Literature
4.
go back to reference Schuh JC (2004) Trials, tribulations, and trends in tumor modeling in mice. Toxicol Pathol 32(Suppl 1):53–66PubMedCrossRef Schuh JC (2004) Trials, tribulations, and trends in tumor modeling in mice. Toxicol Pathol 32(Suppl 1):53–66PubMedCrossRef
5.
go back to reference Ottewell PD, Coleman RE, Holen I (2006) From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat 96(2):101–113. doi:10.1007/s10549-005-9067-x PubMedCrossRef Ottewell PD, Coleman RE, Holen I (2006) From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat 96(2):101–113. doi:10.​1007/​s10549-005-9067-x PubMedCrossRef
6.
go back to reference Gravekamp C, Sypniewska R, Gauntt S, Tarango M, Price P, Reddick R (2004) Behavior of metastatic and nonmetastatic breast tumors in old mice. Exp Biol Med (Maywood) 229(7):665–675 Gravekamp C, Sypniewska R, Gauntt S, Tarango M, Price P, Reddick R (2004) Behavior of metastatic and nonmetastatic breast tumors in old mice. Exp Biol Med (Maywood) 229(7):665–675
8.
go back to reference Bloomston M, Zervos EE, Rosemurgy AS 2nd (2002) Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann Surg Oncol 9(7):668–674PubMedCrossRef Bloomston M, Zervos EE, Rosemurgy AS 2nd (2002) Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann Surg Oncol 9(7):668–674PubMedCrossRef
9.
go back to reference Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, Abbott RM, Hoog J, Dooling DJ, Koboldt DC, Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wendl MC, McMichael JF, Magrini VJ, Cook L, McGrath SD, Vickery TL, Appelbaum E, Deschryver K, Davies S, Guintoli T, Crowder R, Tao Y, Snider JE, Smith SM, Dukes AF, Sanderson GE, Pohl CS, Delehaunty KD, Fronick CC, Pape KA, Reed JS, Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wiechert ME, Eldred JM, Peck JB, Oberkfell BJ, Lolofie JT, Du F, Hawkins AE, O’Laughlin MD, Bernard KE, Cunningham M, Elliott G, Mason MD, Thompson DM, Jr., Ivanovich JL, Goodfellow PJ, Perou CM, Weinstock GM, Aft R, Watson M, Ley TJ, Wilson RK, Mardis ER (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464 (7291):999–1005. 10.1038/nature08989 Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, Abbott RM, Hoog J, Dooling DJ, Koboldt DC, Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wendl MC, McMichael JF, Magrini VJ, Cook L, McGrath SD, Vickery TL, Appelbaum E, Deschryver K, Davies S, Guintoli T, Crowder R, Tao Y, Snider JE, Smith SM, Dukes AF, Sanderson GE, Pohl CS, Delehaunty KD, Fronick CC, Pape KA, Reed JS, Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wiechert ME, Eldred JM, Peck JB, Oberkfell BJ, Lolofie JT, Du F, Hawkins AE, O’Laughlin MD, Bernard KE, Cunningham M, Elliott G, Mason MD, Thompson DM, Jr., Ivanovich JL, Goodfellow PJ, Perou CM, Weinstock GM, Aft R, Watson M, Ley TJ, Wilson RK, Mardis ER (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464 (7291):999–1005. 10.​1038/​nature08989
11.
go back to reference Miller FR (1983) Tumor subpopulation interactions in metastasis. Invasion Metastasis 3(4):234–242PubMed Miller FR (1983) Tumor subpopulation interactions in metastasis. Invasion Metastasis 3(4):234–242PubMed
12.
go back to reference Hann B, Balmain A (2001) Building ‘validated’ mouse models of human cancer. Curr Opin Cell Biol 13(6):778–784PubMedCrossRef Hann B, Balmain A (2001) Building ‘validated’ mouse models of human cancer. Curr Opin Cell Biol 13(6):778–784PubMedCrossRef
13.
17.
go back to reference Fu X, Le P, Hoffman RM (1993) A metastatic orthotopic-transplant nude-mouse model of human patient breast cancer. Anticancer Res 13(4):901–904PubMed Fu X, Le P, Hoffman RM (1993) A metastatic orthotopic-transplant nude-mouse model of human patient breast cancer. Anticancer Res 13(4):901–904PubMed
18.
go back to reference Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17(4):343–359PubMedCrossRef Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17(4):343–359PubMedCrossRef
19.
go back to reference Li X, Wang J, An Z, Yang M, Baranov E, Jiang P, Sun F, Moossa AR, Hoffman RM (2002) Optically imageable metastatic model of human breast cancer. Clin Exp Metastasis 19(4):347–350PubMedCrossRef Li X, Wang J, An Z, Yang M, Baranov E, Jiang P, Sun F, Moossa AR, Hoffman RM (2002) Optically imageable metastatic model of human breast cancer. Clin Exp Metastasis 19(4):347–350PubMedCrossRef
24.
go back to reference Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84(10):1424–1431. doi:10.1054/bjoc.2001.1796 PubMedCrossRefPubMedCentral Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84(10):1424–1431. doi:10.​1054/​bjoc.​2001.​1796 PubMedCrossRefPubMedCentral
26.
go back to reference Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, Zhao R, Milstien S, Zhou H, Spiegel S, Takabe K (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72(3):726–735. doi:10.1158/0008-5472.CAN-11-2167 PubMedCrossRefPubMedCentral Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, Zhao R, Milstien S, Zhou H, Spiegel S, Takabe K (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72(3):726–735. doi:10.​1158/​0008-5472.​CAN-11-2167 PubMedCrossRefPubMedCentral
27.
29.
31.
go back to reference Cabioglu N, Summy J, Miller C, Parikh NU, Sahin AA, Tuzlali S, Pumiglia K, Gallick GE, Price JE (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65(15):6493–6497. doi:10.1158/0008-5472.CAN-04-1303 PubMedCrossRef Cabioglu N, Summy J, Miller C, Parikh NU, Sahin AA, Tuzlali S, Pumiglia K, Gallick GE, Price JE (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65(15):6493–6497. doi:10.​1158/​0008-5472.​CAN-04-1303 PubMedCrossRef
32.
go back to reference Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. doi:10.1016/j.cell.2005.02.034 PubMedCrossRef Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. doi:10.​1016/​j.​cell.​2005.​02.​034 PubMedCrossRef
33.
go back to reference Viola RJ, Provenzale JM, Li F, Li CY, Yuan H, Tashjian J, Dewhirst MW (2008) In vivo bioluminescence imaging monitoring of hypoxia-inducible factor 1alpha, a promoter that protects cells, in response to chemotherapy. AJR Am J Roentgenol 191(6):1779–1784. doi:10.2214/AJR.07.4060 PubMedCrossRef Viola RJ, Provenzale JM, Li F, Li CY, Yuan H, Tashjian J, Dewhirst MW (2008) In vivo bioluminescence imaging monitoring of hypoxia-inducible factor 1alpha, a promoter that protects cells, in response to chemotherapy. AJR Am J Roentgenol 191(6):1779–1784. doi:10.​2214/​AJR.​07.​4060 PubMedCrossRef
34.
go back to reference Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093 PubMedCrossRef Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.​1038/​35021093 PubMedCrossRef
35.
go back to reference van’tVeer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.1038/415530a CrossRef van’tVeer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.​1038/​415530a CrossRef
36.
go back to reference Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679. doi:10.1016/S0140-6736(05)17947-1 PubMedCrossRef Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679. doi:10.​1016/​S0140-6736(05)17947-1 PubMedCrossRef
38.
40.
go back to reference Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A, van Tilborg AA, Leenstra S, Zanon C, Bardelli A (2007) Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 67(8):3545–3550. doi:10.1158/0008-5472.CAN-07-0065 PubMedCrossRef Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A, van Tilborg AA, Leenstra S, Zanon C, Bardelli A (2007) Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 67(8):3545–3550. doi:10.​1158/​0008-5472.​CAN-07-0065 PubMedCrossRef
42.
go back to reference Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. BCR: Breast Cancer Res 7(5):R788–R795. doi:10.1186/bcr1304 PubMedCrossRefPubMedCentral Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. BCR: Breast Cancer Res 7(5):R788–R795. doi:10.​1186/​bcr1304 PubMedCrossRefPubMedCentral
43.
go back to reference Bianchi L, Canton C, Bini L, Orlandi R, Menard S, Armini A, Cattaneo M, Pallini V, Bernardi LR, Biunno I (2005) Protein profile changes in the human breast cancer cell line MCF-7 in response to SEL1L gene induction. Proteomics 5(9):2433–2442. doi:10.1002/pmic.200401283 PubMedCrossRef Bianchi L, Canton C, Bini L, Orlandi R, Menard S, Armini A, Cattaneo M, Pallini V, Bernardi LR, Biunno I (2005) Protein profile changes in the human breast cancer cell line MCF-7 in response to SEL1L gene induction. Proteomics 5(9):2433–2442. doi:10.​1002/​pmic.​200401283 PubMedCrossRef
44.
go back to reference Smirnov DA, Zweitzig DR, Foulk BW, Miller MC, Doyle GV, Pienta KJ, Meropol NJ, Weiner LM, Cohen SJ, Moreno JG, Connelly MC, Terstappen LW, O’Hara SM (2005) Global gene expression profiling of circulating tumor cells. Cancer Res 65(12):4993–4997. doi:10.1158/0008-5472.CAN-04-4330 PubMedCrossRef Smirnov DA, Zweitzig DR, Foulk BW, Miller MC, Doyle GV, Pienta KJ, Meropol NJ, Weiner LM, Cohen SJ, Moreno JG, Connelly MC, Terstappen LW, O’Hara SM (2005) Global gene expression profiling of circulating tumor cells. Cancer Res 65(12):4993–4997. doi:10.​1158/​0008-5472.​CAN-04-4330 PubMedCrossRef
46.
go back to reference Wang XY, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR (2003) Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer Res 63(10):2553–2560PubMed Wang XY, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR (2003) Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer Res 63(10):2553–2560PubMed
48.
go back to reference Macor P, Tripodo C, Zorzet S, Piovan E, Bossi F, Marzari R, Amadori A, Tedesco F (2007) In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res 67(21):10556–10563. doi:10.1158/0008-5472.CAN-07-1811 PubMedCrossRef Macor P, Tripodo C, Zorzet S, Piovan E, Bossi F, Marzari R, Amadori A, Tedesco F (2007) In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res 67(21):10556–10563. doi:10.​1158/​0008-5472.​CAN-07-1811 PubMedCrossRef
Metadata
Title
An improved syngeneic orthotopic murine model of human breast cancer progression
Authors
Omar M. Rashid
Masayuki Nagahashi
Suburamaniam Ramachandran
Catherine Dumur
Julia Schaum
Akimitsu Yamada
Krista P. Terracina
Sheldon Milstien
Sarah Spiegel
Kazuaki Takabe
Publication date
01-10-2014
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2014
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-014-3118-0

Other articles of this Issue 3/2014

Breast Cancer Research and Treatment 3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine