Skip to main content
Top
Published in: Radiation Oncology 1/2012

Open Access 01-12-2012 | Research

An athymic rat model of cutaneous radiation injury designed to study human tissue-based wound therapy

Authors: Lucas H Rifkin, Strahinja Stojadinovic, Collin H Stewart, Kwang H Song, Michael C Maxted, Marcus H Bell, Natalie S Kashefi, Michael P Speiser, Michel Saint-Cyr, Michael D Story, Rod J Rohrich, Spencer A Brown, Timothy D Solberg

Published in: Radiation Oncology | Issue 1/2012

Login to get access

Abstract

Purpose

To describe a pilot study for a novel preclinical model used to test human tissue-based therapies in the setting of cutaneous radiation injury.

Methods

A protocol was designed to irradiate the skin of athymic rats while sparing the body and internal organs by utilizing a non-occlusive skin clamp along with an x-ray image guided stereotactic irradiator. Each rat was irradiated both on the right and the left flank with a circular field at a 20 cm source-to-surface distance (SSD). Single fractions of 30.4 Gy, 41.5 Gy, 52.6 Gy, 65.5 Gy, and 76.5 Gy were applied in a dose-finding trial. Eight additional wounds were created using the 41.5 Gy dose level. Each wound was photographed and the percentage of the irradiated area ulcerated at given time points was analyzed using ImageJ software.

Results

No systemic or lethal sequelae occurred in any animals, and all irradiated skin areas in the multi-dose trial underwent ulceration. Greater than 60% of skin within each irradiated zone underwent ulceration within ten days, with peak ulceration ranging from 62.1% to 79.8%. Peak ulceration showed a weak correlation with radiation dose (r = 0.664). Mean ulceration rate over the study period is more closely correlated to dose (r = 0.753). With the highest dose excluded due to contraction-related distortions, correlation between dose and average ulceration showed a stronger relationship (r = 0.895). Eight additional wounds created using 41.5 Gy all reached peak ulceration above 50%, with all healing significantly but incompletely by the 65-day endpoint.

Conclusions

We developed a functional preclinical model which is currently used to evaluate human tissue-based therapies in the setting of cutaneous radiation injury. Similar models may be widely applicable and useful the development of novel therapies which may improve radiotherapy management over a broad clinical spectrum.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer Statistics, 2007. CA Cancer J Clin 2007, 57: 43-66. 10.3322/canjclin.57.1.43CrossRefPubMed Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer Statistics, 2007. CA Cancer J Clin 2007, 57: 43-66. 10.3322/canjclin.57.1.43CrossRefPubMed
2.
go back to reference Jagsi R, Ben-David MA, Moran JM, Marsh RB, Griffith KA, Hayman JA, Pierce LJ: Unacceptable Cosmesis in a Protocol Investigating Intensity-Modulated Radiotherapy With Active Breathing Control for Accelerated Partial-Breast Irradiation. International Journal of Radiation Oncology Biology Physics 2010, 76: 71-78. 10.1016/j.ijrobp.2009.01.041CrossRef Jagsi R, Ben-David MA, Moran JM, Marsh RB, Griffith KA, Hayman JA, Pierce LJ: Unacceptable Cosmesis in a Protocol Investigating Intensity-Modulated Radiotherapy With Active Breathing Control for Accelerated Partial-Breast Irradiation. International Journal of Radiation Oncology Biology Physics 2010, 76: 71-78. 10.1016/j.ijrobp.2009.01.041CrossRef
3.
go back to reference Hopewell JW: The Skin: Its Structure and Response to Ionizing Radiation. International Journal of Radiation Biology 1990, 57: 751-773. 10.1080/09553009014550911CrossRefPubMed Hopewell JW: The Skin: Its Structure and Response to Ionizing Radiation. International Journal of Radiation Biology 1990, 57: 751-773. 10.1080/09553009014550911CrossRefPubMed
4.
go back to reference Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of Normal Tissue to Therapeutic Irradiation. International Journal of Radiation Oncology Biology Physics 1991, 21: 109-122.CrossRef Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of Normal Tissue to Therapeutic Irradiation. International Journal of Radiation Oncology Biology Physics 1991, 21: 109-122.CrossRef
5.
go back to reference Withers HR: The Dose-survival Relationship for Irradiation of Epithelial Cells of Mouse Skin. Br J Radiol 1967, 40: 187-194. 10.1259/0007-1285-40-471-187CrossRefPubMed Withers HR: The Dose-survival Relationship for Irradiation of Epithelial Cells of Mouse Skin. Br J Radiol 1967, 40: 187-194. 10.1259/0007-1285-40-471-187CrossRefPubMed
6.
go back to reference Denekamp J, Fowler JF, Kragt K, Parnell CJ, Field SB: Recovery and Repopulation in Mouse Skin after Irradiation with Cyclotron Neutrons as Compared with 250-Kv X-Rays or 15-Mev Electrons. Radiation Research 1966, 29: 71-84. 10.2307/3572092CrossRefPubMed Denekamp J, Fowler JF, Kragt K, Parnell CJ, Field SB: Recovery and Repopulation in Mouse Skin after Irradiation with Cyclotron Neutrons as Compared with 250-Kv X-Rays or 15-Mev Electrons. Radiation Research 1966, 29: 71-84. 10.2307/3572092CrossRefPubMed
7.
go back to reference Joiner MC, Maughan RL, Fowler JF, Denekamp J: The RBE for Mouse Skin Irradiated with 3-MeV Neutrons: Single and Fractionated Doses. Radiation Research 1983, 95: 130-141. 10.2307/3576078CrossRefPubMed Joiner MC, Maughan RL, Fowler JF, Denekamp J: The RBE for Mouse Skin Irradiated with 3-MeV Neutrons: Single and Fractionated Doses. Radiation Research 1983, 95: 130-141. 10.2307/3576078CrossRefPubMed
8.
go back to reference Hopewell JW, Young CMA: The effect of field size on the reaction of pig skin to single doses of X rays. Br J Radiol 1982, 55: 356-361. 10.1259/0007-1285-55-653-356CrossRefPubMed Hopewell JW, Young CMA: The effect of field size on the reaction of pig skin to single doses of X rays. Br J Radiol 1982, 55: 356-361. 10.1259/0007-1285-55-653-356CrossRefPubMed
9.
go back to reference Peel DM, Hopewell JW, Wells J, Charles MW: Nonstochastic Effects of Different Energy Beta Emitters on Pig Skin. Radiation Research 1984, 99: 372-382. 10.2307/3576380CrossRefPubMed Peel DM, Hopewell JW, Wells J, Charles MW: Nonstochastic Effects of Different Energy Beta Emitters on Pig Skin. Radiation Research 1984, 99: 372-382. 10.2307/3576380CrossRefPubMed
10.
go back to reference Coggle JE, Hansen LS, Wells J, Charles MW: Nonstochastic Effects of Different Energy Beta Emitters on the Mouse Skin. Radiation Research 1984, 99: 336-345. 10.2307/3576376CrossRefPubMed Coggle JE, Hansen LS, Wells J, Charles MW: Nonstochastic Effects of Different Energy Beta Emitters on the Mouse Skin. Radiation Research 1984, 99: 336-345. 10.2307/3576376CrossRefPubMed
11.
go back to reference Jolles B: X-ray Skin Reactions and the Protective Role of Normal Tissues. Br J Radiol 1941, 14: 110-112. 10.1259/0007-1285-14-159-110CrossRef Jolles B: X-ray Skin Reactions and the Protective Role of Normal Tissues. Br J Radiol 1941, 14: 110-112. 10.1259/0007-1285-14-159-110CrossRef
12.
go back to reference Fowler JF, Morgan RL, Silvester JA, Bewley DK, Turner BA: Experiments with Fractionated X-ray Treatment of the Skin of Pigs I - Fractionation up to 28 Days. Br J Radiol 1963, 36: 188-196. 10.1259/0007-1285-36-423-188CrossRefPubMed Fowler JF, Morgan RL, Silvester JA, Bewley DK, Turner BA: Experiments with Fractionated X-ray Treatment of the Skin of Pigs I - Fractionation up to 28 Days. Br J Radiol 1963, 36: 188-196. 10.1259/0007-1285-36-423-188CrossRefPubMed
13.
go back to reference Fowler JF, Bewley DK, Morgan RL, Silvester JA: Experiments with Fractionated X-irradiation of the Skin of Pigs II - Fractionation up to Five Days. Br J Radiol 1965, 38: 278-284. 10.1259/0007-1285-38-448-278CrossRefPubMed Fowler JF, Bewley DK, Morgan RL, Silvester JA: Experiments with Fractionated X-irradiation of the Skin of Pigs II - Fractionation up to Five Days. Br J Radiol 1965, 38: 278-284. 10.1259/0007-1285-38-448-278CrossRefPubMed
14.
go back to reference Fowler JF, Kragt K, Ellis RE, Lindop PJ, Berry RJ: The Effect of Divided Doses of 15 MeV Electrons on the Skin Response of Mice. International Journal of Radiation Biology 1965, 9: 241-252. 10.1080/09553006514550291CrossRef Fowler JF, Kragt K, Ellis RE, Lindop PJ, Berry RJ: The Effect of Divided Doses of 15 MeV Electrons on the Skin Response of Mice. International Journal of Radiation Biology 1965, 9: 241-252. 10.1080/09553006514550291CrossRef
15.
go back to reference Denekamp J, Ball MM, Fowler JF: Recovery and Repopulation in Mouse Skin as a Function of Time after X-Irradiation. Radiation Research 1969, 37: 361-370. 10.2307/3572739CrossRefPubMed Denekamp J, Ball MM, Fowler JF: Recovery and Repopulation in Mouse Skin as a Function of Time after X-Irradiation. Radiation Research 1969, 37: 361-370. 10.2307/3572739CrossRefPubMed
16.
go back to reference Fowler JF, Denekamp J, Delapeyre C, Harris SR, Sheldon PW: Skin reactions in mice after multifraction X-irradiation. International Journal of Radiation Biology 1974, 25: 213-223. 10.1080/09553007414550271CrossRef Fowler JF, Denekamp J, Delapeyre C, Harris SR, Sheldon PW: Skin reactions in mice after multifraction X-irradiation. International Journal of Radiation Biology 1974, 25: 213-223. 10.1080/09553007414550271CrossRef
17.
go back to reference Sultan SM, Stern CS, Allen RJ, Thanik VD, Chang CC, Nguyen PD, Canizares O, Szpalski C, Saadeh PB, Warren SM, et al.: Human Fat Grafting Alleviates Radiation Skin Damage in a Murine Model. Plastic and Reconstructive Surgery 2011, 128: 363-372. 10.1097/PRS.0b013e31821e6e90CrossRefPubMed Sultan SM, Stern CS, Allen RJ, Thanik VD, Chang CC, Nguyen PD, Canizares O, Szpalski C, Saadeh PB, Warren SM, et al.: Human Fat Grafting Alleviates Radiation Skin Damage in a Murine Model. Plastic and Reconstructive Surgery 2011, 128: 363-372. 10.1097/PRS.0b013e31821e6e90CrossRefPubMed
18.
go back to reference Thanik VD, Chang CC, Zoumalan RA, Lerman OZ, Allen RJ, Nguyen PD, Warren SM, Coleman SR, Hazen A: A Novel Mouse Model of Cutaneous Radiation Injury. Plastic and Reconstructive Surgery 2011, 127: 560-568. 10.1097/PRS.0b013e3181fed4f7CrossRefPubMed Thanik VD, Chang CC, Zoumalan RA, Lerman OZ, Allen RJ, Nguyen PD, Warren SM, Coleman SR, Hazen A: A Novel Mouse Model of Cutaneous Radiation Injury. Plastic and Reconstructive Surgery 2011, 127: 560-568. 10.1097/PRS.0b013e3181fed4f7CrossRefPubMed
19.
go back to reference Cho J, Kodym R, Seliounine S, Richardson JA, Solberg TD, Story MD: High Dose-Per-Fraction Irradiation of Limited Lung Volumes Using an ImageGuided, Highly Focused Irradiator: Simulating Stereotactic Body Radiotherapy Regimens in a Small-Animal Model. International Journal of Radiation Oncology*Biology*Physics 2010, 77: 895-902. 10.1016/j.ijrobp.2009.12.074CrossRef Cho J, Kodym R, Seliounine S, Richardson JA, Solberg TD, Story MD: High Dose-Per-Fraction Irradiation of Limited Lung Volumes Using an ImageGuided, Highly Focused Irradiator: Simulating Stereotactic Body Radiotherapy Regimens in a Small-Animal Model. International Journal of Radiation Oncology*Biology*Physics 2010, 77: 895-902. 10.1016/j.ijrobp.2009.12.074CrossRef
20.
go back to reference Saha D, Watkins L, Yin Y, Thorpe P, Story MD, Song K, Raghavan P, Timmerman R, Chen B, Minna JD, Solberg TD: An Orthotopic Lung Tumor Model for Image-Guided Microirradiation in Rats. Radiation Research 2010, 174: 62-71. 10.1667/RR2157.1PubMedCentralCrossRefPubMed Saha D, Watkins L, Yin Y, Thorpe P, Story MD, Song K, Raghavan P, Timmerman R, Chen B, Minna JD, Solberg TD: An Orthotopic Lung Tumor Model for Image-Guided Microirradiation in Rats. Radiation Research 2010, 174: 62-71. 10.1667/RR2157.1PubMedCentralCrossRefPubMed
21.
go back to reference Song KH, Pidikiti R, Stojadinovic S, Speiser M, Seliounine S, Saha D, Solberg TD: An x-ray image guidance system for small animal stereotactic irradiation. Physics in Medicine and Biology 2010, 55: 7345-7362. 10.1088/0031-9155/55/23/011CrossRefPubMed Song KH, Pidikiti R, Stojadinovic S, Speiser M, Seliounine S, Saha D, Solberg TD: An x-ray image guidance system for small animal stereotactic irradiation. Physics in Medicine and Biology 2010, 55: 7345-7362. 10.1088/0031-9155/55/23/011CrossRefPubMed
22.
go back to reference Pidikiti R, Stojadinovic S, Speiser M, Song KH, Hager F, Saha D, Solberg TD: Dosimetric characterization of an image-guided stereotactic small animal irradiator. Physics in Medicine and Biology 2011, 56: 2585-2599. 10.1088/0031-9155/56/8/016CrossRefPubMed Pidikiti R, Stojadinovic S, Speiser M, Song KH, Hager F, Saha D, Solberg TD: Dosimetric characterization of an image-guided stereotactic small animal irradiator. Physics in Medicine and Biology 2011, 56: 2585-2599. 10.1088/0031-9155/56/8/016CrossRefPubMed
23.
go back to reference Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, Seuntjens JP: AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Medical Physics 2001, 28: 868-893. 10.1118/1.1374247CrossRefPubMed Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, Seuntjens JP: AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Medical Physics 2001, 28: 868-893. 10.1118/1.1374247CrossRefPubMed
Metadata
Title
An athymic rat model of cutaneous radiation injury designed to study human tissue-based wound therapy
Authors
Lucas H Rifkin
Strahinja Stojadinovic
Collin H Stewart
Kwang H Song
Michael C Maxted
Marcus H Bell
Natalie S Kashefi
Michael P Speiser
Michel Saint-Cyr
Michael D Story
Rod J Rohrich
Spencer A Brown
Timothy D Solberg
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2012
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-7-68

Other articles of this Issue 1/2012

Radiation Oncology 1/2012 Go to the issue