Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2011

01-02-2011

AMP-Activated Protein Kinase Inhibits Homocysteine-Induced Dysfunction and Apoptosis in Endothelial Progenitor Cells

Authors: Fang Jia, Chunfang Wu, Zhenyue Chen, Guoping Lu

Published in: Cardiovascular Drugs and Therapy | Issue 1/2011

Login to get access

Abstract

Purpose

Homocysteine (Hcy) has been shown to induce oxidative stress and apoptosis of endothelial progenitor cells (EPCs). AMP-activated protein kinase (AMPK) has been reported to have protective effects on endothelial function. However, effects of AMPK activation on Hcy-induced EPCs injury remain to be determined. In this study, we examined the effect of AMPK phosphorylation on Hcy-induced NO bioavailability impairment and NADPH oxidase 4 (Nox4) derived reactive oxygen species (ROS) accumulation in EPCs.

Materials and methods

EPCs were pre-treated with various concentrations of 5-amino-4-imidazolecarboxamide riboside-l-beta-D-ribofuranoside (AICAR), a pharmacological agonist of AMPK, and then incubated with Hcy for 24 h. Furthermore, we challenged EPCs with Hcy in the presence or absence of atorvastatin and AMPK-DN which expressed a dominant-negative mutant of AMPK. Migration, proliferation and apoptosis were assayed to evaluate EPCs function. NO production, expression of endothelial nitric oxide synthase (eNOS), intracellular ROS levels and Nox4 activation were determined to explore the potential mechanisms of Hcy-induced EPCs dysfunction.

Results

We observed that AICAR attenuated the inhibition effects of Hcy on EPCs migration and proliferation. The apoptosis rates of EPCs were down-regulated by AICAR compared with the group treated with Hcy only [(0.25 mmol/L AICAR: 10.48 ± 1.6%; 0.5 mmol/L AICAR: 8.70 ± 1.0%; 1 mmol/L AICAR: 5.83 ± 1.3%) vs. (500 μmol/L Hcy only: 12.60 ± 1.9%)]. We also found that NO production and eNOS expression were up-regulated by AICAR compared with the group treated with Hcy only, while ROS accumulation and Nox4 activation were inhibited. Furthermore, atorvastatin suppressed Hcy-induced dysfunction of EPCs, increased NO production and eNOS expression, and down-regulated ROS accumulation and Nox4 activation. And these effects of atorvastatin could be blunted by AMPK-DN.

Conclusion

AMPK activation inhibits eNOS down-regulation and Nox4-derived ROS accumulation induced by Hcy in EPCs, and may contribute to the protective effects of atorvastatin on endothelial function.
Literature
1.
go back to reference Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C. Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J. 2009;30:6–15.PubMedCrossRef Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C. Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J. 2009;30:6–15.PubMedCrossRef
2.
go back to reference Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis. 2006;29:3–20.PubMedCrossRef Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis. 2006;29:3–20.PubMedCrossRef
3.
go back to reference Xu Z, Lu G, Wu F. Simvastatin suppresses homocysteine-induced apoptosis in endothelial cells: roles of caspase-3, cIAP-1 and cIAP-2. Hypertens Res. 2009;32:375–80.PubMedCrossRef Xu Z, Lu G, Wu F. Simvastatin suppresses homocysteine-induced apoptosis in endothelial cells: roles of caspase-3, cIAP-1 and cIAP-2. Hypertens Res. 2009;32:375–80.PubMedCrossRef
4.
go back to reference Doupis J, Eleftheriadou I, Kokkinos A, Perrea D, Pavlatos S, Gonis A, et al. Acute hyperhomocysteinemia impairs endothelium function in subjects with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2010;118:453–8.PubMedCrossRef Doupis J, Eleftheriadou I, Kokkinos A, Perrea D, Pavlatos S, Gonis A, et al. Acute hyperhomocysteinemia impairs endothelium function in subjects with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2010;118:453–8.PubMedCrossRef
5.
go back to reference Zhu J, Wang X, Chen J, Sun J, Zhang F. Reduced number and activity of circulating endothelial progenitor cells from patients with hyperhomocysteinemia. Arch Med Res. 2006;37:484–9.PubMedCrossRef Zhu J, Wang X, Chen J, Sun J, Zhang F. Reduced number and activity of circulating endothelial progenitor cells from patients with hyperhomocysteinemia. Arch Med Res. 2006;37:484–9.PubMedCrossRef
6.
go back to reference Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol. 2006;26:257–66.PubMedCrossRef Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol. 2006;26:257–66.PubMedCrossRef
7.
go back to reference Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111:2981–7.PubMedCrossRef Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111:2981–7.PubMedCrossRef
8.
go back to reference Case J, Ingram DA, Haneline LS. Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal. 2008;10:1895–907.PubMedCrossRef Case J, Ingram DA, Haneline LS. Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal. 2008;10:1895–907.PubMedCrossRef
9.
go back to reference Alvarez-Maqueda M, El Bekay R, Monteseirín J, Alba G, Chacón P, Vega A, et al. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. Atherosclerosis. 2004;172:229–38.PubMedCrossRef Alvarez-Maqueda M, El Bekay R, Monteseirín J, Alba G, Chacón P, Vega A, et al. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. Atherosclerosis. 2004;172:229–38.PubMedCrossRef
10.
go back to reference Weiss N. Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab. 2005;6:27–36.PubMedCrossRef Weiss N. Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab. 2005;6:27–36.PubMedCrossRef
11.
go back to reference Bao XM, Wu CF, Lu GP. Atorvastatin inhibits homocysteine-induced oxidative stress and apoptosis in endothelial progenitor cells involving Nox4 and p38MAPK. Atherosclerosis. 2010;210:114–21.PubMedCrossRef Bao XM, Wu CF, Lu GP. Atorvastatin inhibits homocysteine-induced oxidative stress and apoptosis in endothelial progenitor cells involving Nox4 and p38MAPK. Atherosclerosis. 2010;210:114–21.PubMedCrossRef
12.
go back to reference Hattori Y, Suzuki K, Tomizawa A, Hirama N, Okayasu T, Hattori S, et al. Cilostazol inhibits cytokine-induced nuclear factor-kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Res. 2009;81:133–9.PubMedCrossRef Hattori Y, Suzuki K, Tomizawa A, Hirama N, Okayasu T, Hattori S, et al. Cilostazol inhibits cytokine-induced nuclear factor-kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Res. 2009;81:133–9.PubMedCrossRef
13.
go back to reference Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27:2627–33.PubMedCrossRef Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27:2627–33.PubMedCrossRef
14.
go back to reference Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, et al. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes. 2010;59:1386–96.PubMedCrossRef Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, et al. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes. 2010;59:1386–96.PubMedCrossRef
15.
go back to reference Li X, Han Y, Pang W, Li C, Xie X, Shyy JY, et al. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1789–95.PubMedCrossRef Li X, Han Y, Pang W, Li C, Xie X, Shyy JY, et al. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1789–95.PubMedCrossRef
16.
go back to reference Chen Z, Peng IC, Sun W, Su MI, Hsu PH, Fu Y, et al. AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res. 2009;104:496–505.PubMedCrossRef Chen Z, Peng IC, Sun W, Su MI, Hsu PH, Fu Y, et al. AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res. 2009;104:496–505.PubMedCrossRef
17.
go back to reference Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y, et al. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation. 2006;114:2655–62.PubMedCrossRef Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y, et al. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation. 2006;114:2655–62.PubMedCrossRef
18.
go back to reference Bao XM, Wu CF, Lu GP. Atorvastatin inhibits homocysteine-induced dysfunction and apoptosis in endothelial progenitor cells. Acta Pharmacol Sin. 2010;31:476–84.PubMedCrossRef Bao XM, Wu CF, Lu GP. Atorvastatin inhibits homocysteine-induced dysfunction and apoptosis in endothelial progenitor cells. Acta Pharmacol Sin. 2010;31:476–84.PubMedCrossRef
19.
go back to reference Dong C, Goldschmidt-Clermont PJ. Endothelial progenitor cells: a promising therapeutic alternative for cardiovascular disease. J Interv Cardiol. 2007;20:93–9.PubMedCrossRef Dong C, Goldschmidt-Clermont PJ. Endothelial progenitor cells: a promising therapeutic alternative for cardiovascular disease. J Interv Cardiol. 2007;20:93–9.PubMedCrossRef
20.
go back to reference Chang PY, Lu SC, Lee CM, Chen YJ, Dugan TA, Huang WH, et al. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res. 2008;102:933–41.PubMedCrossRef Chang PY, Lu SC, Lee CM, Chen YJ, Dugan TA, Huang WH, et al. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res. 2008;102:933–41.PubMedCrossRef
21.
go back to reference Zhu JH, Chen JZ, Wang XX, Xie XD, Sun J, Zhang FR. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol. 2006;40:648–52.PubMedCrossRef Zhu JH, Chen JZ, Wang XX, Xie XD, Sun J, Zhang FR. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol. 2006;40:648–52.PubMedCrossRef
22.
go back to reference Everaert BR, Van Craenenbroeck EM, Hoymans VY, Haine SE, Van Nassauw L, Conraads VM, et al. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: focus on PI3K/AKT/eNOS pathway. Int J Cardiol. 2010;144:350–66.PubMedCrossRef Everaert BR, Van Craenenbroeck EM, Hoymans VY, Haine SE, Van Nassauw L, Conraads VM, et al. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: focus on PI3K/AKT/eNOS pathway. Int J Cardiol. 2010;144:350–66.PubMedCrossRef
23.
go back to reference Zhang W, Wang R, Han SF, Bu L, Wang SW, Ma H, et al. Alpha-linolenic acid attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells via PI3K/Akt/eNOS pathway. Nutrition. 2007;23:762–70.PubMedCrossRef Zhang W, Wang R, Han SF, Bu L, Wang SW, Ma H, et al. Alpha-linolenic acid attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells via PI3K/Akt/eNOS pathway. Nutrition. 2007;23:762–70.PubMedCrossRef
24.
go back to reference Hou X, Song J, Li XN, Zhang L, Wang X, Chen L, et al. Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochem Biophys Res Commun. 2010;396:199–205.PubMedCrossRef Hou X, Song J, Li XN, Zhang L, Wang X, Chen L, et al. Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochem Biophys Res Commun. 2010;396:199–205.PubMedCrossRef
25.
go back to reference Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes. 2009;58:2246–57.PubMedCrossRef Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes. 2009;58:2246–57.PubMedCrossRef
26.
go back to reference Edirimanne VE, Woo CW, Siow YL, Pierce GN, Xie JY, O K. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats. Can J Physiol Pharmacol. 2007;85:1236–47.PubMedCrossRef Edirimanne VE, Woo CW, Siow YL, Pierce GN, Xie JY, O K. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats. Can J Physiol Pharmacol. 2007;85:1236–47.PubMedCrossRef
27.
go back to reference Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med. 2007;43:995–1022.PubMedCrossRef Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med. 2007;43:995–1022.PubMedCrossRef
28.
go back to reference Wilhelm J, Vytásek R, Ostádalová I, Vajner L. Evaluation of different methods detecting intracellular generation of free radicals. Mol Cell Biochem. 2009;328:167–76.PubMedCrossRef Wilhelm J, Vytásek R, Ostádalová I, Vajner L. Evaluation of different methods detecting intracellular generation of free radicals. Mol Cell Biochem. 2009;328:167–76.PubMedCrossRef
29.
go back to reference Izumi Y, Shiota M, Kusakabe H, Hikita Y, Nakao T, Nakamura Y, et al. Pravastatin accelerates ischemia-induced angiogenesis through AMP-activated protein kinase. Hypertens Res. 2009;32:675–9.PubMedCrossRef Izumi Y, Shiota M, Kusakabe H, Hikita Y, Nakao T, Nakamura Y, et al. Pravastatin accelerates ischemia-induced angiogenesis through AMP-activated protein kinase. Hypertens Res. 2009;32:675–9.PubMedCrossRef
30.
go back to reference Kou R, Sartoretto J, Michel T. Regulation of Rac1 by simvastatin in endothelial cells: differential roles of AMP-activated protein kinase and calmodulin-dependent kinase kinase-beta. J Biol Chem. 2009;284:14734–43.PubMedCrossRef Kou R, Sartoretto J, Michel T. Regulation of Rac1 by simvastatin in endothelial cells: differential roles of AMP-activated protein kinase and calmodulin-dependent kinase kinase-beta. J Biol Chem. 2009;284:14734–43.PubMedCrossRef
Metadata
Title
AMP-Activated Protein Kinase Inhibits Homocysteine-Induced Dysfunction and Apoptosis in Endothelial Progenitor Cells
Authors
Fang Jia
Chunfang Wu
Zhenyue Chen
Guoping Lu
Publication date
01-02-2011
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 1/2011
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-010-6277-1

Other articles of this Issue 1/2011

Cardiovascular Drugs and Therapy 1/2011 Go to the issue