Skip to main content
Top
Published in: BMC Geriatrics 1/2019

Open Access 01-12-2019 | Alzheimer's Disease | Research article

Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis

Authors: Rui-xia Jia, Jing-hong Liang, Yong Xu, Ying-quan Wang

Published in: BMC Geriatrics | Issue 1/2019

Login to get access

Abstract

Background

Alzheimer’s disease (AD), as the most common cause of dementia, brings huge economic burden for patients and social health care systems, which motivates researchers to study multiple protective factors, among which physical activity and exercise have been proven to be both effective and economically feasible.

Methods

A systematic literature search was performed for eligible studies published up to November 1st 2018 on three international databases (PubMed, Cochrane Library, and Embase) and two Chinese databases (Wanfang Data, China National Knowledge Infrastructure). All analyses were conducted using Stata 14.0. Due to heterogeneity between studies, a random-effects model was used for this meta-analysis. Meta-analysis was used to explore if physical activity and exercise can exert positive effects on cognition of elderly with AD and subgroup analyses were conducted to find out if there are dose-response effects.

Results

A total of 13 randomized controlled trials were included with a sample size of 673 subjects diagnosed with AD. Intervention groups showed a statistically significant improvement in cognition of included subjects measured by the MMSE score (SMD = 1.12 CI:0.66~1.59) compared to the control groups. Subgroup analyses showed different amounts of physical activity and exercise can generate different effects.

Conclusions

As one of few meta-analyses comparing different quantities of physical activity and exercise interventions for AD in details, our study suggests that physical activity and exercise can improve cognition of older adults with AD. While the concomitant effects on cognition functions of high frequency interventions was not greater than that of low frequency interventions, the threshold remains to be settled. However, more RCTs with rigorous study design are needed to support our findings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Herrera AC, Prince M, Knapp M, et al. Improving healthcare for people with dementia. Coverage, quality and costs now and in the future. World Alzheimer Report. 2016;2016. Herrera AC, Prince M, Knapp M, et al. Improving healthcare for people with dementia. Coverage, quality and costs now and in the future. World Alzheimer Report. 2016;2016.
2.
go back to reference Gaugler J, James B, Johnson T, et al. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 2016;12(4):459–509.CrossRef Gaugler J, James B, Johnson T, et al. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 2016;12(4):459–509.CrossRef
3.
go back to reference Burns A, Byrne EJ, Maurer K. Alzheimer's disease. BMJ (Clinical research ed). 2009;338(7692):467–71. Burns A, Byrne EJ, Maurer K. Alzheimer's disease. BMJ (Clinical research ed). 2009;338(7692):467–71.
5.
go back to reference Todd S, Barr S, Roberts M, et al. Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry. 2013;28(11):1109–24.PubMed Todd S, Barr S, Roberts M, et al. Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry. 2013;28(11):1109–24.PubMed
6.
go back to reference Vanhanen M, Kivipelto M, Koivisto K, et al. APOE-epsilon4 is associated with weight loss in women with AD: a population-based study. Neurology. 2001;56(5):655–9.PubMedCrossRef Vanhanen M, Kivipelto M, Koivisto K, et al. APOE-epsilon4 is associated with weight loss in women with AD: a population-based study. Neurology. 2001;56(5):655–9.PubMedCrossRef
7.
go back to reference Cedazomínguez A. Apolipoprotein E and Alzheimer’s disease: molecular mechanisms and therapeutic opportunities. J Cell Mol Med. 2007;11(6):1227–38.CrossRef Cedazomínguez A. Apolipoprotein E and Alzheimer’s disease: molecular mechanisms and therapeutic opportunities. J Cell Mol Med. 2007;11(6):1227–38.CrossRef
8.
go back to reference Rolland Y, Kan GAV, Vellas B. Physical activity and Alzheimer's disease: from prevention to therapeutic perspectives. J Am Med Dir Assoc. 2008;9(6):390–405.PubMedCrossRef Rolland Y, Kan GAV, Vellas B. Physical activity and Alzheimer's disease: from prevention to therapeutic perspectives. J Am Med Dir Assoc. 2008;9(6):390–405.PubMedCrossRef
9.
go back to reference Fratiglioni L, Paillard-Borg S, Winblad B, Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3, 343-353. Lancet Neurol. 2004;3(6):343–53.PubMedCrossRef Fratiglioni L, Paillard-Borg S, Winblad B, Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3, 343-353. Lancet Neurol. 2004;3(6):343–53.PubMedCrossRef
10.
go back to reference Hertzog C, Kramer AF, Wilson RS, et al. Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychol Sci Public Interest. 2008;9(1):1–65.PubMedCrossRef Hertzog C, Kramer AF, Wilson RS, et al. Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychol Sci Public Interest. 2008;9(1):1–65.PubMedCrossRef
11.
go back to reference Kramer AF, Bherer L, Colcombe SJ, et al. Environmental influences on cognitive and brain plasticity during aging. J Gerontol. 2004;59(9):M940.CrossRef Kramer AF, Bherer L, Colcombe SJ, et al. Environmental influences on cognitive and brain plasticity during aging. J Gerontol. 2004;59(9):M940.CrossRef
13.
go back to reference Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101(4):1237–42.PubMedCrossRef Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101(4):1237–42.PubMedCrossRef
14.
go back to reference Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694–704.PubMedCrossRef Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694–704.PubMedCrossRef
15.
go back to reference Wang Y, Shen FF, Zhu Y, et al. Clinical Effects of Aerobic Exercises Training with Moderate and High Intensity in Alzheimer's Disease Treatment. Chin J Clin Oncol Neurosci. 2014;22(5):504-9 Wang Y, Shen FF, Zhu Y, et al. Clinical Effects of Aerobic Exercises Training with Moderate and High Intensity in Alzheimer's Disease Treatment. Chin J Clin Oncol Neurosci. 2014;22(5):504-9
16.
go back to reference Wang SY, Zhu Y, Zhang Q. The effect of aerobic exercise of middle intensity on cognitive and motor functions of patients with Alzheimer's disease. Chin J Rehabil Med. 2014;36(10):765–8. Wang SY, Zhu Y, Zhang Q. The effect of aerobic exercise of middle intensity on cognitive and motor functions of patients with Alzheimer's disease. Chin J Rehabil Med. 2014;36(10):765–8.
17.
go back to reference Wang Wei ZY, Yang Si Y. Effects of aerobic exercise on cognition function and activity of daily life of patients with Alzheimer's disease. Chinese. J Rehabil Med. 2014;29(12):1151–5. Wang Wei ZY, Yang Si Y. Effects of aerobic exercise on cognition function and activity of daily life of patients with Alzheimer's disease. Chinese. J Rehabil Med. 2014;29(12):1151–5.
18.
go back to reference Yang SY, Shan CL, Qing H, et al. The effects of aerobic exercise on cognitive function of Alzheimer's disease patients. CNS Neurol Disord Drug Targets. 2015;14(10):1292–7.PubMedCrossRef Yang SY, Shan CL, Qing H, et al. The effects of aerobic exercise on cognitive function of Alzheimer's disease patients. CNS Neurol Disord Drug Targets. 2015;14(10):1292–7.PubMedCrossRef
19.
go back to reference Yan L, Wang W, Shen F. A clinical research of aerobic exercises with different training time in the treatment of mild to moderate Alzheimer's disease. Chin J Rehabil Med. 2015;30(8):771–6. Yan L, Wang W, Shen F. A clinical research of aerobic exercises with different training time in the treatment of mild to moderate Alzheimer's disease. Chin J Rehabil Med. 2015;30(8):771–6.
20.
go back to reference Yin LTW, Yi Z. Aerobic exercise improves cognitive function in patients with Alzheimer's disease. Chin J Rehabil. 2017;32(5):386–9. Yin LTW, Yi Z. Aerobic exercise improves cognitive function in patients with Alzheimer's disease. Chin J Rehabil. 2017;32(5):386–9.
21.
go back to reference Yan MHHL, Hui HZ. Effect of aerobic exercise on abilities of daily life, cognitive function and psychological symptoms in patients with mild to moderate Alzheimer's disease. Chin J Multiple Organ Dis Elder. 2016;15(6):451–4. Yan MHHL, Hui HZ. Effect of aerobic exercise on abilities of daily life, cognitive function and psychological symptoms in patients with mild to moderate Alzheimer's disease. Chin J Multiple Organ Dis Elder. 2016;15(6):451–4.
22.
go back to reference Fajersztajn L, Cordeiro RC, Andreoni S, et al. Effects of functional physical activity on the maintenance of motor function in Alzheimer's disease. Dement Neuropsychol. 2008;2(3):233–40.PubMedPubMedCentralCrossRef Fajersztajn L, Cordeiro RC, Andreoni S, et al. Effects of functional physical activity on the maintenance of motor function in Alzheimer's disease. Dement Neuropsychol. 2008;2(3):233–40.PubMedPubMedCentralCrossRef
23.
go back to reference Arcoverde C, Deslandes A, Moraes H, et al. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study. Arq Neuropsiquiatr. 2014;72(3):190–6.PubMedCrossRef Arcoverde C, Deslandes A, Moraes H, et al. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study. Arq Neuropsiquiatr. 2014;72(3):190–6.PubMedCrossRef
24.
go back to reference Venturelli M, Scarsini R, Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. Am J Alzheimers Dis Other Dement. 2011;26(5):381.CrossRef Venturelli M, Scarsini R, Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. Am J Alzheimers Dis Other Dement. 2011;26(5):381.CrossRef
25.
go back to reference Vreugdenhil A, Cannell J, Davies A, et al. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: a randomized controlled trial. Scand J Caring Sci. 2012;26(1):12–9.PubMedCrossRef Vreugdenhil A, Cannell J, Davies A, et al. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: a randomized controlled trial. Scand J Caring Sci. 2012;26(1):12–9.PubMedCrossRef
26.
go back to reference Kunze M, Voss P, Büttner HH, et al. Effects of physical activity training in patients with Alzheimer’s dementia: results of a pilot RCT study. PLoS One. 2015;10(4):e0121478.CrossRef Kunze M, Voss P, Büttner HH, et al. Effects of physical activity training in patients with Alzheimer’s dementia: results of a pilot RCT study. PLoS One. 2015;10(4):e0121478.CrossRef
27.
go back to reference Hoffmann K, Sobol NA, Frederiksen KS, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer's disease: a randomized controlled trial. J Alzheimers Dis Jad. 2015;11(7):P324–P25. Hoffmann K, Sobol NA, Frederiksen KS, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer's disease: a randomized controlled trial. J Alzheimers Dis Jad. 2015;11(7):P324–P25.
28.
go back to reference Chapman SB, Aslan S, Spence JS, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5(75):75.PubMedPubMedCentral Chapman SB, Aslan S, Spence JS, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5(75):75.PubMedPubMedCentral
29.
go back to reference Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int Psychogeriatr. 2014;26(1):9–18.PubMedCrossRef Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int Psychogeriatr. 2014;26(1):9–18.PubMedCrossRef
30.
go back to reference Yu F, Kolanowski AM, Strumpf NE, et al. Improving cognition and function through exercise intervention in Alzheimer's disease. J Nurs Scholarsh. 2006;38(4):358–65.PubMedCrossRef Yu F, Kolanowski AM, Strumpf NE, et al. Improving cognition and function through exercise intervention in Alzheimer's disease. J Nurs Scholarsh. 2006;38(4):358–65.PubMedCrossRef
31.
go back to reference Rao AK, Chou A, Bursley B, et al. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American journal of occupational therapy : official publication of the American occupational. Therapy Association. 2014;68(1):50–6. Rao AK, Chou A, Bursley B, et al. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American journal of occupational therapy : official publication of the American occupational. Therapy Association. 2014;68(1):50–6.
32.
go back to reference Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52.PubMedPubMedCentralCrossRef Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52.PubMedPubMedCentralCrossRef
33.
go back to reference Machado S, Filho A, Wilbert M, et al. Physical exercise as stabilizer for Alzheimer’s disease cognitive decline: current status. Clin Pract Epidemiol Mental Health Cp Emh. 2017;13(1):181–4.PubMedCrossRef Machado S, Filho A, Wilbert M, et al. Physical exercise as stabilizer for Alzheimer’s disease cognitive decline: current status. Clin Pract Epidemiol Mental Health Cp Emh. 2017;13(1):181–4.PubMedCrossRef
34.
go back to reference Gallaway PJ, Miyake H, Buchowski MS, et al. Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sci. 2017;7(2):22.PubMedCentralCrossRef Gallaway PJ, Miyake H, Buchowski MS, et al. Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sci. 2017;7(2):22.PubMedCentralCrossRef
35.
go back to reference Stephen R, Hongisto K, Solomon A, et al. Physical activity and Alzheimer’s disease: a systematic review. The journals of gerontology Series A. Biol Sci Med Sci. 2017;72(6):733–9. Stephen R, Hongisto K, Solomon A, et al. Physical activity and Alzheimer’s disease: a systematic review. The journals of gerontology Series A. Biol Sci Med Sci. 2017;72(6):733–9.
36.
go back to reference Mandolesi L, Polverino A, Montuori S, et al. Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front Psychol 2018;9:509. Mandolesi L, Polverino A, Montuori S, et al. Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front Psychol 2018;9:509.
39.
go back to reference Blasko I, Jungwirth S, Kemmler G, et al. Leisure time activities and cognitive functioning in middle European population-based study. Eur Geriatr Med. 2014;5(3):200–7.CrossRef Blasko I, Jungwirth S, Kemmler G, et al. Leisure time activities and cognitive functioning in middle European population-based study. Eur Geriatr Med. 2014;5(3):200–7.CrossRef
40.
go back to reference Franzmeier N, Göttler J, Grimmer T. Resting-state connectivity of the left frontal cortex to the default mode and dorsal attention network supports Reserve in Mild Cognitive Impairment. Front Aging Neurosci. 2017;9:264.PubMedPubMedCentralCrossRef Franzmeier N, Göttler J, Grimmer T. Resting-state connectivity of the left frontal cortex to the default mode and dorsal attention network supports Reserve in Mild Cognitive Impairment. Front Aging Neurosci. 2017;9:264.PubMedPubMedCentralCrossRef
41.
go back to reference Franzmeier N, Hartmann JC, Taylor ANW, et al. Left frontal hub connectivity during memory performance supports Reserve in Aging and Mild Cognitive Impairment. J Alzheimers Dis. 2017;59(4):1381–92.PubMedPubMedCentralCrossRef Franzmeier N, Hartmann JC, Taylor ANW, et al. Left frontal hub connectivity during memory performance supports Reserve in Aging and Mild Cognitive Impairment. J Alzheimers Dis. 2017;59(4):1381–92.PubMedPubMedCentralCrossRef
42.
go back to reference Freret T, Gaudreau P, Schumann-Bard P, et al. Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. J Neural Transm. 2015;122(1):55–61.CrossRef Freret T, Gaudreau P, Schumann-Bard P, et al. Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. J Neural Transm. 2015;122(1):55–61.CrossRef
43.
go back to reference H Ö, Savikko N, Strandberg TE, et al. Effects of exercise on cognition: the Finnish Alzheimer disease exercise trial: a randomized, controlled trial. J Am Geriatr Soc. 2016;64(4):731–8.CrossRef H Ö, Savikko N, Strandberg TE, et al. Effects of exercise on cognition: the Finnish Alzheimer disease exercise trial: a randomized, controlled trial. J Am Geriatr Soc. 2016;64(4):731–8.CrossRef
44.
go back to reference Cass SP. Alzheimer's disease and exercise: a literature review. Curr Sports Med Rep. 2017;16(1):19.PubMedCrossRef Cass SP. Alzheimer's disease and exercise: a literature review. Curr Sports Med Rep. 2017;16(1):19.PubMedCrossRef
45.
go back to reference Yu F. Guiding research and practice: a conceptual model for aerobic exercise training in Alzheimer's disease. Am J Alzheimers Dis Other Dement. 2011;26(3):184.CrossRef Yu F. Guiding research and practice: a conceptual model for aerobic exercise training in Alzheimer's disease. Am J Alzheimers Dis Other Dement. 2011;26(3):184.CrossRef
46.
go back to reference Roach KE, Tappen RM, Kirk-Sanchez N, et al. A randomized controlled trial of an activity specific exercise program for individuals with Alzheimer disease in long-term care settings. J Geriatr Phys Ther. 2011;34(2):50.PubMedPubMedCentralCrossRef Roach KE, Tappen RM, Kirk-Sanchez N, et al. A randomized controlled trial of an activity specific exercise program for individuals with Alzheimer disease in long-term care settings. J Geriatr Phys Ther. 2011;34(2):50.PubMedPubMedCentralCrossRef
47.
go back to reference Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry. 2013;18(8):864–74.PubMedCrossRef Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry. 2013;18(8):864–74.PubMedCrossRef
48.
go back to reference Nelson M, W Jack R, Steven N, Blair, Duncan PW, et al. ACSM/AHA recommendations, physical activity and public health in older adults. 2007. Nelson M, W Jack R, Steven N, Blair, Duncan PW, et al. ACSM/AHA recommendations, physical activity and public health in older adults. 2007.
49.
go back to reference Cayon A. PAHO WHO | global recommendations on physical activity for health. 2016. Cayon A. PAHO WHO | global recommendations on physical activity for health. 2016.
50.
go back to reference Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer's disease. Neurobiol Aging. 2014;35(Suppl 2):S74–8.PubMedCrossRef Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer's disease. Neurobiol Aging. 2014;35(Suppl 2):S74–8.PubMedCrossRef
51.
go back to reference Lucia A, Ruiz JR. Exercise is beneficial for patients with Alzheimer's disease: a call for action. Br J Sports Med. 2011;45(6):468–9.PubMedCrossRef Lucia A, Ruiz JR. Exercise is beneficial for patients with Alzheimer's disease: a call for action. Br J Sports Med. 2011;45(6):468–9.PubMedCrossRef
52.
go back to reference Groot C, Hooghiemstra AM, Raijmakers PGHM, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23.PubMedCrossRef Groot C, Hooghiemstra AM, Raijmakers PGHM, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23.PubMedCrossRef
53.
go back to reference Kramer AF, Colcombe SJ, Mcauley E, et al. Enhancing brain and cognitive function of older adults through fitness training. J Mol Neurosci. 2003;20(3):213–21.PubMedCrossRef Kramer AF, Colcombe SJ, Mcauley E, et al. Enhancing brain and cognitive function of older adults through fitness training. J Mol Neurosci. 2003;20(3):213–21.PubMedCrossRef
54.
go back to reference van Gelder BM, Tijhuis MA, Kalmijn S, et al. Physical activity in relation to cognitive decline in elderly men: the FINE study. Neurology. 2004;63(12):2316–21.PubMedCrossRef van Gelder BM, Tijhuis MA, Kalmijn S, et al. Physical activity in relation to cognitive decline in elderly men: the FINE study. Neurology. 2004;63(12):2316–21.PubMedCrossRef
55.
go back to reference Hoffmann K, Frederiksen KS, Sobol NA, et al. Preserving cognition, quality of life, physical health and functional ability in Alzheimer's disease: the effect of physical exercise (ADEX trial): rationale and design. Neuroepidemiology. 2013;41(3–4):198–207.PubMedCrossRef Hoffmann K, Frederiksen KS, Sobol NA, et al. Preserving cognition, quality of life, physical health and functional ability in Alzheimer's disease: the effect of physical exercise (ADEX trial): rationale and design. Neuroepidemiology. 2013;41(3–4):198–207.PubMedCrossRef
56.
go back to reference Yu F, Bronas UG, Suma K, et al. Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer’s disease: study protocol of a randomized controlled trial (the FIT-AD trial). Trials. 2014;15(1):394.PubMedPubMedCentralCrossRef Yu F, Bronas UG, Suma K, et al. Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer’s disease: study protocol of a randomized controlled trial (the FIT-AD trial). Trials. 2014;15(1):394.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Erickson KI, Weinstein AM, Sutton BP, et al. Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain Behav. 2012;2(1):32–41.PubMedPubMedCentralCrossRef Erickson KI, Weinstein AM, Sutton BP, et al. Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain Behav. 2012;2(1):32–41.PubMedPubMedCentralCrossRef
59.
go back to reference Yu F, Kolanowski A. Facilitating aerobic exercise training in older adults with Alzheimer’s disease. Geriatr Nurs. 2009;30(4):250.PubMedCrossRef Yu F, Kolanowski A. Facilitating aerobic exercise training in older adults with Alzheimer’s disease. Geriatr Nurs. 2009;30(4):250.PubMedCrossRef
60.
go back to reference Rao AK, Chou A, Bursley B, et al. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American journal of occupational therapy : official publication of the American occupational. Therapy Assoc. 2014;68(1):50–6. https://doi.org/10.5014/ajot.2014.009035 published Online First: Epub Date.CrossRef Rao AK, Chou A, Bursley B, et al. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American journal of occupational therapy : official publication of the American occupational. Therapy Assoc. 2014;68(1):50–6. https://​doi.​org/​10.​5014/​ajot.​2014.​009035 published Online First: Epub Date.CrossRef
62.
go back to reference Zeng Z, Deng YH, Shuai T, et al. Effect of physical activity training on dementia patients: a systematic review with a meta-analysis. Chin Nurs Res. 2016;3(4):168–75.CrossRef Zeng Z, Deng YH, Shuai T, et al. Effect of physical activity training on dementia patients: a systematic review with a meta-analysis. Chin Nurs Res. 2016;3(4):168–75.CrossRef
63.
go back to reference Hess N, Dieberg G, Mcfarlane J, et al. The effect of exercise intervention on cognitive performance in persons at risk of, or with dementia: a systematic review and meta-analysis. J Qilu Nurs. 2014;3(3). Hess N, Dieberg G, Mcfarlane J, et al. The effect of exercise intervention on cognitive performance in persons at risk of, or with dementia: a systematic review and meta-analysis. J Qilu Nurs. 2014;3(3).
Metadata
Title
Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis
Authors
Rui-xia Jia
Jing-hong Liang
Yong Xu
Ying-quan Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2019
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-019-1175-2

Other articles of this Issue 1/2019

BMC Geriatrics 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.