Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2024

Open Access 01-12-2024 | Alzheimer's Disease | Research

The use of synaptic biomarkers in cerebrospinal fluid to differentiate behavioral variant of frontotemporal dementia from primary psychiatric disorders and Alzheimer’s disease

Authors: Shreyasee Das, Marie-Paule E. van Engelen, Julie Goossens, Dirk Jacobs, Bram Bongers, Jay L. P. Fieldhouse, Yolande A. L. Pijnenburg, Charlotte E. Teunissen, Eugeen Vanmechelen, Inge M. W. Verberk

Published in: Alzheimer's Research & Therapy | Issue 1/2024

Login to get access

Abstract

Background

Lack of early molecular biomarkers in sporadic behavioral variants of frontotemporal dementia (bvFTD) and its clinical overlap with primary psychiatric disorders (PPD) hampers its diagnostic distinction. Synaptic dysfunction is an early feature in bvFTD and identification of specific biomarkers might improve its diagnostic accuracy. Our goal was to understand the differential diagnostic potential of cerebrospinal fluid (CSF) synaptic biomarkers in bvFTD versus PPD and their specificity towards bvFTD compared with Alzheimer’s disease (AD) and controls. Additionally, we explored the association of CSF synaptic biomarkers with social cognition, cognitive performance, and disease severity in these clinical groups.

Methods

Participants with probable bvFTD (n = 57), PPD (n = 71), AD (n = 60), and cognitively normal controls (n = 39) with available CSF, cognitive tests, and disease severity as frontotemporal lobar degeneration-modified clinical dementia rating scale (FTLD-CDR) were included. In a subset of bvFTD and PPD cases, Ekman 60 faces test scores for social cognition were available. CSF synaptosomal-associated protein 25 (SNAP25), neurogranin (Ng), neuronal pentraxin 2 (NPTX2), and glutamate receptor 4 (GluR4) were measured, along with neurofilament light (NfL), and compared between groups using analysis of covariance (ANCOVA) and logistic regression. Diagnostic accuracy was assessed using ROC analyses, and biomarker panels were selected using Wald’s backward selection. Correlations with cognitive measures were performed using Pearson’s partial correlation analysis.

Results

NPTX2 concentrations were lower in the bvFTD group compared with PPD (p < 0.001) and controls (p = 0.003) but not compared with AD. Concentrations of SNAP25 (p < 0.001) and Ng (p < 0.001) were elevated in patients with AD versus those with bvFTD and controls. The modeled panel for differential diagnosis of bvFTD versus PPD consisted of NfL and NPTX2 (AUC = 0.96, CI: 0.93–0.99, p < 0.001). In bvFTD versus AD, the modeled panel consisted of NfL, SNAP25, Ng, and GluR4 (AUC = 0.86, CI: 0.79–0.92, p < 0.001). In bvFTD, lower NPTX2 (Pearson’s r = 0.29, p = 0.036) and GluR4 (Pearson’s r = 0.34, p = 0.014) concentrations were weakly associated with worse performance of total cognitive score. Lower GluR4 concentrations were also associated with worse MMSE scores (Pearson’s r = 0.41, p = 0.002) as well as with worse executive functioning (Pearson’s r = 0.36, p = 0.011) in bvFTD. There were no associations between synaptic markers and social cognition or disease severity in bvFTD.

Conclusion

Our findings of involvement of NTPX2 in bvFTD but not PPD contribute towards better understanding of bvFTD disease pathology.
Appendix
Available only for authorised users
Literature
2.
go back to reference Del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh-Momoh C, et al. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement. 2022;18(11):2292–307.PubMedPubMedCentralCrossRef Del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh-Momoh C, et al. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement. 2022;18(11):2292–307.PubMedPubMedCentralCrossRef
3.
go back to reference Ducharme S, Dols A, Laforce R, Devenney E, Kumfor F, van den Stock J, et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain. 2020;143(6):1632–50.PubMedPubMedCentralCrossRef Ducharme S, Dols A, Laforce R, Devenney E, Kumfor F, van den Stock J, et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain. 2020;143(6):1632–50.PubMedPubMedCentralCrossRef
4.
go back to reference Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease; rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. The Journal of clinical psychiatry. 2011;72(2):126.PubMedPubMedCentralCrossRef Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease; rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. The Journal of clinical psychiatry. 2011;72(2):126.PubMedPubMedCentralCrossRef
5.
go back to reference Vijverberg EG, Wattjes MP, Dols A, Krudop WA, Möller C, Peters A, et al. Diagnostic accuracy of MRI and additional [18F] FDG-PET for behavioral variant frontotemporal dementia in patients with late onset behavioral changes. Journal of Alzheimer’s Disease. 2016;53(4):1287–97.CrossRef Vijverberg EG, Wattjes MP, Dols A, Krudop WA, Möller C, Peters A, et al. Diagnostic accuracy of MRI and additional [18F] FDG-PET for behavioral variant frontotemporal dementia in patients with late onset behavioral changes. Journal of Alzheimer’s Disease. 2016;53(4):1287–97.CrossRef
6.
go back to reference Henstridge CM, Sideris DI, Carroll E, Rotariu S, Salomonsson S, Tzioras M, et al. Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta neuropathologica. 2018;135(2):213–26.PubMedCrossRef Henstridge CM, Sideris DI, Carroll E, Rotariu S, Salomonsson S, Tzioras M, et al. Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta neuropathologica. 2018;135(2):213–26.PubMedCrossRef
7.
go back to reference Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. Journal of neurochemistry. 2016;138:54–70.PubMedCrossRef Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. Journal of neurochemistry. 2016;138:54–70.PubMedCrossRef
8.
go back to reference Lashley T, Rohrer JD, Mead S, Revesz T. An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathology and applied neurobiology. 2015;41(7):858–81.PubMedCrossRef Lashley T, Rohrer JD, Mead S, Revesz T. An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathology and applied neurobiology. 2015;41(7):858–81.PubMedCrossRef
9.
go back to reference Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nature Reviews Neurology. 2012;8(8):423–34.PubMedPubMedCentralCrossRef Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nature Reviews Neurology. 2012;8(8):423–34.PubMedPubMedCentralCrossRef
10.
go back to reference Cervantes González A, Irwin DJ, Alcolea D, McMillan CT, Chen-Plotkin A, Wolk D, et al. Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Molecular Neurodegeneration. 2022;17(1):1–12.CrossRef Cervantes González A, Irwin DJ, Alcolea D, McMillan CT, Chen-Plotkin A, Wolk D, et al. Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Molecular Neurodegeneration. 2022;17(1):1–12.CrossRef
11.
go back to reference Salmon E, Bahri MA, Plenevaux A, Becker G, Seret A, Delhaye E, et al. In vivo exploration of synaptic projections in frontotemporal dementia. Scientific reports. 2021;11(1):1–10.CrossRefADS Salmon E, Bahri MA, Plenevaux A, Becker G, Seret A, Delhaye E, et al. In vivo exploration of synaptic projections in frontotemporal dementia. Scientific reports. 2021;11(1):1–10.CrossRefADS
12.
go back to reference Sogorb-Esteve A, Nilsson J, Swift IJ, Heller C, Bocchetta M, Russell LL, et al. Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia. Alzheimer’s research & therapy. 2022;14(1):1–12. Sogorb-Esteve A, Nilsson J, Swift IJ, Heller C, Bocchetta M, Russell LL, et al. Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia. Alzheimer’s research & therapy. 2022;14(1):1–12.
13.
go back to reference Van Der Ende EL, Xiao M, Xu D, Poos JM, Panman JL, Jiskoot LC, et al. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry. 2020;91(6):612–21.CrossRef Van Der Ende EL, Xiao M, Xu D, Poos JM, Panman JL, Jiskoot LC, et al. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry. 2020;91(6):612–21.CrossRef
14.
15.
go back to reference Das S, Goossens J, Jacobs D, Dewit N, Pijnenburg YAL, In ‘t Veld S, et al. Synaptic biomarkers in the cerebrospinal fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer’s disease and frontotemporal dementia. Alzheimers Res Ther. 2023;15(1):62.PubMedPubMedCentralCrossRef Das S, Goossens J, Jacobs D, Dewit N, Pijnenburg YAL, In ‘t Veld S, et al. Synaptic biomarkers in the cerebrospinal fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer’s disease and frontotemporal dementia. Alzheimers Res Ther. 2023;15(1):62.PubMedPubMedCentralCrossRef
18.
go back to reference Kartau M, Melkas S, Kartau J, Arola A, Laakso H, Pitkänen J, et al. Neurofilament light level correlates with brain atrophy, and cognitive and motor performance. Front Aging Neurosci. 2022;14: 939155.PubMedCrossRef Kartau M, Melkas S, Kartau J, Arola A, Laakso H, Pitkänen J, et al. Neurofilament light level correlates with brain atrophy, and cognitive and motor performance. Front Aging Neurosci. 2022;14: 939155.PubMedCrossRef
19.
go back to reference Walia N, Eratne D, Loi SM, Farrand S, Li Q-X, Malpas CB, et al. Cerebrospinal fluid neurofilament light and cerebral atrophy in younger-onset dementia and primary psychiatric disorders. Intern Med J. 2023;53(9):1564–69. https://doi.org/10.1111/imj.15956. Walia N, Eratne D, Loi SM, Farrand S, Li Q-X, Malpas CB, et al. Cerebrospinal fluid neurofilament light and cerebral atrophy in younger-onset dementia and primary psychiatric disorders. Intern Med J. 2023;53(9):1564–69. https://​doi.​org/​10.​1111/​imj.​15956.
20.
go back to reference Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019;76(7):791–9.PubMedPubMedCentralCrossRef Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019;76(7):791–9.PubMedPubMedCentralCrossRef
22.
go back to reference Katisko K, Cajanus A, Jääskeläinen O, Kontkanen A, Hartikainen P, Korhonen VE, et al. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J Neurol. 2020;267(1):162–7.PubMedCrossRef Katisko K, Cajanus A, Jääskeläinen O, Kontkanen A, Hartikainen P, Korhonen VE, et al. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J Neurol. 2020;267(1):162–7.PubMedCrossRef
24.
go back to reference Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nature Reviews Neurology: Nature Publishing Group; 2018. p. 577–89. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nature Reviews Neurology: Nature Publishing Group; 2018. p. 577–89.
25.
go back to reference Molinuevo JL, Rabin LA, Amariglio R, Buckley R, Dubois B, Ellis KA, et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimer’s & Dementia. 2017;13(3):296–311.CrossRef Molinuevo JL, Rabin LA, Amariglio R, Buckley R, Dubois B, Ellis KA, et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimer’s & Dementia. 2017;13(3):296–311.CrossRef
26.
go back to reference van der Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. Journal of Alzheimer’s disease. 2014;41(1):313–27.CrossRef van der Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. Journal of Alzheimer’s disease. 2014;41(1):313–27.CrossRef
27.
go back to reference Van Der Flier WM, Scheltens P. Amsterdam dementia cohort: performing research to optimize care. Journal of Alzheimer’s Disease. 2018;62(3):1091–111.PubMedCentralCrossRef Van Der Flier WM, Scheltens P. Amsterdam dementia cohort: performing research to optimize care. Journal of Alzheimer’s Disease. 2018;62(3):1091–111.PubMedCentralCrossRef
28.
go back to reference Groot C, van Loenhoud AC, Barkhof F, van Berckel BNM, Koene T, Teunissen CC, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2): e149.PubMedCrossRef Groot C, van Loenhoud AC, Barkhof F, van Berckel BNM, Koene T, Teunissen CC, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2): e149.PubMedCrossRef
30.
go back to reference Willemse EAJ, van Maurik IS, Tijms BM, Bouwman FH, Franke A, Hubeek I, et al. Diagnostic performance of Elecsys immunoassays for cerebrospinal fluid Alzheimer’s disease biomarkers in a nonacademic, multicenter memory clinic cohort: the ABIDE project. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring. 2018;10:563–72.PubMedCentral Willemse EAJ, van Maurik IS, Tijms BM, Bouwman FH, Franke A, Hubeek I, et al. Diagnostic performance of Elecsys immunoassays for cerebrospinal fluid Alzheimer’s disease biomarkers in a nonacademic, multicenter memory clinic cohort: the ABIDE project. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring. 2018;10:563–72.PubMedCentral
31.
go back to reference McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedPubMedCentralCrossRef McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedPubMedCentralCrossRef
32.
go back to reference Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.PubMedPubMedCentralCrossRef Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.PubMedPubMedCentralCrossRef
34.
go back to reference Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain. 2008;131(11):2957–68.PubMedPubMedCentralCrossRef Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain. 2008;131(11):2957–68.PubMedPubMedCentralCrossRef
35.
go back to reference Das S, Dewit N, Jacobs D, Pijnenburg YAL, In ‘t Veld SGJG, Coppens S, et al. A novel neurofilament light chain ELISA validated in patients with Alzheimer’s disease, frontotemporal dementia, and subjective cognitive decline, and the evaluation of candidate proteins for immunoassay calibration. Intern J Mol Sci. 2022;23(13):7221.CrossRef Das S, Dewit N, Jacobs D, Pijnenburg YAL, In ‘t Veld SGJG, Coppens S, et al. A novel neurofilament light chain ELISA validated in patients with Alzheimer’s disease, frontotemporal dementia, and subjective cognitive decline, and the evaluation of candidate proteins for immunoassay calibration. Intern J Mol Sci. 2022;23(13):7221.CrossRef
36.
go back to reference Bolsewig K, Hok-A-Hin YS, Sepe FN, Boonkamp L, Jacobs D, Bellomo G, et al. A combination of neurofilament light, glial fibrillary acidic protein, and neuronal pentraxin-2 discriminates between frontotemporal dementia and other dementias. Journal of Alzheimer’s Disease. 2022;90:363–80.PubMedCentralCrossRef Bolsewig K, Hok-A-Hin YS, Sepe FN, Boonkamp L, Jacobs D, Bellomo G, et al. A combination of neurofilament light, glial fibrillary acidic protein, and neuronal pentraxin-2 discriminates between frontotemporal dementia and other dementias. Journal of Alzheimer’s Disease. 2022;90:363–80.PubMedCentralCrossRef
37.
go back to reference Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJC, Blennow K, Chiasserini D, Engelborghs S, et al. A practical guide to immunoassay method validation. Front Neurol. 2015;19(6):179. Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJC, Blennow K, Chiasserini D, Engelborghs S, et al. A practical guide to immunoassay method validation. Front Neurol. 2015;19(6):179.
38.
go back to reference Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol, Neurosurg Psychiatry: BMJ Publishing Group. 2019;90(8):870–81.CrossRef Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol, Neurosurg Psychiatry: BMJ Publishing Group. 2019;90(8):870–81.CrossRef
39.
go back to reference Eratne D, Loi SM, Li QX, Stehmann C, Malpas CB, Santillo A, et al. Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer’s disease and frontotemporal disorders in clinical settings. Alzheimer’sDement. 2022;18(11):2218–33. Eratne D, Loi SM, Li QX, Stehmann C, Malpas CB, Santillo A, et al. Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer’s disease and frontotemporal disorders in clinical settings. Alzheimer’sDement. 2022;18(11):2218–33.
40.
go back to reference Ulugut H, Pijnenburg YAL. Frontotemporal dementia: past, present, and future. Alzheimers Dement. 2023;19(11):5253–63.PubMedCrossRef Ulugut H, Pijnenburg YAL. Frontotemporal dementia: past, present, and future. Alzheimers Dement. 2023;19(11):5253–63.PubMedCrossRef
41.
go back to reference Illán-Gala I, Lleo A, Karydas A, Staffaroni AM, Zetterberg H, Sivasankaran R, et al. Plasma tau and neurofilament light in frontotemporal lobar degeneration and alzheimer disease. Neurology. 2021;96(5):e671–83.PubMedPubMedCentralCrossRef Illán-Gala I, Lleo A, Karydas A, Staffaroni AM, Zetterberg H, Sivasankaran R, et al. Plasma tau and neurofilament light in frontotemporal lobar degeneration and alzheimer disease. Neurology. 2021;96(5):e671–83.PubMedPubMedCentralCrossRef
42.
go back to reference Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna). 2022;129(2):207–30. https://doi.org/10.1007/s00702-021-02411-2. Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna). 2022;129(2):207–30. https://​doi.​org/​10.​1007/​s00702-021-02411-2.
43.
go back to reference Zhou J, Wade SD, Graykowski D, Xiao M-F, Zhao B, Giannini LAA, et al. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Science Translational Medicine. 2023;15(689):eadf0141.PubMedPubMedCentralCrossRef Zhou J, Wade SD, Graykowski D, Xiao M-F, Zhao B, Giannini LAA, et al. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Science Translational Medicine. 2023;15(689):eadf0141.PubMedPubMedCentralCrossRef
44.
go back to reference Kivisäkk P, Carlyle BC, Sweeney T, Quinn JP, Ramirez CE, Trombetta BA, et al. Increased levels of the synaptic proteins PSD-95, SNAP-25, and neurogranin in the cerebrospinal fluid of patients with Alzheimer’s disease. Alzheimer’s Research & Therapy. 2022;14(1):58.CrossRef Kivisäkk P, Carlyle BC, Sweeney T, Quinn JP, Ramirez CE, Trombetta BA, et al. Increased levels of the synaptic proteins PSD-95, SNAP-25, and neurogranin in the cerebrospinal fluid of patients with Alzheimer’s disease. Alzheimer’s Research & Therapy. 2022;14(1):58.CrossRef
45.
go back to reference Clarke MTM, Brinkmalm A, Foiani MS, Woollacott IOC, Heller C, Heslegrave A, et al. CSF synaptic protein concentrations are raised in those with atypical Alzheimer’s disease but not frontotemporal dementia. Alzheimer’s ResTher. 2019;11(1):105. Clarke MTM, Brinkmalm A, Foiani MS, Woollacott IOC, Heller C, Heslegrave A, et al. CSF synaptic protein concentrations are raised in those with atypical Alzheimer’s disease but not frontotemporal dementia. Alzheimer’s ResTher. 2019;11(1):105.
46.
go back to reference Wang C, Tu J, Zhang S, Cai B, Liu Z, Hou S, et al. Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nature Communications. 2020;11(1):1531.PubMedPubMedCentralCrossRefADS Wang C, Tu J, Zhang S, Cai B, Liu Z, Hou S, et al. Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nature Communications. 2020;11(1):1531.PubMedPubMedCentralCrossRefADS
47.
go back to reference Goetzl EJ, Kapogiannis D, Schwartz JB, Lobach IV, Goetzl L, Abner EL, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB Journal. 2016;30(12):4141–8.PubMedPubMedCentralCrossRef Goetzl EJ, Kapogiannis D, Schwartz JB, Lobach IV, Goetzl L, Abner EL, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB Journal. 2016;30(12):4141–8.PubMedPubMedCentralCrossRef
48.
go back to reference Brinkmalm A, Brinkmalm G, Honer WG, Frölich L, Hausner L, Minthon L, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener. 2014;9:53.PubMedPubMedCentralCrossRef Brinkmalm A, Brinkmalm G, Honer WG, Frölich L, Hausner L, Minthon L, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener. 2014;9:53.PubMedPubMedCentralCrossRef
49.
go back to reference Portelius E, Olsson B, Höglund K, Cullen NC, Kvartsberg H, Andreasson U, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathologica. 2018;136(3):363–76.PubMedPubMedCentralCrossRef Portelius E, Olsson B, Höglund K, Cullen NC, Kvartsberg H, Andreasson U, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathologica. 2018;136(3):363–76.PubMedPubMedCentralCrossRef
50.
go back to reference Represa A, Deloulme JC, Sensenbrenner M, Ben-Ari Y, Baudier J. Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J Neurosci. 1990;10(12):3782–92.PubMedPubMedCentralCrossRef Represa A, Deloulme JC, Sensenbrenner M, Ben-Ari Y, Baudier J. Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J Neurosci. 1990;10(12):3782–92.PubMedPubMedCentralCrossRef
51.
go back to reference Yamamori S, Itakura M, Sugaya D, Katsumata O, Sakagami H, Takahashi M. Differential expression of SNAP-25 family proteins in the mouse brain. Journal of Comparative Neurology. 2011;519(5):916–32.PubMedCrossRef Yamamori S, Itakura M, Sugaya D, Katsumata O, Sakagami H, Takahashi M. Differential expression of SNAP-25 family proteins in the mouse brain. Journal of Comparative Neurology. 2011;519(5):916–32.PubMedCrossRef
52.
go back to reference Glavan G, Schliebs R, Živin M. Synaptotagmins in neurodegeneration. The Anatomical Record. 2009;292(12):1849–62.PubMedCrossRef Glavan G, Schliebs R, Živin M. Synaptotagmins in neurodegeneration. The Anatomical Record. 2009;292(12):1849–62.PubMedCrossRef
53.
go back to reference Diehl-Schmid J, Pohl C, Ruprecht C, Wagenpfeil S, Foerstl H, Kurz A. The Ekman 60 Faces Test as a diagnostic instrument in frontotemporal dementia. Archives of Clinical Neuropsychology. 2007;22(4):459–64.PubMedCrossRef Diehl-Schmid J, Pohl C, Ruprecht C, Wagenpfeil S, Foerstl H, Kurz A. The Ekman 60 Faces Test as a diagnostic instrument in frontotemporal dementia. Archives of Clinical Neuropsychology. 2007;22(4):459–64.PubMedCrossRef
54.
go back to reference Research Australia N, Piguet AO, Hornberger M, Mioshi E, Hodges FmedSci JR, Hodges J, et al. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol. 2011;10:162–72.CrossRef Research Australia N, Piguet AO, Hornberger M, Mioshi E, Hodges FmedSci JR, Hodges J, et al. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol. 2011;10:162–72.CrossRef
Metadata
Title
The use of synaptic biomarkers in cerebrospinal fluid to differentiate behavioral variant of frontotemporal dementia from primary psychiatric disorders and Alzheimer’s disease
Authors
Shreyasee Das
Marie-Paule E. van Engelen
Julie Goossens
Dirk Jacobs
Bram Bongers
Jay L. P. Fieldhouse
Yolande A. L. Pijnenburg
Charlotte E. Teunissen
Eugeen Vanmechelen
Inge M. W. Verberk
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2024
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-024-01409-8

Other articles of this Issue 1/2024

Alzheimer's Research & Therapy 1/2024 Go to the issue