Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2020

Open Access 01-12-2020 | Alzheimer's Disease | Research

The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer’s disease

Authors: Yao Sun, Yongqing Guo, Xuejian Feng, Meng Jia, Ning Ai, Yue Dong, Yayuan Zheng, Lu Fu, Bin Yu, Haihong Zhang, Jiaxin Wu, Xianghui Yu, Hui Wu, Wei Kong

Published in: Journal of Neuroinflammation | Issue 1/2020

Login to get access

Abstract

Background

Tau hyper-phosphorylation has been considered a major contributor to neurodegeneration in Alzheimer’s disease (AD) and related tauopathies, and has gained prominence in therapeutic development for AD. To elucidate the pathogenic mechanisms underlying AD and evaluate therapeutic approaches targeting tau, numerous transgenic mouse models that recapitulate critical AD-like pathology have been developed. Tau P301S transgenic mice is one of the most widely used mouse models in AD research. Extensive studies have demonstrated that sex significantly influences AD pathology, behavioral status, and therapeutic outcomes, suggesting that studies using mouse models of AD must consider sex- and age-related differences in neuropathology, behavior, and plasma content.

Method

We systematically investigated differences in tau P301S transgenic mice (PS19 line) and wildtype littermates of different sex behavioral performance, tau neuropathology, and biomarkers in plasma and brain.

Results

Male P301S transgenic mice exhibited significant changes in weight loss, survival rate, clasping, kyphosis, composite phenotype assessment, nest building performance, tau phosphorylation at Ser202/Thr205, and astrocyte activation compared to that of wild-type littermates. In contrast, female P301S transgenic mice were only sensitive in the Morris water maze and open field test. In addition, we characterized the absence of macrophage-inflammatory protein (MIP-3α) and the upregulation of interferon (IFN)-γ, interleukin (IL)-5, and IL-6 in the plasma of P301S transgenic mice, which can be served as potential plasma biomarkers in P301S Tg mice. Male P301S transgenic mice expressed more monokine induced by IFN-γ (MIG), tumor necrosis factor-α (TNF-α), IL-10, and IL-13 than those of female P301S mice.

Conclusion

Our findings highlight sexual dimorphism in the behavior, neuropathology, and plasma proteins in tau P301S transgenic AD mice, indicating that the use of male P301S transgenic mice may be more suitable for assessing anti-phosphorylated tau therapeutic strategies for AD and related tauopathies, and the MIP-3α may be a new potential plasma biomarker.
Appendix
Available only for authorised users
Literature
1.
go back to reference Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–22.CrossRef Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–22.CrossRef
2.
go back to reference Collin L, Bohrmann B, Göpfert U, Oroszlan-Szovik K, Ozmen L, Grüninger F. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain. 2014;137:2834–46.CrossRef Collin L, Bohrmann B, Göpfert U, Oroszlan-Szovik K, Ozmen L, Grüninger F. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain. 2014;137:2834–46.CrossRef
3.
go back to reference Binder LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101:1371–8.CrossRef Binder LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101:1371–8.CrossRef
4.
go back to reference Duka V, Lee J-H, Credle J, Wills J, Oaks A, Smolinsky C, et al. Identification of the sites of Tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. Reddy H. PLoS One. 2013;8:e75025.CrossRef Duka V, Lee J-H, Credle J, Wills J, Oaks A, Smolinsky C, et al. Identification of the sites of Tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. Reddy H. PLoS One. 2013;8:e75025.CrossRef
5.
go back to reference Lee VM-Y, Goedert M, Trojanowski JQ. Neurodegenerative Tauopathies. Annu Rev Neurosci. 2001;24:1121–59.CrossRef Lee VM-Y, Goedert M, Trojanowski JQ. Neurodegenerative Tauopathies. Annu Rev Neurosci. 2001;24:1121–59.CrossRef
6.
go back to reference Lossos A, Reches A, Gal A, Newman JP, Soffer D, Gomori JM, et al. Frontotemporal dementia and parkinsonism with the P301S tau gene mutation in a Jewish family. J Neurol. 2003;250:733–40.CrossRef Lossos A, Reches A, Gal A, Newman JP, Soffer D, Gomori JM, et al. Frontotemporal dementia and parkinsonism with the P301S tau gene mutation in a Jewish family. J Neurol. 2003;250:733–40.CrossRef
7.
go back to reference Alonso ADC, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem. 2004;279:34873–81.CrossRef Alonso ADC, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem. 2004;279:34873–81.CrossRef
8.
go back to reference Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron. 2007;53:337–51.CrossRef Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron. 2007;53:337–51.CrossRef
9.
go back to reference Ott A, Breteler MMB. Harskamp F v., Stijnen T, Hofman a. incidence and risk of dementia: the Rotterdam study. Am J Epidemiol. 1998;147:574–80.CrossRef Ott A, Breteler MMB. Harskamp F v., Stijnen T, Hofman a. incidence and risk of dementia: the Rotterdam study. Am J Epidemiol. 1998;147:574–80.CrossRef
10.
go back to reference Stall NM, Fischer HD, Fung K, Giannakeas V, Bronskill SE, Austin PC, et al. Sex-specific differences in end-of-life burdensome interventions and antibiotic therapy in nursing home residents with advanced dementia. JAMA Netw Open. 2019;2:e199557.CrossRef Stall NM, Fischer HD, Fung K, Giannakeas V, Bronskill SE, Austin PC, et al. Sex-specific differences in end-of-life burdensome interventions and antibiotic therapy in nursing home residents with advanced dementia. JAMA Netw Open. 2019;2:e199557.CrossRef
11.
go back to reference Sinforiani E, Citterio A, Zucchella C, Bono G, Corbetta S, Merlo P, et al. Impact of gender differences on the outcome of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2010;30:147–54.CrossRef Sinforiani E, Citterio A, Zucchella C, Bono G, Corbetta S, Merlo P, et al. Impact of gender differences on the outcome of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2010;30:147–54.CrossRef
12.
go back to reference Pike CJ. Sex and the development of Alzheimer’s disease. J Neurosci Res. 2017;95:671–80.CrossRef Pike CJ. Sex and the development of Alzheimer’s disease. J Neurosci Res. 2017;95:671–80.CrossRef
13.
go back to reference Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova NN, et al. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J. 2011;25:4063–72.CrossRef Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova NN, et al. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J. 2011;25:4063–72.CrossRef
14.
go back to reference Goodwin LO, Splinter E, Davis TL, Urban R, He H, Braun RE, et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res. 2019;29:494–505.CrossRef Goodwin LO, Splinter E, Davis TL, Urban R, He H, Braun RE, et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res. 2019;29:494–505.CrossRef
15.
go back to reference Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.CrossRef Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.CrossRef
16.
go back to reference Guyenet SJ, Furrer SA, Damian VM, Baughan TD, La Spada AR, Garden GA. A simple composite phenotype scoring system for evaluating mouse models of cerebellar Ataxia. J Vis Exp. 2010;1787 Guyenet SJ, Furrer SA, Damian VM, Baughan TD, La Spada AR, Garden GA. A simple composite phenotype scoring system for evaluating mouse models of cerebellar Ataxia. J Vis Exp. 2010;1787
17.
go back to reference Fu L, Li Y, Hu Y, Zheng Y, Yu B, Zhang H, et al. Norovirus P particle-based active Aβ immunotherapy elicits sufficient immunogenicity and improves cognitive capacity in a mouse model of Alzheimer’s disease. Sci Rep. 2017;7:41041.CrossRef Fu L, Li Y, Hu Y, Zheng Y, Yu B, Zhang H, et al. Norovirus P particle-based active Aβ immunotherapy elicits sufficient immunogenicity and improves cognitive capacity in a mouse model of Alzheimer’s disease. Sci Rep. 2017;7:41041.CrossRef
18.
go back to reference Gould TD, Dao DT, Kovacsics CE. The open field test. Neuromethods; 2009. Gould TD, Dao DT, Kovacsics CE. The open field test. Neuromethods; 2009.
19.
go back to reference Yin Z, Valkenburg F, Hornix BE, Mantingh-Otter I, Zhou X, Mari M, et al. Progressive motor deficit is mediated by the denervation of neuromuscular junctions and axonal degeneration in transgenic mice expressing mutant (P301S) tau protein. J Alzheimers Dis. 2017;60:S41–57.CrossRef Yin Z, Valkenburg F, Hornix BE, Mantingh-Otter I, Zhou X, Mari M, et al. Progressive motor deficit is mediated by the denervation of neuromuscular junctions and axonal degeneration in transgenic mice expressing mutant (P301S) tau protein. J Alzheimers Dis. 2017;60:S41–57.CrossRef
20.
go back to reference Jedynak P, Jaholkowski P, Wozniak G, Sandi C, Kaczmarek L, Filipkowski RK. Lack of cyclin D2 impairing adult brain neurogenesis alters hippocampal-dependent behavioral tasks without reducing learning ability. Behav Brain Res. 2012;227:159–66.CrossRef Jedynak P, Jaholkowski P, Wozniak G, Sandi C, Kaczmarek L, Filipkowski RK. Lack of cyclin D2 impairing adult brain neurogenesis alters hippocampal-dependent behavioral tasks without reducing learning ability. Behav Brain Res. 2012;227:159–66.CrossRef
21.
go back to reference Deacon RMJ, Croucher A, Rawlins JNP. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res. 2002;132:203–13.CrossRef Deacon RMJ, Croucher A, Rawlins JNP. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res. 2002;132:203–13.CrossRef
22.
go back to reference Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods. 2014;234:139–46.CrossRef Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods. 2014;234:139–46.CrossRef
23.
go back to reference Chen G-H, Wang Y-J, Wang X-M, Zhou J-N, Liu R-Y. Effect of aging on species-typical behaviors in senescence-accelerated mouse. Physiol Behav. 2005;85:536–45.CrossRef Chen G-H, Wang Y-J, Wang X-M, Zhou J-N, Liu R-Y. Effect of aging on species-typical behaviors in senescence-accelerated mouse. Physiol Behav. 2005;85:536–45.CrossRef
24.
go back to reference Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16:907–17.CrossRef Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16:907–17.CrossRef
25.
go back to reference Molina-Gonzalez I, Miron VE. Astrocytes in myelination and remyelination. Neurosci Lett. 2019;713:134532.CrossRef Molina-Gonzalez I, Miron VE. Astrocytes in myelination and remyelination. Neurosci Lett. 2019;713:134532.CrossRef
26.
go back to reference Schulz K, Kroner A, David S. Iron efflux from astrocytes plays a role in Remyelination. J Neurosci. 2012;32:4841–7.CrossRef Schulz K, Kroner A, David S. Iron efflux from astrocytes plays a role in Remyelination. J Neurosci. 2012;32:4841–7.CrossRef
27.
go back to reference Varesio L, Battaglia F, Raggi F, Ledda B, Bosco MC. Macrophage-inflammatory protein-3α/CCL-20 is transcriptionally induced by the iron chelator desferrioxamine in human mononuclear phagocytes through nuclear factor (NF)-κB. Mol Immunol. 2010;47:685–93.CrossRef Varesio L, Battaglia F, Raggi F, Ledda B, Bosco MC. Macrophage-inflammatory protein-3α/CCL-20 is transcriptionally induced by the iron chelator desferrioxamine in human mononuclear phagocytes through nuclear factor (NF)-κB. Mol Immunol. 2010;47:685–93.CrossRef
28.
go back to reference Shim S-M, Kim J-H, Jeon J-P. Effective litmus gene test for monitoring the quality of blood samples: application to Alzheimer’s disease diagnostics. Sci Rep. 2017;7:16848.CrossRef Shim S-M, Kim J-H, Jeon J-P. Effective litmus gene test for monitoring the quality of blood samples: application to Alzheimer’s disease diagnostics. Sci Rep. 2017;7:16848.CrossRef
29.
go back to reference Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000;25:402–5.CrossRef Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000;25:402–5.CrossRef
30.
go back to reference Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, et al. Abundant tau filaments and nonapoptotic Neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci. 2002;22:9340–51.CrossRef Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, et al. Abundant tau filaments and nonapoptotic Neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci. 2002;22:9340–51.CrossRef
31.
go back to reference Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T, et al. Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis. 2001;8:1036–45.CrossRef Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T, et al. Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis. 2001;8:1036–45.CrossRef
32.
go back to reference Tatebayashi Y, Miyasaka T, Chui D-H, Akagi T, Mishima K-i, Iwasaki K, et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci. 2002;99:13896–901.CrossRef Tatebayashi Y, Miyasaka T, Chui D-H, Akagi T, Mishima K-i, Iwasaki K, et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci. 2002;99:13896–901.CrossRef
33.
go back to reference Jiao SS, Le Bu X, Liu YH, Zhu C, Wang QH, Shen LL, et al. Sex dimorphism profile of Alzheimer’s disease-type pathologies in an APP/PS1 mouse model. Neurotox Res Springer US. 2016;29:256–66.CrossRef Jiao SS, Le Bu X, Liu YH, Zhu C, Wang QH, Shen LL, et al. Sex dimorphism profile of Alzheimer’s disease-type pathologies in an APP/PS1 mouse model. Neurotox Res Springer US. 2016;29:256–66.CrossRef
34.
go back to reference Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular a and synaptic dysfunction. Neuron. 2003;39:409–21.CrossRef Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular a and synaptic dysfunction. Neuron. 2003;39:409–21.CrossRef
Metadata
Title
The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer’s disease
Authors
Yao Sun
Yongqing Guo
Xuejian Feng
Meng Jia
Ning Ai
Yue Dong
Yayuan Zheng
Lu Fu
Bin Yu
Haihong Zhang
Jiaxin Wu
Xianghui Yu
Hui Wu
Wei Kong
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2020
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-020-01749-w

Other articles of this Issue 1/2020

Journal of Neuroinflammation 1/2020 Go to the issue