Skip to main content
Top
Published in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2024

Open Access 01-12-2024 | Alzheimer's Disease | Review

Targeting the molecular web of Alzheimer’s disease: unveiling pathways for effective pharmacotherapy

Authors: Devika Jadhav, Nikita Saraswat, Neeraj Vyawahare, Devendra Shirode

Published in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery | Issue 1/2024

Login to get access

Abstract

Introduction

Alzheimer’s disease is a neurocognitive disorder that affects elderly people by slowly impaired cognition, dementia, and gets worse with age. It slowly impacts the quality of life. Clinically, it is distinguished by a transition from episodic memory to a gradual reduction in cognitive ability leading to cognitive dysfunction. Neurofibrillary tangles and amyloid plaques are unique structures that are thought to have a role in the pathogenesis of Alzheimer's disease. In this review, we focus our attention on the risk factors, pathophysiology, etiology, epidemiology, stages, diagnosis, treatment, mechanisms, pathways, ongoing clinical trials data and risks potentially associated with the development of Alzheimer's disease.

Short summary

This review aims to extrapolate the information about Alzheimer's disease. Preliminary research was done by selecting reviews on PubMed, Elsevier, and Google open-access publications using the keywords like “Alzheimer, dementia, neurodegenerative, memory, amyloid β, mechanism of action, pathways”.

Conclusion

Here we show the discussion and interpretation of several signaling pathways in the pathogenesis of Alzheimer's disease such as amyloid β plaque cleavage, Metal ion hypothesis, amyloid β degradation, initiation of amyloidogenic and non-amyloidogenic pathway, oxidative stress hypothesis, Metabolic syndrome, insulin resistance and tau phosphorylation associated apolipoprotein- cholesterol, neurofibrillary tangles accumulation, and insulin resistance which are significant for better understanding of the disease initiation and progression. On studying the ongoing clinical trials, it was found that current drugs being tested are crenezumab, gantenerumab and sodium oligonucleotide.

Graphical Abstract

Literature
1.
go back to reference Moller HJ, Graeber MB. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci. 1998;248(3):111–22.PubMedCrossRef Moller HJ, Graeber MB. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci. 1998;248(3):111–22.PubMedCrossRef
3.
go back to reference Cummings J, Lee G, Zhong K, Fonseca J, Taghva K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement (N Y). 2021;7(1): e12179.PubMedCrossRef Cummings J, Lee G, Zhong K, Fonseca J, Taghva K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement (N Y). 2021;7(1): e12179.PubMedCrossRef
4.
go back to reference Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front Neurosci. 2018;12: 334515.CrossRef Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front Neurosci. 2018;12: 334515.CrossRef
5.
go back to reference Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer’s disease. Metab Brain Dis. 2021;36:781–813.PubMedCrossRef Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer’s disease. Metab Brain Dis. 2021;36:781–813.PubMedCrossRef
6.
go back to reference Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M. Alzheimer’s disease-biochemical and psychological background for diagnosis and treatment. Int J Mol Sci. 2023;24:1059.PubMedPubMedCentralCrossRef Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M. Alzheimer’s disease-biochemical and psychological background for diagnosis and treatment. Int J Mol Sci. 2023;24:1059.PubMedPubMedCentralCrossRef
7.
go back to reference Vik-Mo AO, Bencze J, Ballard C, Hortobagyi T, Aarsland D. Advanced cerebral amyloid angiopathy and small vessel disease are associated with psychosis in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2019;90:728–30.PubMedCrossRef Vik-Mo AO, Bencze J, Ballard C, Hortobagyi T, Aarsland D. Advanced cerebral amyloid angiopathy and small vessel disease are associated with psychosis in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2019;90:728–30.PubMedCrossRef
8.
go back to reference Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: current status and future directions in treating Alzheimer’s disease. Med Res Rev. 2020;40:339–84.PubMedCrossRef Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: current status and future directions in treating Alzheimer’s disease. Med Res Rev. 2020;40:339–84.PubMedCrossRef
9.
go back to reference Bernstein A, Rogers KM, Possin KL, Steele NZR, Ritchie CS, Kramer JH, Geschwind M, Higgins JJ, Wohlgemuth J, Pesano R, Miller BL, Rankin KP, et al. Dementia assessment and management in primary care settings: a survey of current provider practices in the United States. BMC Health Serv Res. 2019;19:919.PubMedPubMedCentralCrossRef Bernstein A, Rogers KM, Possin KL, Steele NZR, Ritchie CS, Kramer JH, Geschwind M, Higgins JJ, Wohlgemuth J, Pesano R, Miller BL, Rankin KP, et al. Dementia assessment and management in primary care settings: a survey of current provider practices in the United States. BMC Health Serv Res. 2019;19:919.PubMedPubMedCentralCrossRef
10.
go back to reference Rahim F, Khalafi M, Davoodi M, Shirbandi K. Metabolite changes in the posterior cingulate cortex could be a signature for early detection of Alzheimer’s disease: A systematic review and meta-analysis study based on 1H-NMR. Egypt J Neurol Psychiatry Neurosurg. 2023;59:1–14.CrossRef Rahim F, Khalafi M, Davoodi M, Shirbandi K. Metabolite changes in the posterior cingulate cortex could be a signature for early detection of Alzheimer’s disease: A systematic review and meta-analysis study based on 1H-NMR. Egypt J Neurol Psychiatry Neurosurg. 2023;59:1–14.CrossRef
11.
go back to reference Hazegh FD, Kargar A, Noroozian M. Aducanumab: an uprising hope with vague horizons. Egyptian J Neurol Psychiatry Neurosurg. 2023;59:1–6. Hazegh FD, Kargar A, Noroozian M. Aducanumab: an uprising hope with vague horizons. Egyptian J Neurol Psychiatry Neurosurg. 2023;59:1–6.
12.
go back to reference Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol. 2022;10: 969547.PubMedPubMedCentralCrossRef Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol. 2022;10: 969547.PubMedPubMedCentralCrossRef
13.
go back to reference Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological modulation of N-methyl-D-aspartate, noradrenaline and endocannabinoid receptors in fear extinction learning: synaptic transmission and plasticity. Int J Mol Sci. 2023;24:5926.PubMedPubMedCentralCrossRef Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological modulation of N-methyl-D-aspartate, noradrenaline and endocannabinoid receptors in fear extinction learning: synaptic transmission and plasticity. Int J Mol Sci. 2023;24:5926.PubMedPubMedCentralCrossRef
16.
go back to reference Liu Y, Zhou G, Song L, Wen Q, Xie S, Chen L, Wang L, Xie X, Chen X, Pu Y, Chen G, et al. DEAD-Box helicase 17 promotes amyloidogenesis by regulating BACE1 translation. Brain Sci. 2023;13:745.PubMedPubMedCentralCrossRef Liu Y, Zhou G, Song L, Wen Q, Xie S, Chen L, Wang L, Xie X, Chen X, Pu Y, Chen G, et al. DEAD-Box helicase 17 promotes amyloidogenesis by regulating BACE1 translation. Brain Sci. 2023;13:745.PubMedPubMedCentralCrossRef
17.
go back to reference Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:575–90.PubMedCrossRef Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:575–90.PubMedCrossRef
18.
go back to reference Gonzalez C, Pilar MD. Aging, depression and dementia: the inflammatory process. Adv Clin Exper Med. 2022;31:469–73.CrossRef Gonzalez C, Pilar MD. Aging, depression and dementia: the inflammatory process. Adv Clin Exper Med. 2022;31:469–73.CrossRef
19.
20.
go back to reference Skobeleva K, Shalygin A, Mikhaylova E, Guzhova I, Ryazantseva M, Kaznacheyeva E, et al. The STIM1/2-regulated calcium homeostasis is impaired in hippocampal neurons of the 5xFAD mouse model of Alzheimer’s disease. Int J Mol Sci. 2022;23:14810.PubMedPubMedCentralCrossRef Skobeleva K, Shalygin A, Mikhaylova E, Guzhova I, Ryazantseva M, Kaznacheyeva E, et al. The STIM1/2-regulated calcium homeostasis is impaired in hippocampal neurons of the 5xFAD mouse model of Alzheimer’s disease. Int J Mol Sci. 2022;23:14810.PubMedPubMedCentralCrossRef
22.
go back to reference Tanaka M, Szabo A, Spekker E, Polyak H, Toth F, Vecsei L, et al. Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the Tryptophan–Kynurenine metabolic system. Cells. 2022;11:2607.PubMedPubMedCentralCrossRef Tanaka M, Szabo A, Spekker E, Polyak H, Toth F, Vecsei L, et al. Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the Tryptophan–Kynurenine metabolic system. Cells. 2022;11:2607.PubMedPubMedCentralCrossRef
23.
go back to reference Fernandes BS, Inam ME, Enduru N, Quevedo J, Zhao Z. The kynurenine pathway in Alzheimer’s disease: a meta-analysis of central and peripheral levels. Braz J Psychiatry. 2023;45:286–97.PubMedPubMedCentral Fernandes BS, Inam ME, Enduru N, Quevedo J, Zhao Z. The kynurenine pathway in Alzheimer’s disease: a meta-analysis of central and peripheral levels. Braz J Psychiatry. 2023;45:286–97.PubMedPubMedCentral
24.
go back to reference Hestad K, Alexander J, Rootwelt H, Aaseth JO. The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases. Biomolecules. 2022;12:998.PubMedPubMedCentralCrossRef Hestad K, Alexander J, Rootwelt H, Aaseth JO. The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases. Biomolecules. 2022;12:998.PubMedPubMedCentralCrossRef
25.
go back to reference Lloret A, Esteve D, Lloret MA, Cervera-Ferri A, Lopez B, Nepomuceno M, Monllor P, et al. When does Alzheimer’s disease really start? The role of biomarkers. Int J Mol Sci. 2019;20:5536.PubMedPubMedCentralCrossRef Lloret A, Esteve D, Lloret MA, Cervera-Ferri A, Lopez B, Nepomuceno M, Monllor P, et al. When does Alzheimer’s disease really start? The role of biomarkers. Int J Mol Sci. 2019;20:5536.PubMedPubMedCentralCrossRef
26.
go back to reference Bayraktar Y, Isik E, Isik I, Ozyilmaz A, Toprak M, Kahraman Guloglu F, Aydin S, et al. Analyzing of Alzheimer’s disease based on biomedical and socio-economic approach using molecular communication, artificial neural network, and random forest models. Sustainability. 2022;14:7901.CrossRef Bayraktar Y, Isik E, Isik I, Ozyilmaz A, Toprak M, Kahraman Guloglu F, Aydin S, et al. Analyzing of Alzheimer’s disease based on biomedical and socio-economic approach using molecular communication, artificial neural network, and random forest models. Sustainability. 2022;14:7901.CrossRef
27.
go back to reference Lee J, Kim HJ. Normal aging induces changes in the brain and neurodegeneration progress: review of the structural, biochemical, metabolic, cellular, and molecular changes. Front Aging Neurosci. 2022;14: 931536.PubMedPubMedCentralCrossRef Lee J, Kim HJ. Normal aging induces changes in the brain and neurodegeneration progress: review of the structural, biochemical, metabolic, cellular, and molecular changes. Front Aging Neurosci. 2022;14: 931536.PubMedPubMedCentralCrossRef
28.
go back to reference Kouter K, Nikolac Perkovic M, Nedic Erjavec G, Milos T, Tudor L, Uzun S, Mimica N, Pivac N, Videtic Paska A, et al. Difference in methylation and expression of brain-derived neurotrophic factor in Alzheimer’s disease and mild cognitive impairment. Biomedicines. 2023;11:235.PubMedPubMedCentralCrossRef Kouter K, Nikolac Perkovic M, Nedic Erjavec G, Milos T, Tudor L, Uzun S, Mimica N, Pivac N, Videtic Paska A, et al. Difference in methylation and expression of brain-derived neurotrophic factor in Alzheimer’s disease and mild cognitive impairment. Biomedicines. 2023;11:235.PubMedPubMedCentralCrossRef
29.
go back to reference Norton DJ, Parra MA, Sperling RA, Baena A, Guzman-Velez E, Jin DS, Andrea N, Khang J, Schultz A, Rentz DM, Pardilla-Delgado E, Fuller J, Johnson K, Reiman EM, Lopera F, Quiroz YT, et al. Visual short-term memory relates to tau and amyloid burdens in preclinical autosomal dominant Alzheimer’s disease. Alzheimers Res Ther. 2020;12:99.PubMedPubMedCentralCrossRef Norton DJ, Parra MA, Sperling RA, Baena A, Guzman-Velez E, Jin DS, Andrea N, Khang J, Schultz A, Rentz DM, Pardilla-Delgado E, Fuller J, Johnson K, Reiman EM, Lopera F, Quiroz YT, et al. Visual short-term memory relates to tau and amyloid burdens in preclinical autosomal dominant Alzheimer’s disease. Alzheimers Res Ther. 2020;12:99.PubMedPubMedCentralCrossRef
31.
go back to reference Joyal M, Groleau C, Bouchard C, Wilson MA, Fecteau S. Semantic processing in healthy aging and Alzheimer’s disease: a systematic review of the N400 differences. Brain Sci. 2020;10:770.PubMedPubMedCentralCrossRef Joyal M, Groleau C, Bouchard C, Wilson MA, Fecteau S. Semantic processing in healthy aging and Alzheimer’s disease: a systematic review of the N400 differences. Brain Sci. 2020;10:770.PubMedPubMedCentralCrossRef
32.
go back to reference De Wit L, Marsiske M, O’Shea D, Kessels RPC, Kurasz AM, DeFeis B, Schaefer N, Smith GE, et al. Procedural learning in individuals with amnestic mild cognitive impairment and Alzheimer’s dementia: a systematic review and meta-analysis. Neuropsychol Rev. 2021;31:103–14.PubMedCrossRef De Wit L, Marsiske M, O’Shea D, Kessels RPC, Kurasz AM, DeFeis B, Schaefer N, Smith GE, et al. Procedural learning in individuals with amnestic mild cognitive impairment and Alzheimer’s dementia: a systematic review and meta-analysis. Neuropsychol Rev. 2021;31:103–14.PubMedCrossRef
33.
go back to reference Laghrissi F, Douzi S, Douzi K, Hssina B. Intrusion detection systems using long short-term memory (LSTM). J Big Data. 2021;8:1–16.CrossRef Laghrissi F, Douzi S, Douzi K, Hssina B. Intrusion detection systems using long short-term memory (LSTM). J Big Data. 2021;8:1–16.CrossRef
34.
go back to reference Guzman VE, Jaimes S, Aguirre-Acevedo DC, Norton DJ, Papp KV, Amariglio R, Rentz D, Baena A, Henao E, Tirado V, Muñoz C, Giraldo M, Sperling RA, Lopera F, Quiroz YT, et al. A three-factor structure of cognitive functioning among unimpaired carriers and non-carriers of autosomal-dominant Alzheimer’s disease. J Alzheimers Dis. 2018;65:107–15.CrossRef Guzman VE, Jaimes S, Aguirre-Acevedo DC, Norton DJ, Papp KV, Amariglio R, Rentz D, Baena A, Henao E, Tirado V, Muñoz C, Giraldo M, Sperling RA, Lopera F, Quiroz YT, et al. A three-factor structure of cognitive functioning among unimpaired carriers and non-carriers of autosomal-dominant Alzheimer’s disease. J Alzheimers Dis. 2018;65:107–15.CrossRef
35.
go back to reference Strong JV, Arnold M, Schneider L, Perschl J, Villringer A, Fritz TH, et al. Enhanced short-term memory function in older adults with dementia following music-feedback physical training: a pilot study. Brain Sci. 2022;12:1260.PubMedPubMedCentralCrossRef Strong JV, Arnold M, Schneider L, Perschl J, Villringer A, Fritz TH, et al. Enhanced short-term memory function in older adults with dementia following music-feedback physical training: a pilot study. Brain Sci. 2022;12:1260.PubMedPubMedCentralCrossRef
36.
go back to reference Cepukaityte G, Thom JL, Kallmayer M, Nobre AC, Zokaei N. The relationship between short- and long-term memory is preserved across the age range. Brain Sci. 2023;13(1):106.PubMedPubMedCentralCrossRef Cepukaityte G, Thom JL, Kallmayer M, Nobre AC, Zokaei N. The relationship between short- and long-term memory is preserved across the age range. Brain Sci. 2023;13(1):106.PubMedPubMedCentralCrossRef
37.
go back to reference Teng E, Manser PT, Shah M, Pickthorn K, Hu N, Djakovic S, Swendsen H, Blendstrup M, Faccin G, Ostrowitzki S, Sink KM, et al. The use of episodic memory tests for screening in clinical trials for early Alzheimer’s Disease: a comparison of the free and cued selective reminding test (FCSRT) and the repeatable battery for the assessment of neuropsychological status (RBANS). J Prev Alzheimers Dis. 2023;10(1):41–9.PubMed Teng E, Manser PT, Shah M, Pickthorn K, Hu N, Djakovic S, Swendsen H, Blendstrup M, Faccin G, Ostrowitzki S, Sink KM, et al. The use of episodic memory tests for screening in clinical trials for early Alzheimer’s Disease: a comparison of the free and cued selective reminding test (FCSRT) and the repeatable battery for the assessment of neuropsychological status (RBANS). J Prev Alzheimers Dis. 2023;10(1):41–9.PubMed
38.
go back to reference Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.PubMedPubMedCentralCrossRef Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.PubMedPubMedCentralCrossRef
39.
go back to reference Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG, et al. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26:33.PubMedPubMedCentralCrossRef Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG, et al. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26:33.PubMedPubMedCentralCrossRef
40.
go back to reference Kaloni D, Negi A. A review on Alzheimer’s disease. Int J Neurodegener Dis. 2019;2:010. Kaloni D, Negi A. A review on Alzheimer’s disease. Int J Neurodegener Dis. 2019;2:010.
41.
go back to reference Alldred MJ, Martini AC, Patterson D, Hendrix J, Granholm AC. Aging with Down syndrome-where are we now and where are we going? J Clin Med. 2021;10:4687.PubMedPubMedCentralCrossRef Alldred MJ, Martini AC, Patterson D, Hendrix J, Granholm AC. Aging with Down syndrome-where are we now and where are we going? J Clin Med. 2021;10:4687.PubMedPubMedCentralCrossRef
42.
go back to reference Rodrigues M, Nunes J, Figueiredo S, Martins de Campos A, Geraldo AF, et al. Neuroimaging assessment in Down syndrome: a pictorial review. Insights Imaging. 2019;10:52.PubMedPubMedCentralCrossRef Rodrigues M, Nunes J, Figueiredo S, Martins de Campos A, Geraldo AF, et al. Neuroimaging assessment in Down syndrome: a pictorial review. Insights Imaging. 2019;10:52.PubMedPubMedCentralCrossRef
43.
go back to reference Bellenguez C, Grenier-Boley B, Lambert JC. Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol. 2020;61:40–8.PubMedCrossRef Bellenguez C, Grenier-Boley B, Lambert JC. Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol. 2020;61:40–8.PubMedCrossRef
44.
go back to reference Andrade GJ, Santiago BA, Jeronimo AP, Vargas RI, Cadena SAR, Sanchez GC, Pozo-Molina G, Mendez CCF, Cardenas AMD, Diaz CS, Pacheco HM, Luna MJ, Soto RLO, et al. Alzheimer’s disease: an updated overview of its genetics. Int J Mol Sci. 2023;24:3754.CrossRef Andrade GJ, Santiago BA, Jeronimo AP, Vargas RI, Cadena SAR, Sanchez GC, Pozo-Molina G, Mendez CCF, Cardenas AMD, Diaz CS, Pacheco HM, Luna MJ, Soto RLO, et al. Alzheimer’s disease: an updated overview of its genetics. Int J Mol Sci. 2023;24:3754.CrossRef
45.
go back to reference Ibanez L, Cruchaga C, Fernández MV. Advances in genetic and molecular understanding of Alzheimer’s disease. Genes (Basel). 2021;12:1247.PubMedCrossRef Ibanez L, Cruchaga C, Fernández MV. Advances in genetic and molecular understanding of Alzheimer’s disease. Genes (Basel). 2021;12:1247.PubMedCrossRef
46.
go back to reference Armstrong RA. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57:87–105.CrossRef Armstrong RA. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57:87–105.CrossRef
47.
go back to reference Association A. Alzheimer’s disease facts and figures. Alzheimer Dement. 2023;16:391–460. Association A. Alzheimer’s disease facts and figures. Alzheimer Dement. 2023;16:391–460.
48.
go back to reference Abate G, Memo M, Uberti D. Impact of COVID-19 on Alzheimer’s disease risk: viewpoint for research action. Healthcare (Basel). 2020;8:286.PubMedCrossRef Abate G, Memo M, Uberti D. Impact of COVID-19 on Alzheimer’s disease risk: viewpoint for research action. Healthcare (Basel). 2020;8:286.PubMedCrossRef
50.
go back to reference Qiu K, Zhang X, Wang S, Li C, Wang X, Li X, Wu Y, et al. TMP21 in Alzheimer’s disease: molecular mechanisms and a potential target. Front Cell Neurosci. 2019;13:328.PubMedPubMedCentralCrossRef Qiu K, Zhang X, Wang S, Li C, Wang X, Li X, Wu Y, et al. TMP21 in Alzheimer’s disease: molecular mechanisms and a potential target. Front Cell Neurosci. 2019;13:328.PubMedPubMedCentralCrossRef
51.
go back to reference Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, Liu CS, Park C, Kennedy G, Long T, Chun J, et al. Publisher correction: somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature. 2019;566:E6.PubMedCrossRef Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, Liu CS, Park C, Kennedy G, Long T, Chun J, et al. Publisher correction: somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature. 2019;566:E6.PubMedCrossRef
53.
go back to reference Takeda K, Uda A, Mitsubori M, Nagashima S, Iwasaki H, Ito N, Shiiba I, Ishido S, Matsuoka M, Inatome R, Yanagi S, et al. Mitochondrial ubiquitin ligase alleviates Alzheimer’s disease pathology via blocking the toxic amyloid-β oligomer generation. Commun Biol. 2021;4:192.PubMedPubMedCentralCrossRef Takeda K, Uda A, Mitsubori M, Nagashima S, Iwasaki H, Ito N, Shiiba I, Ishido S, Matsuoka M, Inatome R, Yanagi S, et al. Mitochondrial ubiquitin ligase alleviates Alzheimer’s disease pathology via blocking the toxic amyloid-β oligomer generation. Commun Biol. 2021;4:192.PubMedPubMedCentralCrossRef
54.
go back to reference Nakamura M, Li Y, Choi BR, Matas-Rico E, Troncoso J, Takahashi C, Sockanathan S, et al. GDE2-RECK controls ADAM10 α-secretase-mediated cleavage of amyloid precursor protein. Sci Transl Med. 2021;13:6178.CrossRef Nakamura M, Li Y, Choi BR, Matas-Rico E, Troncoso J, Takahashi C, Sockanathan S, et al. GDE2-RECK controls ADAM10 α-secretase-mediated cleavage of amyloid precursor protein. Sci Transl Med. 2021;13:6178.CrossRef
55.
go back to reference Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen Res. 2022;17:543–9.PubMedCrossRef Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen Res. 2022;17:543–9.PubMedCrossRef
56.
go back to reference Toledo JB, Liu H, Grothe MJ, Rashid T, Launer L, Shaw LM, Snoussi H, Heckbert S, Weiner M, Trojanwoski JQ, Seshadri S, Habes M, et al. for the Alzheimer’s disease neuroimaging initiative. Disentangling tau and brain atrophy cluster heterogeneity across the Alzheimer’s disease continuum. Alzheimers Dement (N Y). 2022;8: e12305.PubMedCrossRef Toledo JB, Liu H, Grothe MJ, Rashid T, Launer L, Shaw LM, Snoussi H, Heckbert S, Weiner M, Trojanwoski JQ, Seshadri S, Habes M, et al. for the Alzheimer’s disease neuroimaging initiative. Disentangling tau and brain atrophy cluster heterogeneity across the Alzheimer’s disease continuum. Alzheimers Dement (N Y). 2022;8: e12305.PubMedCrossRef
57.
go back to reference Akasaka MK, Manya H. The role of APP O-glycosylation in Alzheimer’s disease. Biomolecules. 2020;10:1569.CrossRef Akasaka MK, Manya H. The role of APP O-glycosylation in Alzheimer’s disease. Biomolecules. 2020;10:1569.CrossRef
59.
go back to reference Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Protein interactome of amyloid-β as a therapeutic target. Pharmaceuticals (Basel). 2023;16(2):312.PubMedCrossRef Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Protein interactome of amyloid-β as a therapeutic target. Pharmaceuticals (Basel). 2023;16(2):312.PubMedCrossRef
60.
go back to reference Rao CV, Asch AS, Carr DJJ, Yamada HY. “Amyloid-beta accumulation cycle” as a prevention and/or therapy target for Alzheimer’s disease. Aging Cell. 2020;19: e13109.PubMedPubMedCentralCrossRef Rao CV, Asch AS, Carr DJJ, Yamada HY. “Amyloid-beta accumulation cycle” as a prevention and/or therapy target for Alzheimer’s disease. Aging Cell. 2020;19: e13109.PubMedPubMedCentralCrossRef
62.
go back to reference Gugliandolo A, Chiricosta L, Silvestro S, Bramanti P, Mazzon E. α-Tocopherol modulates non-amyloidogenic pathway and autophagy in an in vitro model of Alzheimer’s disease: a transcriptional study. Brain Sci. 2019;9:196.PubMedPubMedCentralCrossRef Gugliandolo A, Chiricosta L, Silvestro S, Bramanti P, Mazzon E. α-Tocopherol modulates non-amyloidogenic pathway and autophagy in an in vitro model of Alzheimer’s disease: a transcriptional study. Brain Sci. 2019;9:196.PubMedPubMedCentralCrossRef
63.
go back to reference Simic G, Babic Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buee L, De Silva R, Di Giovanni G, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016;6:6.PubMedPubMedCentralCrossRef Simic G, Babic Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buee L, De Silva R, Di Giovanni G, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016;6:6.PubMedPubMedCentralCrossRef
65.
go back to reference Kurkinen M, Fułek M, Fułek K, Beszłej JA, Kurpas D, Leszek J, et al. The amyloid cascade hypothesis in Alzheimer’s disease: should we change our thinking? Biomolecules. 2023;13:453.PubMedPubMedCentralCrossRef Kurkinen M, Fułek M, Fułek K, Beszłej JA, Kurpas D, Leszek J, et al. The amyloid cascade hypothesis in Alzheimer’s disease: should we change our thinking? Biomolecules. 2023;13:453.PubMedPubMedCentralCrossRef
66.
go back to reference Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y, et al. Amyloid cascade hypothesis for the treatment of Alzheimer’s disease: progress and challenges. Aging Dis. 2022;13:1745–58.PubMedPubMedCentralCrossRef Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y, et al. Amyloid cascade hypothesis for the treatment of Alzheimer’s disease: progress and challenges. Aging Dis. 2022;13:1745–58.PubMedPubMedCentralCrossRef
67.
go back to reference Buccellato FR, D’Anca M, Fenoglio C, Scarpini E, Galimberti D. Role of oxidative damage in Alzheimer’s disease and neurodegeneration: from pathogenic mechanisms to biomarker discovery. Antioxidants (Basel). 2021;10:1353.PubMedCrossRef Buccellato FR, D’Anca M, Fenoglio C, Scarpini E, Galimberti D. Role of oxidative damage in Alzheimer’s disease and neurodegeneration: from pathogenic mechanisms to biomarker discovery. Antioxidants (Basel). 2021;10:1353.PubMedCrossRef
68.
go back to reference Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, Valko M, et al. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol. 2019;93:2491–513.PubMedCrossRef Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, Valko M, et al. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol. 2019;93:2491–513.PubMedCrossRef
69.
70.
go back to reference Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ, et al. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener. 2020;9:10.PubMedPubMedCentralCrossRef Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ, et al. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener. 2020;9:10.PubMedPubMedCentralCrossRef
71.
go back to reference Marseglia A, Darin-Mattsson A, Skoog J, Rydén L, Hadarsson-Bodin T, Kern S, Rydberg Sterner T, Shang Y, Zettergren A, Westman E, Skoog I, et al. Metabolic syndrome is associated with poor cognition: a population-based study of 70-year-old adults without dementia. J Gerontol A Biol Sci Med Sci. 2021;76:2275–83.PubMedPubMedCentralCrossRef Marseglia A, Darin-Mattsson A, Skoog J, Rydén L, Hadarsson-Bodin T, Kern S, Rydberg Sterner T, Shang Y, Zettergren A, Westman E, Skoog I, et al. Metabolic syndrome is associated with poor cognition: a population-based study of 70-year-old adults without dementia. J Gerontol A Biol Sci Med Sci. 2021;76:2275–83.PubMedPubMedCentralCrossRef
72.
go back to reference Feng Y, Chen X, Zhang XD, Huang C. Metabolic pathway pairwise-based signature as a potential non-invasive diagnostic marker in Alzheimer’s disease patients. Genes (Basel). 2023;14:1285.PubMedCrossRef Feng Y, Chen X, Zhang XD, Huang C. Metabolic pathway pairwise-based signature as a potential non-invasive diagnostic marker in Alzheimer’s disease patients. Genes (Basel). 2023;14:1285.PubMedCrossRef
73.
go back to reference Machado A, Ferreira D, Grothe MJ, Eyjolfsdottir H, Almqvist PM, Cavallin L, Lind G, Linderoth B, Seiger Å, Teipel S, Wahlberg LU, Wahlund LO, Westman E, Eriksdotter M, et al. Alzheimer’s disease neuroimaging initiative. The cholinergic system in sub types of Alzheimer’s disease: an in vivo longitudinal MRI study. Alzheimers Res Ther. 2020;12:51.PubMedPubMedCentralCrossRef Machado A, Ferreira D, Grothe MJ, Eyjolfsdottir H, Almqvist PM, Cavallin L, Lind G, Linderoth B, Seiger Å, Teipel S, Wahlberg LU, Wahlund LO, Westman E, Eriksdotter M, et al. Alzheimer’s disease neuroimaging initiative. The cholinergic system in sub types of Alzheimer’s disease: an in vivo longitudinal MRI study. Alzheimers Res Ther. 2020;12:51.PubMedPubMedCentralCrossRef
74.
go back to reference Penke B, Szucs M, Bogar F. Oligomerization and conformational change turn monomeric β-amyloid and tau proteins toxic: their role in Alzheimer’s pathogenesis. Molecules. 2020;25:1659.PubMedPubMedCentralCrossRef Penke B, Szucs M, Bogar F. Oligomerization and conformational change turn monomeric β-amyloid and tau proteins toxic: their role in Alzheimer’s pathogenesis. Molecules. 2020;25:1659.PubMedPubMedCentralCrossRef
75.
go back to reference Nguyen TT, Ta QTH, Nguyen TTD, Le TT, Vo VG. Role of insulin resistance in the Alzheimer’s disease progression. Neurochem Res. 2020;45:1481–91.PubMedCrossRef Nguyen TT, Ta QTH, Nguyen TTD, Le TT, Vo VG. Role of insulin resistance in the Alzheimer’s disease progression. Neurochem Res. 2020;45:1481–91.PubMedCrossRef
77.
78.
go back to reference Baracaldo SD, AvendaNo LSS, Ariza SDF, Rodriguez GM, Calderon OCA, Gonzalez RRE, Nava MMO. Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int J Mol Sci. 2023;24:9067.CrossRef Baracaldo SD, AvendaNo LSS, Ariza SDF, Rodriguez GM, Calderon OCA, Gonzalez RRE, Nava MMO. Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int J Mol Sci. 2023;24:9067.CrossRef
79.
go back to reference Galla L, Redolfi N, Pozzan T, Pizzo P, Greotti E. Intracellular calcium dysregulation by the Alzheimer’s disease-linked protein Presenilin 2. Int J Mol Sci. 2020;21:770.PubMedPubMedCentralCrossRef Galla L, Redolfi N, Pozzan T, Pizzo P, Greotti E. Intracellular calcium dysregulation by the Alzheimer’s disease-linked protein Presenilin 2. Int J Mol Sci. 2020;21:770.PubMedPubMedCentralCrossRef
80.
go back to reference Calvo RM, Kharitonova EK, Bacskai BJ. Therapeutic strategies to target calcium dysregulation in Alzheimer’s disease. Cells. 2020;9:2513.CrossRef Calvo RM, Kharitonova EK, Bacskai BJ. Therapeutic strategies to target calcium dysregulation in Alzheimer’s disease. Cells. 2020;9:2513.CrossRef
81.
go back to reference Ge M, Zhang J, Chen S, Huang Y, Chen W, He L, Zhang Y, et al. Role of calcium homeostasis in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2022;18:487–98.PubMedPubMedCentralCrossRef Ge M, Zhang J, Chen S, Huang Y, Chen W, He L, Zhang Y, et al. Role of calcium homeostasis in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2022;18:487–98.PubMedPubMedCentralCrossRef
82.
go back to reference Duncan RS, Song B, Koulen P. Presenilins as drug targets for Alzheimer’s disease-recent insights from cell biology and electrophysiology as novel opportunities in drug development. Int J Mol Sci. 2018;19:1621.PubMedPubMedCentralCrossRef Duncan RS, Song B, Koulen P. Presenilins as drug targets for Alzheimer’s disease-recent insights from cell biology and electrophysiology as novel opportunities in drug development. Int J Mol Sci. 2018;19:1621.PubMedPubMedCentralCrossRef
83.
go back to reference Sarasija S, Norman KR. Role of presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxidants (Basel). 2018;7:111.PubMedCrossRef Sarasija S, Norman KR. Role of presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxidants (Basel). 2018;7:111.PubMedCrossRef
87.
go back to reference Patil V, Madgi M, Kiran A. Early prediction of Alzheimer’s disease using conventional neural networks: a review. Early prediction of Alzheimer’s disease using convolutional neural network: A review. Egyptian J Neurol Psychiatry Neurosurg. 2022;58:1–10. Patil V, Madgi M, Kiran A. Early prediction of Alzheimer’s disease using conventional neural networks: a review. Early prediction of Alzheimer’s disease using convolutional neural network: A review. Egyptian J Neurol Psychiatry Neurosurg. 2022;58:1–10.
88.
go back to reference Emmady PD, Schoo C, Tadi P. Major neurocognitive disorder (dementia). In: Emmady PD, editor. StatPearls. Treasure Island: StatPearls Publishing; 2023. Emmady PD, Schoo C, Tadi P. Major neurocognitive disorder (dementia). In: Emmady PD, editor. StatPearls. Treasure Island: StatPearls Publishing; 2023.
89.
go back to reference Bos I, van der Flier WM, Kern S, Ousset PJ, Maruff P, Skoog I, Verhey FRJ, Freund LY, Tsolaki M, Wallin ÅK, Olde RM, Soininen H, Spiru L, Zetterberg H, Blennow K, Scheltens P, Muniz-Terrera G, Visser PJ, et al. Alzheimer Disease Neuroimaging Initiative; AIBL Research Group; ICTUS/DSA study groups. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 2019;15:888–98.PubMedPubMedCentralCrossRef Bos I, van der Flier WM, Kern S, Ousset PJ, Maruff P, Skoog I, Verhey FRJ, Freund LY, Tsolaki M, Wallin ÅK, Olde RM, Soininen H, Spiru L, Zetterberg H, Blennow K, Scheltens P, Muniz-Terrera G, Visser PJ, et al. Alzheimer Disease Neuroimaging Initiative; AIBL Research Group; ICTUS/DSA study groups. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 2019;15:888–98.PubMedPubMedCentralCrossRef
90.
go back to reference Shim KH, Kang MJ, Bae H, Kim D, Park J, An SA, Jeong DE, et al. A possible pathogenic PSEN2 Gly56Ser mutation in a Korean patient with early-onset Alzheimer’s disease. Int J Mol Sci. 2022;23:2967.PubMedPubMedCentralCrossRef Shim KH, Kang MJ, Bae H, Kim D, Park J, An SA, Jeong DE, et al. A possible pathogenic PSEN2 Gly56Ser mutation in a Korean patient with early-onset Alzheimer’s disease. Int J Mol Sci. 2022;23:2967.PubMedPubMedCentralCrossRef
91.
go back to reference Chen SD, Lu JY, Li HQ, Yang YX, Jiang JH, Cui M, Zuo CT, Tan L, Dong Q, Yu JT, et al. Alzheimer’s disease neuroimaging initiative. Staging tau pathology with tau PET in Alzheimer’s disease: a longitudinal study. Transl Psychiatry. 2021;1:483.CrossRef Chen SD, Lu JY, Li HQ, Yang YX, Jiang JH, Cui M, Zuo CT, Tan L, Dong Q, Yu JT, et al. Alzheimer’s disease neuroimaging initiative. Staging tau pathology with tau PET in Alzheimer’s disease: a longitudinal study. Transl Psychiatry. 2021;1:483.CrossRef
92.
go back to reference Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, Zhang R, Wang H, Chen H, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022;11:18.PubMedPubMedCentralCrossRef Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, Zhang R, Wang H, Chen H, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022;11:18.PubMedPubMedCentralCrossRef
93.
go back to reference Zhou SL, Tan CC, Hou XH, Cao XP, Tan L, Yu JT, et al. TREM2 variants and neurodegenerative diseases: a systematic review and meta-analysis. J Alzheimers Dis. 2019;68:1171–84.PubMedCrossRef Zhou SL, Tan CC, Hou XH, Cao XP, Tan L, Yu JT, et al. TREM2 variants and neurodegenerative diseases: a systematic review and meta-analysis. J Alzheimers Dis. 2019;68:1171–84.PubMedCrossRef
94.
go back to reference Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J Prev Alzheimers Dis. 2021;8:371–86.PubMed Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J Prev Alzheimers Dis. 2021;8:371–86.PubMed
95.
go back to reference Drabo EF, Barthold D, Joyce G, Ferido P, Chang Chui H, Zissimopoulos J, et al. Longitudinal analysis of dementia diagnosis and specialty care among racially diverse Medicare beneficiaries. Alzheimers Dement. 2019;15:1402–11.PubMedPubMedCentralCrossRef Drabo EF, Barthold D, Joyce G, Ferido P, Chang Chui H, Zissimopoulos J, et al. Longitudinal analysis of dementia diagnosis and specialty care among racially diverse Medicare beneficiaries. Alzheimers Dement. 2019;15:1402–11.PubMedPubMedCentralCrossRef
96.
go back to reference Maity S, Farrell K, Navabpour S, Narayanan SN, Jarome TJ. Epigenetic mechanisms in memory and cognitive decline associated with aging and Alzheimer’s disease. Int J Mol Sci. 2021;22:12280.PubMedPubMedCentralCrossRef Maity S, Farrell K, Navabpour S, Narayanan SN, Jarome TJ. Epigenetic mechanisms in memory and cognitive decline associated with aging and Alzheimer’s disease. Int J Mol Sci. 2021;22:12280.PubMedPubMedCentralCrossRef
97.
go back to reference Barnes J, Bartlett JW, Wolk DA, van der Flier WM, Frost C, et al. Disease course varies according to age and symptom length in Alzheimer’s disease. J Alzheimers Dis. 2018;64:631–42.PubMedPubMedCentralCrossRef Barnes J, Bartlett JW, Wolk DA, van der Flier WM, Frost C, et al. Disease course varies according to age and symptom length in Alzheimer’s disease. J Alzheimers Dis. 2018;64:631–42.PubMedPubMedCentralCrossRef
98.
go back to reference Agudelo BM, Giraldo RL, Rojas RME. Systematic and Comparative Analysis of the Burden of Alzheimer´s Disease and Other Dementias in Mexico. Results at the National and Subnational Levels. J Prev Alzheimers Dis. 2023;10:120–9. Agudelo BM, Giraldo RL, Rojas RME. Systematic and Comparative Analysis of the Burden of Alzheimer´s Disease and Other Dementias in Mexico. Results at the National and Subnational Levels. J Prev Alzheimers Dis. 2023;10:120–9.
99.
go back to reference Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s disease. Neurotherapeutics. 2022;19:173–85.PubMedCrossRef Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s disease. Neurotherapeutics. 2022;19:173–85.PubMedCrossRef
100.
go back to reference Nguyen H, Clement M, Mansencal B, Coupe P. Interpretable differential diagnosis for Alzheimer’s disease and Frontotemporal dementia. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer; 2022. Nguyen H, Clement M, Mansencal B, Coupe P. Interpretable differential diagnosis for Alzheimer’s disease and Frontotemporal dementia. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer; 2022.
101.
go back to reference Milan TA, Fernandez MM, Rodríguez OMC. Lewy body dementias: a coin with two sides? Behav Sci (Basel). 2021;11:94.CrossRef Milan TA, Fernandez MM, Rodríguez OMC. Lewy body dementias: a coin with two sides? Behav Sci (Basel). 2021;11:94.CrossRef
102.
103.
go back to reference Ferrando R, Damian A. Brain SPECT as a biomarker of neurodegeneration in dementia in the era of molecular imaging: still a valid option? Front Neurol. 2021;12: 629442.PubMedPubMedCentralCrossRef Ferrando R, Damian A. Brain SPECT as a biomarker of neurodegeneration in dementia in the era of molecular imaging: still a valid option? Front Neurol. 2021;12: 629442.PubMedPubMedCentralCrossRef
104.
go back to reference Malkani RG, Wenger NS. REM sleep behavior disorder as a pathway to dementia: if, when, how, what, and why should physicians disclose the diagnosis and risk for dementia. Curr Sleep Med Rep. 2021;7:57–64.PubMedPubMedCentralCrossRef Malkani RG, Wenger NS. REM sleep behavior disorder as a pathway to dementia: if, when, how, what, and why should physicians disclose the diagnosis and risk for dementia. Curr Sleep Med Rep. 2021;7:57–64.PubMedPubMedCentralCrossRef
105.
go back to reference Choudhary G, Bhambhvani P. Myocardial sympathetic innervation imaging with MIBG in dementia with Lewy bodies. J Nucl Cardiol. 2021;28:2164–6.PubMedCrossRef Choudhary G, Bhambhvani P. Myocardial sympathetic innervation imaging with MIBG in dementia with Lewy bodies. J Nucl Cardiol. 2021;28:2164–6.PubMedCrossRef
106.
go back to reference Kantarci K, Lowe VJ, Chen Q, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Gunter JL, Jack CR Jr, Graff-Radford J, Jones DT, Knopman DS, Graff-Radford N, Ferman TJ, Parisi JE, Dickson DW, Petersen RC, Boeve BF, Murray ME, et al. β-amyloid PET and neuropathology in dementia with Lewy bodies. Neurology. 2020;94(3):e282–91.PubMedPubMedCentralCrossRef Kantarci K, Lowe VJ, Chen Q, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Gunter JL, Jack CR Jr, Graff-Radford J, Jones DT, Knopman DS, Graff-Radford N, Ferman TJ, Parisi JE, Dickson DW, Petersen RC, Boeve BF, Murray ME, et al. β-amyloid PET and neuropathology in dementia with Lewy bodies. Neurology. 2020;94(3):e282–91.PubMedPubMedCentralCrossRef
107.
go back to reference Etminani K, Soliman A, Davidsson A, Chang JR, Martínez-Sanchis B, Byttner S, Camacho V, Bauckneht M, Stegeran R, Ressner M, Agudelo-Cifuentes M, Chincarini A, Brendel M, Rominger A, Bruffaerts R, Vandenberghe R, Kramberger MG, Trost M, Nicastro N, Frisoni GB, Lemstra AW, van Berckel BNM, Pilotto A, Padovani A, Morbelli S, Aarsland D, Nobili F, Garibotto V, Ochoa-Figueroa M, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2022;49:563–84.PubMedCrossRef Etminani K, Soliman A, Davidsson A, Chang JR, Martínez-Sanchis B, Byttner S, Camacho V, Bauckneht M, Stegeran R, Ressner M, Agudelo-Cifuentes M, Chincarini A, Brendel M, Rominger A, Bruffaerts R, Vandenberghe R, Kramberger MG, Trost M, Nicastro N, Frisoni GB, Lemstra AW, van Berckel BNM, Pilotto A, Padovani A, Morbelli S, Aarsland D, Nobili F, Garibotto V, Ochoa-Figueroa M, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2022;49:563–84.PubMedCrossRef
108.
go back to reference Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, et al. Frontotemporal dementia, where do we stand? A narrative review. Int J Mol Sci. 2023;24:11732.PubMedPubMedCentralCrossRef Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, et al. Frontotemporal dementia, where do we stand? A narrative review. Int J Mol Sci. 2023;24:11732.PubMedPubMedCentralCrossRef
110.
go back to reference Huber N, Korhonen S, Hoffmann D, Leskelä S, Rostalski H, Remes AM, Honkakoski P, Solje E, Haapasalo A, et al. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration-Insights into disease mechanisms and current therapeutic approaches. Mol Psychiatry. 2022;27:1300–9.PubMedCrossRef Huber N, Korhonen S, Hoffmann D, Leskelä S, Rostalski H, Remes AM, Honkakoski P, Solje E, Haapasalo A, et al. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration-Insights into disease mechanisms and current therapeutic approaches. Mol Psychiatry. 2022;27:1300–9.PubMedCrossRef
112.
go back to reference Yu Q, Mai Y, Ruan Y, Luo Y, Zhao L, Fang W, Cao Z, Li Y, Liao W, Xiao S, Mok VCT, Shi L, Liu J, et al. National Alzheimer’s coordinating center, the Alzheimer’s disease neuroimaging initiative; frontotemporal lobar degeneration neuroimaging initiative. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s disease. Alzheimers Res Ther. 2021;13:23.PubMedPubMedCentralCrossRef Yu Q, Mai Y, Ruan Y, Luo Y, Zhao L, Fang W, Cao Z, Li Y, Liao W, Xiao S, Mok VCT, Shi L, Liu J, et al. National Alzheimer’s coordinating center, the Alzheimer’s disease neuroimaging initiative; frontotemporal lobar degeneration neuroimaging initiative. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s disease. Alzheimers Res Ther. 2021;13:23.PubMedPubMedCentralCrossRef
113.
go back to reference Jenkins LM, Wang L, Rosen H, Weintraub S. A transdiagnostic review of neuroimaging studies of apathy and disinhibition in dementia. Brain. 2022;145:1886–905.PubMedPubMedCentralCrossRef Jenkins LM, Wang L, Rosen H, Weintraub S. A transdiagnostic review of neuroimaging studies of apathy and disinhibition in dementia. Brain. 2022;145:1886–905.PubMedPubMedCentralCrossRef
114.
go back to reference Williams E, McAuliffe M, Theys C. Language changes in Alzheimer’s disease: a systematic review of verb processing. Brain Lang. 2021;223: 105041.PubMedCrossRef Williams E, McAuliffe M, Theys C. Language changes in Alzheimer’s disease: a systematic review of verb processing. Brain Lang. 2021;223: 105041.PubMedCrossRef
115.
go back to reference Bansal VK, Bansal S. Nervous system disorders in dialysis patients. Handb Clin Neurol. 2014;119:395–404.PubMedCrossRef Bansal VK, Bansal S. Nervous system disorders in dialysis patients. Handb Clin Neurol. 2014;119:395–404.PubMedCrossRef
116.
go back to reference AlSaeed D, Omar SF. Brain MRI analysis for Alzheimer’s disease diagnosis using CNN-based feature extraction and machine learning. Sensors (Basel). 2022;22:2911.PubMedCrossRef AlSaeed D, Omar SF. Brain MRI analysis for Alzheimer’s disease diagnosis using CNN-based feature extraction and machine learning. Sensors (Basel). 2022;22:2911.PubMedCrossRef
117.
go back to reference Qiu D, Hu M, Yu Y, Tang B, Xiao S. Acceptability of psychosocial interventions for dementia caregivers: a systematic review. BMC Psychiatry. 2019;19:23.PubMedPubMedCentralCrossRef Qiu D, Hu M, Yu Y, Tang B, Xiao S. Acceptability of psychosocial interventions for dementia caregivers: a systematic review. BMC Psychiatry. 2019;19:23.PubMedPubMedCentralCrossRef
119.
go back to reference Perneczky R, Jessen F, Grimmer T, Levin J, Flöel A, Peters O, Froelich L, et al. Anti-amyloid antibody therapies in Alzheimer’s disease. Brain. 2023;146:842–9.PubMedCrossRef Perneczky R, Jessen F, Grimmer T, Levin J, Flöel A, Peters O, Froelich L, et al. Anti-amyloid antibody therapies in Alzheimer’s disease. Brain. 2023;146:842–9.PubMedCrossRef
120.
go back to reference Alexander GC, Karlawish J. The problem of aducanumab for the treatment of Alzheimer disease. Ann Intern Med. 2021;174:1303–4.PubMedCrossRef Alexander GC, Karlawish J. The problem of aducanumab for the treatment of Alzheimer disease. Ann Intern Med. 2021;174:1303–4.PubMedCrossRef
121.
go back to reference Ray B, Maloney B, Sambamurti K, Karnati HK, Nelson PT, Greig NH, Lahiri DK, et al. Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Transl Psychiatry. 2020;10:47.PubMedPubMedCentralCrossRef Ray B, Maloney B, Sambamurti K, Karnati HK, Nelson PT, Greig NH, Lahiri DK, et al. Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Transl Psychiatry. 2020;10:47.PubMedPubMedCentralCrossRef
122.
go back to reference Kim JK, Park SU. Pharmacological aspects of galantamine for the treatment of Alzheimer’s disease. EXCLI J. 2017;16:35–9.PubMedPubMedCentral Kim JK, Park SU. Pharmacological aspects of galantamine for the treatment of Alzheimer’s disease. EXCLI J. 2017;16:35–9.PubMedPubMedCentral
123.
go back to reference Lang FM, Mo Y, Sabbagh M, Solomon P, Boada M, Jones RW, Frisoni GB, Grimmer T, Dubois B, Harnett M, Friedhoff SR, Coslett S, Cummings JL, et al. Intepirdine as adjunctive therapy to donepezil for mild-to-moderate Alzheimer’s disease: a randomized, placebo-controlled, phase 3 clinical trial (MINDSET). Alzheimers Dement (N Y). 2021;7: e12136.PubMedCrossRef Lang FM, Mo Y, Sabbagh M, Solomon P, Boada M, Jones RW, Frisoni GB, Grimmer T, Dubois B, Harnett M, Friedhoff SR, Coslett S, Cummings JL, et al. Intepirdine as adjunctive therapy to donepezil for mild-to-moderate Alzheimer’s disease: a randomized, placebo-controlled, phase 3 clinical trial (MINDSET). Alzheimers Dement (N Y). 2021;7: e12136.PubMedCrossRef
124.
go back to reference Song YJ, Li SR, Li XW, Chen X, Wei ZX, Liu QS, Cheng Y, et al. The effect of estrogen replacement therapy on Alzheimer’s disease and Parkinson’s disease in postmenopausal women: a meta-analysis. Front Neurosci. 2020;14:157.PubMedPubMedCentralCrossRef Song YJ, Li SR, Li XW, Chen X, Wei ZX, Liu QS, Cheng Y, et al. The effect of estrogen replacement therapy on Alzheimer’s disease and Parkinson’s disease in postmenopausal women: a meta-analysis. Front Neurosci. 2020;14:157.PubMedPubMedCentralCrossRef
125.
go back to reference Lourdes H, Poluyi E, Ikwuegbuenyi C, Morgan E, Imaguezegie G. Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Egypt J Neurosurg. 2022;37:1–9. Lourdes H, Poluyi E, Ikwuegbuenyi C, Morgan E, Imaguezegie G. Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Egypt J Neurosurg. 2022;37:1–9.
126.
128.
go back to reference Boada M, Lopez O, Nunez L, Szczepiorkowski ZM, Torres M, Grifols C, Paez A, et al. Plasma exchange for Alzheimer’s disease management by albumin replacement (AMBAR) trial: study design and progress. Alzheimers Dement (N Y). 2019;5:61–9.PubMedCrossRef Boada M, Lopez O, Nunez L, Szczepiorkowski ZM, Torres M, Grifols C, Paez A, et al. Plasma exchange for Alzheimer’s disease management by albumin replacement (AMBAR) trial: study design and progress. Alzheimers Dement (N Y). 2019;5:61–9.PubMedCrossRef
129.
go back to reference Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F, et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (N Y). 2023;9: e12385.PubMedCrossRef Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F, et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (N Y). 2023;9: e12385.PubMedCrossRef
131.
go back to reference Soderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, Möller C, Lannfelt L, et al. Lecanemab, Aducanumab, and Gantenerumab: binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics. 2023;20:195–206.PubMedCrossRef Soderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, Möller C, Lannfelt L, et al. Lecanemab, Aducanumab, and Gantenerumab: binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics. 2023;20:195–206.PubMedCrossRef
132.
go back to reference Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep. 2021;48:5629–45.PubMedPubMedCentralCrossRef Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep. 2021;48:5629–45.PubMedPubMedCentralCrossRef
133.
go back to reference Brandt NJ, Wheeler C, Courtin SO. Navigating disease-modifying treatments for Alzheimer’s disease: focusing on medications in phase 3 clinical trials. J Gerontol Nurs. 2023;49:6–10.PubMedCrossRef Brandt NJ, Wheeler C, Courtin SO. Navigating disease-modifying treatments for Alzheimer’s disease: focusing on medications in phase 3 clinical trials. J Gerontol Nurs. 2023;49:6–10.PubMedCrossRef
134.
go back to reference Sandupama P, Munasinghe D, Jayasinghe M. Coconut oil as a therapeutic treatment for Alzheimer’s disease: a review. J Future Foods. 2022;2:41–52.CrossRef Sandupama P, Munasinghe D, Jayasinghe M. Coconut oil as a therapeutic treatment for Alzheimer’s disease: a review. J Future Foods. 2022;2:41–52.CrossRef
135.
go back to reference Iosifescu DV, Jones A, O’Gorman C, Streicher C, Feliz S, Fava M, Tabuteau H, et al. Efficacy and safety of AXS-05 (Dextromethorphan-Bupropion) in patients with major depressive disorder: a phase 3 randomized clinical trial (GEMINI). J Clin Psychiatry. 2022;83:21m14345.PubMedCrossRef Iosifescu DV, Jones A, O’Gorman C, Streicher C, Feliz S, Fava M, Tabuteau H, et al. Efficacy and safety of AXS-05 (Dextromethorphan-Bupropion) in patients with major depressive disorder: a phase 3 randomized clinical trial (GEMINI). J Clin Psychiatry. 2022;83:21m14345.PubMedCrossRef
137.
go back to reference Zhang X, Wu Y, Cai F, Liu S, Bromley-Brits K, Xia K, Song W, et al. A novel Alzheimer-associated SNP in Tmp21 increases amyloidogenesis. Mol Neurobiol. 2018;55:1862–70.PubMedCrossRef Zhang X, Wu Y, Cai F, Liu S, Bromley-Brits K, Xia K, Song W, et al. A novel Alzheimer-associated SNP in Tmp21 increases amyloidogenesis. Mol Neurobiol. 2018;55:1862–70.PubMedCrossRef
139.
go back to reference Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, Hager K, Andreasen N, Scarpini E, Liu-Seifert H, Case M, Dean RA, Hake A, Sundell K, Poole Hoffmann V, Carlson C, Khanna R, Mintun M, DeMattos R, Selzler KJ, Siemers E, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378:321–30.PubMedCrossRef Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, Hager K, Andreasen N, Scarpini E, Liu-Seifert H, Case M, Dean RA, Hake A, Sundell K, Poole Hoffmann V, Carlson C, Khanna R, Mintun M, DeMattos R, Selzler KJ, Siemers E, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378:321–30.PubMedCrossRef
140.
go back to reference Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, Chang S, Gong Y, Ruan L, Zhang G, Yan S, Lian W, Du C, Yang D, Zhang Q, Lin F, Liu J, Zhang H, Ge C, Xiao S, Ding J, Geng M, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29:787–803.PubMedPubMedCentralCrossRef Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, Chang S, Gong Y, Ruan L, Zhang G, Yan S, Lian W, Du C, Yang D, Zhang Q, Lin F, Liu J, Zhang H, Ge C, Xiao S, Ding J, Geng M, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29:787–803.PubMedPubMedCentralCrossRef
141.
go back to reference Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow ND, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA. 2018;115:4483–8.PubMedPubMedCentralCrossRef Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow ND, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA. 2018;115:4483–8.PubMedPubMedCentralCrossRef
142.
go back to reference Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.PubMedCrossRef Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.PubMedCrossRef
143.
go back to reference Cummings J. Anti-Amyloid Monoclonal Antibodies are Transformative Treatments that Redefine Alzheimer’s Disease Therapeutics. Drugs. 2023;83:569–76.PubMedPubMedCentralCrossRef Cummings J. Anti-Amyloid Monoclonal Antibodies are Transformative Treatments that Redefine Alzheimer’s Disease Therapeutics. Drugs. 2023;83:569–76.PubMedPubMedCentralCrossRef
144.
go back to reference Costa M, Paez A. Emerging insights into the role of albumin with plasma exchange in Alzheimer’s disease management. Transfus Apher Sci. 2021;60: 103164.PubMedCrossRef Costa M, Paez A. Emerging insights into the role of albumin with plasma exchange in Alzheimer’s disease management. Transfus Apher Sci. 2021;60: 103164.PubMedCrossRef
145.
146.
147.
go back to reference Knorz AL, Quante A. Alzheimer’s disease: efficacy of mono- and combination therapy. A systematic review. J Geriatr Psychiatry Neurol. 2022;35:475–86.PubMedCrossRef Knorz AL, Quante A. Alzheimer’s disease: efficacy of mono- and combination therapy. A systematic review. J Geriatr Psychiatry Neurol. 2022;35:475–86.PubMedCrossRef
149.
go back to reference Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G, et al. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s disease. Biomedicines. 2023;11:1398.PubMedPubMedCentralCrossRef Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G, et al. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s disease. Biomedicines. 2023;11:1398.PubMedPubMedCentralCrossRef
150.
go back to reference Zhao N, Ren Y, Yamazaki Y, Qiao W, Li F, Felton LM, Mahmoudiandehkordi S, Kueider-Paisley A, Sonoustoun B, Arnold M, Shue F, Zheng J, Attrebi ON, Martens YA, Li Z, Bastea L, Meneses AD, Chen K, Thompson JW, St John-Williams L, Tachibana M, Aikawa T, Oue H, Job L, Yamazaki A, Liu CC, Storm P, Asmann YW, Ertekin-Taner N, Kanekiyo T, Kaddurah-Daouk R, Bu G, et al. Alzheimer’s risk factors age, APOE genotype, and sex drive distinct molecular pathways. Neuron. 2020;106:727-742.e6.PubMedPubMedCentralCrossRef Zhao N, Ren Y, Yamazaki Y, Qiao W, Li F, Felton LM, Mahmoudiandehkordi S, Kueider-Paisley A, Sonoustoun B, Arnold M, Shue F, Zheng J, Attrebi ON, Martens YA, Li Z, Bastea L, Meneses AD, Chen K, Thompson JW, St John-Williams L, Tachibana M, Aikawa T, Oue H, Job L, Yamazaki A, Liu CC, Storm P, Asmann YW, Ertekin-Taner N, Kanekiyo T, Kaddurah-Daouk R, Bu G, et al. Alzheimer’s risk factors age, APOE genotype, and sex drive distinct molecular pathways. Neuron. 2020;106:727-742.e6.PubMedPubMedCentralCrossRef
151.
go back to reference Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26:5481–503.PubMedPubMedCentralCrossRef Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26:5481–503.PubMedPubMedCentralCrossRef
152.
go back to reference Khoury R, Ghossoub E. Diagnostic biomarkers of Alzheimer’s disease: a state-of-the-art review. Biomark Neuropsychiatry. 2019;1: 100005.CrossRef Khoury R, Ghossoub E. Diagnostic biomarkers of Alzheimer’s disease: a state-of-the-art review. Biomark Neuropsychiatry. 2019;1: 100005.CrossRef
Metadata
Title
Targeting the molecular web of Alzheimer’s disease: unveiling pathways for effective pharmacotherapy
Authors
Devika Jadhav
Nikita Saraswat
Neeraj Vyawahare
Devendra Shirode
Publication date
01-12-2024
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1186/s41983-023-00775-8

Other articles of this Issue 1/2024

The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2024 Go to the issue