Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2020

01-12-2020 | Alzheimer's Disease | Research

Phagocytosis of full-length Tau oligomers by Actin-remodeling of activated microglia

Published in: Journal of Neuroinflammation | Issue 1/2020

Login to get access

Abstract

Background

Alzheimer’s disease is associated with the accumulation of intracellular Tau tangles within neurons and extracellular amyloid-β plaques in the brain parenchyma, which altogether results in synaptic loss and neurodegeneration. Extracellular concentrations of oligomers and aggregated proteins initiate microglial activation and convert their state of synaptic surveillance into a destructive inflammatory state. Although Tau oligomers have fleeting nature, they were shown to mediate neurotoxicity and microglial pro-inflammation. Due to the instability of oligomers, in vitro experiments become challenging, and hence, the stability of the full-length Tau oligomers is a major concern.

Methods

In this study, we have prepared and stabilized hTau40WT oligomers, which were purified by size-exclusion chromatography. The formation of the oligomers was confirmed by western blot, thioflavin-S, 8-anilinonaphthaalene-1-sulfonic acid fluorescence, and circular dichroism spectroscopy, which determine the intermolecular cross-β sheet structure and hydrophobicity. The efficiency of N9 microglial cells to phagocytose hTau40WT oligomer and subsequent microglial activation was studied by immunofluorescence microscopy with apotome. The one-way ANOVA was performed for the statistical analysis of fluorometric assay and microscopic analysis.

Results

Full-length Tau oligomers were detected in heterogeneous globular structures ranging from 5 to 50 nm as observed by high-resolution transmission electron microscopy, which was further characterized by oligomer-specific A11 antibody. Immunocytochemistry studies for oligomer treatment were evidenced with A11+ Iba1high microglia, suggesting that the phagocytosis of extracellular Tau oligomers leads to microglial activation. Also, the microglia were observed with remodeled filopodia-like actin structures upon the exposure of oligomers and aggregated Tau.

Conclusion

The peri-membrane polymerization of actin filament and co-localization of Iba1 relate to the microglial movements for phagocytosis. Here, these findings suggest that microglia modified actin cytoskeleton for phagocytosis and rapid clearance of Tau oligomers in Alzheimer’s disease condition.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Mandelkow E-M, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012;2:a006247.PubMedPubMedCentralCrossRef Mandelkow E-M, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012;2:a006247.PubMedPubMedCentralCrossRef
4.
go back to reference Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VMY. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. 2011;2:252.PubMedCrossRef Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VMY. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. 2011;2:252.PubMedCrossRef
5.
go back to reference Rane JS, Kumari A, Panda D. An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization. Biochem J. 2019;476:1401–17.PubMedCrossRef Rane JS, Kumari A, Panda D. An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization. Biochem J. 2019;476:1401–17.PubMedCrossRef
6.
go back to reference de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT. Caspase activation precedes and leads to tangles. Nature. 2010;464:1201.PubMedPubMedCentralCrossRef de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT. Caspase activation precedes and leads to tangles. Nature. 2010;464:1201.PubMedPubMedCentralCrossRef
7.
go back to reference Hanger DP, Wray S: Tau cleavage and tau aggregation in neurodegenerative disease. Portland Press Limited. Biochem Soc Trans. 2010;38(4):1016–20.PubMedCrossRef Hanger DP, Wray S: Tau cleavage and tau aggregation in neurodegenerative disease. Portland Press Limited. Biochem Soc Trans. 2010;38(4):1016–20.PubMedCrossRef
8.
go back to reference Combs B, Gamblin TC. FTDP-17 tau mutations induce distinct effects on aggregation and microtubule interactions. Biochemistry. 2012;51:8597–607.PubMedCrossRef Combs B, Gamblin TC. FTDP-17 tau mutations induce distinct effects on aggregation and microtubule interactions. Biochemistry. 2012;51:8597–607.PubMedCrossRef
9.
go back to reference Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci Res. 2006;54:197–201.PubMedCrossRef Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci Res. 2006;54:197–201.PubMedCrossRef
10.
go back to reference Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R. Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J. 2012;26:1946–59.PubMedPubMedCentralCrossRef Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R. Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J. 2012;26:1946–59.PubMedPubMedCentralCrossRef
11.
go back to reference Xia Y, Zhang G, Han C, Ma K, Guo X, Wan F, Kou L, Yin S, Liu L, Huang J. Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death Dis. 2019;10:174.PubMedPubMedCentralCrossRef Xia Y, Zhang G, Han C, Ma K, Guo X, Wan F, Kou L, Yin S, Liu L, Huang J. Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death Dis. 2019;10:174.PubMedPubMedCentralCrossRef
13.
go back to reference Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep. 2012;2:700.PubMedPubMedCentralCrossRef Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep. 2012;2:700.PubMedPubMedCentralCrossRef
14.
go back to reference Hill E, Karikari TK, Moffat KG, Richardson MJ, Wall MJ. Introduction of tau oligomers into cortical neurons alters action potential dynamics and disrupts synaptic transmission and plasticity. eNeuro. 2019;6(5):ENEURO.0166–19.PubMedPubMedCentralCrossRef Hill E, Karikari TK, Moffat KG, Richardson MJ, Wall MJ. Introduction of tau oligomers into cortical neurons alters action potential dynamics and disrupts synaptic transmission and plasticity. eNeuro. 2019;6(5):ENEURO.0166–19.PubMedPubMedCentralCrossRef
15.
go back to reference Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-β. J Neuroimmunol. 2009;210:3–12.PubMedCrossRef Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-β. J Neuroimmunol. 2009;210:3–12.PubMedCrossRef
16.
go back to reference Jiang L, Ash PE, Maziuk BF, Ballance HI, Boudeau S, Al Abdullatif A, Orlando M, Petrucelli L, Ikezu T, Wolozin B. TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathol. 2019;137:259–77.PubMedCrossRef Jiang L, Ash PE, Maziuk BF, Ballance HI, Boudeau S, Al Abdullatif A, Orlando M, Petrucelli L, Ikezu T, Wolozin B. TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathol. 2019;137:259–77.PubMedCrossRef
17.
go back to reference Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X, Goodarzi M, Pappu RV, Colby DW, Mirzaei H. Inert and seed-competent tau monomers suggest structural origins of aggregation. Elife. 2018;7:e36584.PubMedPubMedCentralCrossRef Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X, Goodarzi M, Pappu RV, Colby DW, Mirzaei H. Inert and seed-competent tau monomers suggest structural origins of aggregation. Elife. 2018;7:e36584.PubMedPubMedCentralCrossRef
18.
go back to reference Mirbaha H, Holmes BB, Sanders DW, Bieschke J, Diamond MI. Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J Biol Chem. 2015;290:14893–903.PubMedPubMedCentralCrossRef Mirbaha H, Holmes BB, Sanders DW, Bieschke J, Diamond MI. Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J Biol Chem. 2015;290:14893–903.PubMedPubMedCentralCrossRef
19.
go back to reference Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, Nicholls SB, Carlson GA, Pitstick R, Nobuhara CK. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun. 2015;6:8490.PubMedCrossRef Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, Nicholls SB, Carlson GA, Pitstick R, Nobuhara CK. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun. 2015;6:8490.PubMedCrossRef
20.
go back to reference Sonawane SK, Chinnathambi S. Prion-like propagation of post-translationally modified tau in Alzheimer’s disease: a hypothesis. J Mol Neurosci. 2018;65:480–90.PubMedCrossRef Sonawane SK, Chinnathambi S. Prion-like propagation of post-translationally modified tau in Alzheimer’s disease: a hypothesis. J Mol Neurosci. 2018;65:480–90.PubMedCrossRef
21.
go back to reference Nobuhara CK, DeVos SL, Commins C, Wegmann S, Moore BD, Roe AD, Costantino I, Frosch MP, Pitstick R, Carlson GA. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am J Pathol. 2017;187:1399–412.PubMedPubMedCentralCrossRef Nobuhara CK, DeVos SL, Commins C, Wegmann S, Moore BD, Roe AD, Costantino I, Frosch MP, Pitstick R, Carlson GA. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am J Pathol. 2017;187:1399–412.PubMedPubMedCentralCrossRef
22.
go back to reference Jin X, Yamashita T. Microglia in central nervous system repair after injury. The Journal of Biochemistry. 2016;159:491–6.PubMedCrossRef Jin X, Yamashita T. Microglia in central nervous system repair after injury. The Journal of Biochemistry. 2016;159:491–6.PubMedCrossRef
23.
go back to reference Ben Haim L, Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 2015;9:278.PubMedPubMedCentralCrossRef Ben Haim L, Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 2015;9:278.PubMedPubMedCentralCrossRef
24.
go back to reference Chen X-Q, Mobley WC. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front Neurosci. 2019;13. Chen X-Q, Mobley WC. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front Neurosci. 2019;13.
25.
go back to reference Holmes BB, Diamond MI. Prion-like properties of tau protein: the importance of extracellular tau as a therapeutic target. J Biol Chem. 2014;289:19855–61.PubMedPubMedCentralCrossRef Holmes BB, Diamond MI. Prion-like properties of tau protein: the importance of extracellular tau as a therapeutic target. J Biol Chem. 2014;289:19855–61.PubMedPubMedCentralCrossRef
26.
go back to reference Das R, Chinnathambi S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer’s disease. Cell Mol Life Sci. 2019:1–14. Das R, Chinnathambi S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer’s disease. Cell Mol Life Sci. 2019:1–14.
28.
go back to reference Chung H, Brazil MI, Soe TT, Maxfield FR. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer’s amyloid β-peptide by microglial cells. J Biol Chem. 1999;274:32301–8.PubMedCrossRef Chung H, Brazil MI, Soe TT, Maxfield FR. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer’s amyloid β-peptide by microglial cells. J Biol Chem. 1999;274:32301–8.PubMedCrossRef
29.
go back to reference Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161.PubMedPubMedCentralCrossRef Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161.PubMedPubMedCentralCrossRef
30.
go back to reference Dejanovic B, Huntley MA, De Mazière A, Meilandt WJ, Wu T, Srinivasan K, Jiang Z, Gandham V, Friedman BA, Ngu H. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron. 2018;100:1322–1336. e7.PubMedCrossRef Dejanovic B, Huntley MA, De Mazière A, Meilandt WJ, Wu T, Srinivasan K, Jiang Z, Gandham V, Friedman BA, Ngu H. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron. 2018;100:1322–1336. e7.PubMedCrossRef
31.
go back to reference Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B, Zilka N, Novak M. Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation. 2014;11:161.PubMedPubMedCentralCrossRef Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B, Zilka N, Novak M. Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation. 2014;11:161.PubMedPubMedCentralCrossRef
32.
go back to reference Funk KE, Mirbaha H, Jiang H, Holtzman DM, Diamond MI. Distinct therapeutic mechanisms of tau antibodies promoting microglial clearance versus blocking neuronal uptake. J Biol Chem. 2015;290:21652–62.PubMedPubMedCentralCrossRef Funk KE, Mirbaha H, Jiang H, Holtzman DM, Diamond MI. Distinct therapeutic mechanisms of tau antibodies promoting microglial clearance versus blocking neuronal uptake. J Biol Chem. 2015;290:21652–62.PubMedPubMedCentralCrossRef
33.
34.
go back to reference Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.PubMedCrossRef Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.PubMedCrossRef
35.
go back to reference Xie W-L, Shi Q, Zhang J, Zhang B-Y, Gong H-S, Guo Y, Wang S-B, Xu Y, Wang K, Chen C. Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K. J Mol Neurosci. 2013;51:919–32.PubMedCrossRef Xie W-L, Shi Q, Zhang J, Zhang B-Y, Gong H-S, Guo Y, Wang S-B, Xu Y, Wang K, Chen C. Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K. J Mol Neurosci. 2013;51:919–32.PubMedCrossRef
36.
go back to reference Chhabra ES, Higgs HN. The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol. 2007;9:1110.PubMedCrossRef Chhabra ES, Higgs HN. The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol. 2007;9:1110.PubMedCrossRef
37.
go back to reference David-Pfeuty T, Singer SJ. Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci. 1980;77:6687–91.PubMedCrossRefPubMedCentral David-Pfeuty T, Singer SJ. Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci. 1980;77:6687–91.PubMedCrossRefPubMedCentral
38.
go back to reference Lauffenburger DA, Horwitz AF. Cell. 1996;84(Cell migration: a physically integrated molecular process):359–69.PubMedCrossRef Lauffenburger DA, Horwitz AF. Cell. 1996;84(Cell migration: a physically integrated molecular process):359–69.PubMedCrossRef
39.
go back to reference Maezawa I, Zimin PI, Wulff H, Jin L-W. Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem. 2011;286:3693–706.PubMedCrossRef Maezawa I, Zimin PI, Wulff H, Jin L-W. Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem. 2011;286:3693–706.PubMedCrossRef
40.
go back to reference Abd-El-Basset EM, Prashanth J, Lakshmi KVVA. Up-regulation of cytoskeletal proteins in activated microglia. Med Princ Pract. 2004;13:325–33.PubMedCrossRef Abd-El-Basset EM, Prashanth J, Lakshmi KVVA. Up-regulation of cytoskeletal proteins in activated microglia. Med Princ Pract. 2004;13:325–33.PubMedCrossRef
41.
go back to reference Seminotti B, Zanatta Â, Ribeiro RT, da Rosa MS, Wyse AT, Leipnitz G, Wajner M. Disruption of brain redox homeostasis, microglia activation and neuronal damage induced by Intracerebroventricular administration of S-Adenosylmethionine to developing rats. Mol Neurobiol. 2019;56:2760–73.PubMedCrossRef Seminotti B, Zanatta Â, Ribeiro RT, da Rosa MS, Wyse AT, Leipnitz G, Wajner M. Disruption of brain redox homeostasis, microglia activation and neuronal damage induced by Intracerebroventricular administration of S-Adenosylmethionine to developing rats. Mol Neurobiol. 2019;56:2760–73.PubMedCrossRef
42.
go back to reference Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208–15.PubMedCrossRef Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208–15.PubMedCrossRef
43.
go back to reference Lively S, Schlichter LC. The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. J Neuroinflammation. 2013;10:843.CrossRef Lively S, Schlichter LC. The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. J Neuroinflammation. 2013;10:843.CrossRef
44.
go back to reference Stansley B, Post J, Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation. 2012;9:115.PubMedPubMedCentralCrossRef Stansley B, Post J, Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation. 2012;9:115.PubMedPubMedCentralCrossRef
45.
go back to reference Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS omega. 2019;4:12833–40.PubMedPubMedCentralCrossRef Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS omega. 2019;4:12833–40.PubMedPubMedCentralCrossRef
46.
go back to reference Gorantla NV, Landge VG, Nagaraju PG, Priyadarshini CGP, Balaraman E, Chinnathambi S. Molecular cobalt (II) complexes for tau polymerization in Alzheimer’s disease. ACS Omega. 2019;4(16):16702–714.PubMedPubMedCentralCrossRef Gorantla NV, Landge VG, Nagaraju PG, Priyadarshini CGP, Balaraman E, Chinnathambi S. Molecular cobalt (II) complexes for tau polymerization in Alzheimer’s disease. ACS Omega. 2019;4(16):16702–714.PubMedPubMedCentralCrossRef
47.
go back to reference Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hübschmann S, Redecke L, Mandelkow E-M, Müller DJ, Mandelkow E. Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem. 2014;289:34389–407.PubMedPubMedCentralCrossRef Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hübschmann S, Redecke L, Mandelkow E-M, Müller DJ, Mandelkow E. Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem. 2014;289:34389–407.PubMedPubMedCentralCrossRef
48.
go back to reference Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A. Granular tau oligomers as intermediates of tau filaments. Biochemistry. 2007;46:3856–61.PubMedCrossRef Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A. Granular tau oligomers as intermediates of tau filaments. Biochemistry. 2007;46:3856–61.PubMedCrossRef
49.
go back to reference Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM-Y. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.PubMedCrossRef Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM-Y. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.PubMedCrossRef
50.
go back to reference Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci. 2014;34:4260–72.PubMedPubMedCentralCrossRef Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci. 2014;34:4260–72.PubMedPubMedCentralCrossRef
51.
go back to reference Kaniyappan S, Chandupatla RR, Mandelkow E-M, Mandelkow E. Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimers Dement. 2017;13:1270–91.PubMedCrossRef Kaniyappan S, Chandupatla RR, Mandelkow E-M, Mandelkow E. Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimers Dement. 2017;13:1270–91.PubMedCrossRef
52.
go back to reference Santa-María I, Pérez M, Hernández F, Avila J, Moreno FJ. Characteristics of the binding of thioflavin S to tau paired helical filaments. J Alzheimers Dis. 2006;9:279–85.PubMedCrossRef Santa-María I, Pérez M, Hernández F, Avila J, Moreno FJ. Characteristics of the binding of thioflavin S to tau paired helical filaments. J Alzheimers Dis. 2006;9:279–85.PubMedCrossRef
53.
go back to reference Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci. 2017;4:160696.PubMedPubMedCentralCrossRef Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci. 2017;4:160696.PubMedPubMedCentralCrossRef
54.
go back to reference Flach K, Hilbrich I, Schiffmann A, Gärtner U, Krüger M, Leonhardt M, Waschipky H, Wick L, Arendt T, Holzer M. Tau oligomers impair artificial membrane integrity and cellular viability. J Biol Chem. 2012;287:43223–33.PubMedPubMedCentralCrossRef Flach K, Hilbrich I, Schiffmann A, Gärtner U, Krüger M, Leonhardt M, Waschipky H, Wick L, Arendt T, Holzer M. Tau oligomers impair artificial membrane integrity and cellular viability. J Biol Chem. 2012;287:43223–33.PubMedPubMedCentralCrossRef
55.
go back to reference Karikari TK, Nagel DA, Grainger A, Clarke-Bland C, Hill EJ, Moffat KG. Preparation of stable tau oligomers for cellular and biochemical studies. Anal Biochem. 2019;566:67–74.PubMedPubMedCentralCrossRef Karikari TK, Nagel DA, Grainger A, Clarke-Bland C, Hill EJ, Moffat KG. Preparation of stable tau oligomers for cellular and biochemical studies. Anal Biochem. 2019;566:67–74.PubMedPubMedCentralCrossRef
56.
go back to reference Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011;585:3798–805.PubMedCrossRef Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011;585:3798–805.PubMedCrossRef
57.
go back to reference Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman BT. Formation, release, and internalization of stable tau oligomers in cells. J Neurochem. 2016;139:1163–74.PubMedPubMedCentralCrossRef Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman BT. Formation, release, and internalization of stable tau oligomers in cells. J Neurochem. 2016;139:1163–74.PubMedPubMedCentralCrossRef
58.
go back to reference Wang C, Telpoukhovskaia MA, Bahr BA, Chen X, Gan L. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Curr Opin Neurobiol. 2018;48:52–8.PubMedCrossRef Wang C, Telpoukhovskaia MA, Bahr BA, Chen X, Gan L. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Curr Opin Neurobiol. 2018;48:52–8.PubMedCrossRef
59.
go back to reference Evans LD, Wassmer T, Fraser G, Smith J, Perkinton M, Billinton A, Livesey FJ. Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep. 2018;22:3612–24.PubMedPubMedCentralCrossRef Evans LD, Wassmer T, Fraser G, Smith J, Perkinton M, Billinton A, Livesey FJ. Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Rep. 2018;22:3612–24.PubMedPubMedCentralCrossRef
60.
go back to reference Rauch JN, Chen JJ, Sorum AW, Miller GM, Sharf T, See SK, Hsieh-Wilson LC, Kampmann M, Kosik KS. Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs). Sci Rep. 2018;8:6382.PubMedPubMedCentralCrossRef Rauch JN, Chen JJ, Sorum AW, Miller GM, Sharf T, See SK, Hsieh-Wilson LC, Kampmann M, Kosik KS. Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs). Sci Rep. 2018;8:6382.PubMedPubMedCentralCrossRef
61.
go back to reference Colton CA, Wilcock DM: Assessing activation states in microglia. CNS Neurol Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 2010, 9:174–191. Colton CA, Wilcock DM: Assessing activation states in microglia. CNS Neurol Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 2010, 9:174–191.
62.
go back to reference Meng X-L, Chen C-L, Liu Y-Y, Su S-J, Gou J-M, Huan F-N, Wang D, Liu H-S, Ben S-B, Lu J. Selenoprotein SELENOK enhances the migration and phagocytosis of microglial cells by increasing the cytosolic free Ca2+ level resulted from the up-regulation of IP3R. Neuroscience. 2019;406:38–49.PubMedCrossRef Meng X-L, Chen C-L, Liu Y-Y, Su S-J, Gou J-M, Huan F-N, Wang D, Liu H-S, Ben S-B, Lu J. Selenoprotein SELENOK enhances the migration and phagocytosis of microglial cells by increasing the cytosolic free Ca2+ level resulted from the up-regulation of IP3R. Neuroscience. 2019;406:38–49.PubMedCrossRef
63.
go back to reference Wang L, Jiang Q, Chu J, Lin L, Li X-G, Chai G-S, Wang Q, Wang J-Z, Tian Q. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS One. 2013;8:e76057.PubMedPubMedCentralCrossRef Wang L, Jiang Q, Chu J, Lin L, Li X-G, Chai G-S, Wang Q, Wang J-Z, Tian Q. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS One. 2013;8:e76057.PubMedPubMedCentralCrossRef
64.
go back to reference Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K. IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci. 2009;106:8032–7.PubMedCrossRefPubMedCentral Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K. IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci. 2009;106:8032–7.PubMedCrossRefPubMedCentral
65.
go back to reference Uhlemann R, Gertz K, Boehmerle W, Schwarz T, Nolte C, Freyer D, Kettenmann H, Endres M, Kronenberg G. Actin dynamics shape microglia effector functions. Brain Struct Funct. 2016;221:2717–34.PubMedCrossRef Uhlemann R, Gertz K, Boehmerle W, Schwarz T, Nolte C, Freyer D, Kettenmann H, Endres M, Kronenberg G. Actin dynamics shape microglia effector functions. Brain Struct Funct. 2016;221:2717–34.PubMedCrossRef
66.
go back to reference Elmore MRP, Hohsfield LA, Kramár E, Soreq L, Lee RJ, Pham ST, Najafi AR, Spangenberg EE, Wood MA, West BL. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell. 2018;17:e12832.PubMedPubMedCentralCrossRef Elmore MRP, Hohsfield LA, Kramár E, Soreq L, Lee RJ, Pham ST, Najafi AR, Spangenberg EE, Wood MA, West BL. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell. 2018;17:e12832.PubMedPubMedCentralCrossRef
67.
go back to reference Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C, Obermüller U, Wegenast-Braun BM, Neher JJ, Martus P, Kohsaka S. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci. 2017;20:1371.PubMedCrossRef Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C, Obermüller U, Wegenast-Braun BM, Neher JJ, Martus P, Kohsaka S. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci. 2017;20:1371.PubMedCrossRef
68.
go back to reference Neiva I, Malva JO, Valero J. Can we talk about microglia without neurons? A discussion of microglial cell autonomous properties in culture. Front Cell Neurosci. 2014;8:202.PubMedPubMedCentralCrossRef Neiva I, Malva JO, Valero J. Can we talk about microglia without neurons? A discussion of microglial cell autonomous properties in culture. Front Cell Neurosci. 2014;8:202.PubMedPubMedCentralCrossRef
69.
go back to reference Liu H-C, Zheng M-H, Du Y-L, Wang L, Kuang F, Qin H-Y, Zhang B-F, Han H. N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol. 2012;278:84–90.PubMedCrossRef Liu H-C, Zheng M-H, Du Y-L, Wang L, Kuang F, Qin H-Y, Zhang B-F, Han H. N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol. 2012;278:84–90.PubMedCrossRef
70.
go back to reference Gorantla NV, Chinnathambi S. Tau protein squired by molecular chaperones during Alzheimer’s disease. J Mol Neurosci. 2018;66:356–68.PubMedCrossRef Gorantla NV, Chinnathambi S. Tau protein squired by molecular chaperones during Alzheimer’s disease. J Mol Neurosci. 2018;66:356–68.PubMedCrossRef
72.
go back to reference Gorantla NV, Shkumatov AV, Chinnathambi S. Conformational dynamics of intracellular tau protein revealed by CD and SAXS. In Tau Protein Springer. 2017;1523:3–20. Gorantla NV, Shkumatov AV, Chinnathambi S. Conformational dynamics of intracellular tau protein revealed by CD and SAXS. In Tau Protein Springer. 2017;1523:3–20.
74.
go back to reference Kronenberg J, Merkel L, Heckers S, Gudi V, Schwab HM, Stangel M. Investigation of neuregulin-1 and glial cell-derived neurotrophic factor in rodent astrocytes and microglia. J Mol Neurosci. 2019;67:484–93.PubMedCrossRef Kronenberg J, Merkel L, Heckers S, Gudi V, Schwab HM, Stangel M. Investigation of neuregulin-1 and glial cell-derived neurotrophic factor in rodent astrocytes and microglia. J Mol Neurosci. 2019;67:484–93.PubMedCrossRef
75.
76.
go back to reference Brelstaff J, Tolkovsky AM, Ghetti B, Goedert M, Spillantini MG. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell reports. 2018;24:1939–1948. e1934.PubMedCrossRef Brelstaff J, Tolkovsky AM, Ghetti B, Goedert M, Spillantini MG. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell reports. 2018;24:1939–1948. e1934.PubMedCrossRef
77.
go back to reference Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, Hyman BT. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflammation. 2018;15:269.PubMedPubMedCentralCrossRef Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, Hyman BT. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflammation. 2018;15:269.PubMedPubMedCentralCrossRef
78.
79.
go back to reference Sogn CJ, Puchades M, Gundersen V. Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin–a postembedding immunogold study in the healthy rat brain. Eur J Neurosci. 2013;38:2030–40.PubMedCrossRef Sogn CJ, Puchades M, Gundersen V. Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin–a postembedding immunogold study in the healthy rat brain. Eur J Neurosci. 2013;38:2030–40.PubMedCrossRef
80.
go back to reference Rajan WD, Wojtas B, Gielniewski B, Gieryng A, Zawadzka M, Kaminska B. Dissecting functional phenotypes of microglia and macrophages in the rat brain after transient cerebral ischemia. Glia. 2019;67:232–45.PubMedCrossRef Rajan WD, Wojtas B, Gielniewski B, Gieryng A, Zawadzka M, Kaminska B. Dissecting functional phenotypes of microglia and macrophages in the rat brain after transient cerebral ischemia. Glia. 2019;67:232–45.PubMedCrossRef
81.
go back to reference Franco-Bocanegra DK, McAuley C, Nicoll JA, Boche D. Molecular mechanisms of microglial motility: changes in ageing and Alzheimer’s disease. Cells. 2019;8:639.PubMedCentralCrossRef Franco-Bocanegra DK, McAuley C, Nicoll JA, Boche D. Molecular mechanisms of microglial motility: changes in ageing and Alzheimer’s disease. Cells. 2019;8:639.PubMedCentralCrossRef
82.
go back to reference Bollmann L, Koser DE, Shahapure R, Gautier HOB, Holzapfel GA, Scarcelli G, Gather MC, Ulbricht E, Franze K. Microglia mechanics: immune activation alters traction forces and durotaxis. Front Cell Neurosci. 2015;9:363.PubMedPubMedCentralCrossRef Bollmann L, Koser DE, Shahapure R, Gautier HOB, Holzapfel GA, Scarcelli G, Gather MC, Ulbricht E, Franze K. Microglia mechanics: immune activation alters traction forces and durotaxis. Front Cell Neurosci. 2015;9:363.PubMedPubMedCentralCrossRef
83.
go back to reference Barcia C, Ros CM, Annese V, Sauvage C-d, Angeles M, Ros-Bernal F, Gómez a, Yuste JE, Campuzano CM, De Pablos V, Fernandez-Villalba E. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012;2:809.PubMedPubMedCentralCrossRef Barcia C, Ros CM, Annese V, Sauvage C-d, Angeles M, Ros-Bernal F, Gómez a, Yuste JE, Campuzano CM, De Pablos V, Fernandez-Villalba E. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012;2:809.PubMedPubMedCentralCrossRef
84.
go back to reference Stuart LM, Bell SA, Stewart CR, Silver JM, Richard J, Goss JL, Tseng AA, Zhang A, El Khoury JB, Moore KJ. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J Biol Chem. 2007;282:27392–401.PubMedCrossRef Stuart LM, Bell SA, Stewart CR, Silver JM, Richard J, Goss JL, Tseng AA, Zhang A, El Khoury JB, Moore KJ. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J Biol Chem. 2007;282:27392–401.PubMedCrossRef
85.
go back to reference Siddiqui TA, Lively S, Vincent C, Schlichter LC. Regulation of podosome formation, microglial migration and invasion by Ca 2+ signaling molecules expressed in podosomes. J Neuroinflammation. 2012;9:250.PubMedPubMedCentralCrossRef Siddiqui TA, Lively S, Vincent C, Schlichter LC. Regulation of podosome formation, microglial migration and invasion by Ca 2+ signaling molecules expressed in podosomes. J Neuroinflammation. 2012;9:250.PubMedPubMedCentralCrossRef
86.
go back to reference Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem. 2004;88:844–56.PubMedCrossRef Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem. 2004;88:844–56.PubMedCrossRef
Metadata
Title
Phagocytosis of full-length Tau oligomers by Actin-remodeling of activated microglia
Publication date
01-12-2020
Published in
Journal of Neuroinflammation / Issue 1/2020
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1694-y

Other articles of this Issue 1/2020

Journal of Neuroinflammation 1/2020 Go to the issue