Skip to main content
Top
Published in: BMC Immunology 1/2019

Open Access 01-12-2019 | Alzheimer's Disease | Research article

Active immunization with norovirus P particle-based amyloid-β chimeric protein vaccine induces high titers of anti-Aβ antibodies in mice

Authors: Ping Yang, Yongqing Guo, Yao Sun, Bin Yu, Haihong Zhang, Jiaxin Wu, Xianghui Yu, Hui Wu, Wei Kong

Published in: BMC Immunology | Issue 1/2019

Login to get access

Abstract

Background

Active immunotherapy targeting amyloid-β (Aβ) is a promising treatment for Alzheimer’s disease (AD). Numerous preclinical studies and clinical trials demonstrated that a safe and effective AD vaccine should induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ.

Results

An untagged Aβ1–6 chimeric protein vaccine against AD based on norovirus (NoV) P particle was expressed in Escherichia coli and obtained by sequential chromatography. Analysis of protein characteristics showed that the untagged Aβ1–6 chimeric protein expressed in soluble form exhibited the highest particle homogeneity, with highest purity and minimal host cell protein (HCP) and residual DNA content. Importantly, the untagged Aβ1–6 chimeric soluble protein could induce the strongest Aβ-specific humoral immune responses without activation of harmful Aβ-specific T cells in mice.

Conclusions

The untagged Aβ1–6 chimeric protein vaccine is safe and highly immunogenic. Further research will determine the efficacy in cognitive improvement and disease progression delay.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Herrera AC, Prince M, Knapp M, Karagiannidou M, Guerchet M. World Alzheimer report 2016: improving healthcare for people with dementia. Coverage: Quality and costs now and in the future; 2016. Herrera AC, Prince M, Knapp M, Karagiannidou M, Guerchet M. World Alzheimer report 2016: improving healthcare for people with dementia. Coverage: Quality and costs now and in the future; 2016.
3.
go back to reference Catindig JA, Venketasubramanian N, Ikram MK, Chen C. Epidemiology of dementia in Asia: insights on prevalence, trends and novel risk factors. J Neurol Sci. 2012;321(1–2):11–6.PubMedCrossRef Catindig JA, Venketasubramanian N, Ikram MK, Chen C. Epidemiology of dementia in Asia: insights on prevalence, trends and novel risk factors. J Neurol Sci. 2012;321(1–2):11–6.PubMedCrossRef
4.
go back to reference Niu H, I Á-Á, Guillén-Grima F, Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer's disease in Europe: a meta-analysis. Neurologia. 2016;32(8):523–32.PubMedCrossRef Niu H, I Á-Á, Guillén-Grima F, Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer's disease in Europe: a meta-analysis. Neurologia. 2016;32(8):523–32.PubMedCrossRef
5.
go back to reference Brown L, Hansnata E, Hai AL. Economic cost of dementia in Australia 2016–2056; 2017. Brown L, Hansnata E, Hai AL. Economic cost of dementia in Australia 2016–2056; 2017.
6.
go back to reference Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80(19):1778.PubMedPubMedCentralCrossRef Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80(19):1778.PubMedPubMedCentralCrossRef
7.
go back to reference Tobias M, Yeh LC, Johnson E. Burden of Alzheimer's disease: population-based estimates and projections for New Zealand, 2006-2031. Aust N Z J Psychiatry. 2008;42(9):828–36.PubMedCrossRef Tobias M, Yeh LC, Johnson E. Burden of Alzheimer's disease: population-based estimates and projections for New Zealand, 2006-2031. Aust N Z J Psychiatry. 2008;42(9):828–36.PubMedCrossRef
8.
go back to reference Fiest KM, Jetté N, Roberts JI, Maxwell CJ, Smith EE, Black SE, Blaikie L, Cohen A, Day L, Holroydleduc J. The prevalence and incidence of dementia: a systematic review and meta-analysis. Can J Neurol Sci. 2016;43(S1):S3–S50.PubMedCrossRef Fiest KM, Jetté N, Roberts JI, Maxwell CJ, Smith EE, Black SE, Blaikie L, Cohen A, Day L, Holroydleduc J. The prevalence and incidence of dementia: a systematic review and meta-analysis. Can J Neurol Sci. 2016;43(S1):S3–S50.PubMedCrossRef
9.
go back to reference Montgomery W, Ueda K, Jorgensen M, Stathis S, Cheng Y, Nakamura T. Epidemiology, associated burden, and current clinical practice for the diagnosis and management of Alzheimerâ ™s disease in Japan. Clinicoeconomics & Outcomes Research Ceor. 2018;10:13.CrossRef Montgomery W, Ueda K, Jorgensen M, Stathis S, Cheng Y, Nakamura T. Epidemiology, associated burden, and current clinical practice for the diagnosis and management of Alzheimerâ ™s disease in Japan. Clinicoeconomics & Outcomes Research Ceor. 2018;10:13.CrossRef
10.
go back to reference Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H. Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet. 2013;381(9882):2016–23.PubMedCrossRef Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H. Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet. 2013;381(9882):2016–23.PubMedCrossRef
11.
go back to reference Wu YT, Grant WB, Prina AM, Lee HY, Brayne C. Nutrition and the prevalence of dementia in mainland China, Hong Kong, and Taiwan: an ecological study. Journal of Alzheimers Disease Jad. 2015;44(4):1099.CrossRef Wu YT, Grant WB, Prina AM, Lee HY, Brayne C. Nutrition and the prevalence of dementia in mainland China, Hong Kong, and Taiwan: an ecological study. Journal of Alzheimers Disease Jad. 2015;44(4):1099.CrossRef
12.
go back to reference Lleó A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med. 2006;57(57):513.PubMedCrossRef Lleó A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med. 2006;57(57):513.PubMedCrossRef
13.
go back to reference Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.PubMedCrossRef Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.PubMedCrossRef
14.
go back to reference Hwang JH. A Review of Alzheimer’s Disease Pathogenesis: The Amyloid Cascade Hypothesis and Potential Strategies for Treatment; 2008. Hwang JH. A Review of Alzheimer’s Disease Pathogenesis: The Amyloid Cascade Hypothesis and Potential Strategies for Treatment; 2008.
16.
go back to reference Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18.PubMedCrossRef Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18.PubMedCrossRef
17.
go back to reference Brothers HM, Gosztyla ML, Robinson SR. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front Aging Neurosci. 2018;10:118.PubMedPubMedCentralCrossRef Brothers HM, Gosztyla ML, Robinson SR. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front Aging Neurosci. 2018;10:118.PubMedPubMedCentralCrossRef
18.
go back to reference Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnsonwood K, Khan K. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173.PubMedCrossRef Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnsonwood K, Khan K. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173.PubMedCrossRef
19.
go back to reference Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol. 2014;10(3):405–19.PubMedCrossRef Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol. 2014;10(3):405–19.PubMedCrossRef
20.
21.
go back to reference Lobello K, Ryan JM, Liu E, Rippon G, Black R. Targeting Beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012(2012):628070.PubMedPubMedCentral Lobello K, Ryan JM, Liu E, Rippon G, Black R. Targeting Beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012(2012):628070.PubMedPubMedCentral
22.
go back to reference Gilman S, Koller M, Black R S, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial[J]. Neurology. 2005;64(9):1553-562. Gilman S, Koller M, Black R S, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial[J]. Neurology. 2005;64(9):1553-562.
23.
go back to reference Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer's disease. Expert Review of Vaccines. 2016;15(3):401–15.PubMedCrossRef Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer's disease. Expert Review of Vaccines. 2016;15(3):401–15.PubMedCrossRef
24.
go back to reference Farlow MR, Andreasen N, Riviere ME, Vostiar I, Vitaliti A, Sovago J, Caputo A, Winblad B, Graf A. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):1–13.CrossRef Farlow MR, Andreasen N, Riviere ME, Vostiar I, Vitaliti A, Sovago J, Caputo A, Winblad B, Graf A. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):1–13.CrossRef
25.
go back to reference Vandenberghe R, Riviere ME, Caputo A, Sovago J, Maguire RP, Farlow M, Marotta G, Sanchez-Valle R, Scheltens P, Ryan JM: Active Aβ immunotherapy CAD106 in Alzheimer disease: A phase-2b study. Alzheimers & Dementia Translational Research & Clinical Interventions. 2017;3(1):10-22. Vandenberghe R, Riviere ME, Caputo A, Sovago J, Maguire RP, Farlow M, Marotta G, Sanchez-Valle R, Scheltens P, Ryan JM: Active Aβ immunotherapy CAD106 in Alzheimer disease: A phase-2b study. Alzheimers & Dementia Translational Research & Clinical Interventions. 2017;3(1):10-22.
26.
go back to reference Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK. X-ray crystallographic structure of the Norwalk virus capsid. Science. 1999;286(5438):287–90.PubMedCrossRef Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK. X-ray crystallographic structure of the Norwalk virus capsid. Science. 1999;286(5438):287–90.PubMedCrossRef
27.
go back to reference Tan M, Hegde RS, Jiang X. The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol. 2004;78(12):6233.PubMedPubMedCentralCrossRef Tan M, Hegde RS, Jiang X. The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol. 2004;78(12):6233.PubMedPubMedCentralCrossRef
28.
go back to reference Tan M, Jiang X. The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J Virol. 2005;79(22):14017.PubMedPubMedCentralCrossRef Tan M, Jiang X. The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J Virol. 2005;79(22):14017.PubMedPubMedCentralCrossRef
29.
go back to reference Bu W, Mamedova A, Tan M, Xia M, Jiang X, Hegde RS. Structural basis for the receptor binding specificity of Norwalk virus. J Virol. 2008;82(11):5340–7.PubMedPubMedCentralCrossRef Bu W, Mamedova A, Tan M, Xia M, Jiang X, Hegde RS. Structural basis for the receptor binding specificity of Norwalk virus. J Virol. 2008;82(11):5340–7.PubMedPubMedCentralCrossRef
30.
go back to reference Tan M, Fang PA, Xia M, Chachiyo T, Jiang W, Jiang X. Terminal modifications of norovirus P domain resulted in a new type of subviral particles, the small P particles. Virology. 2011;410(2):345.PubMedCrossRef Tan M, Fang PA, Xia M, Chachiyo T, Jiang W, Jiang X. Terminal modifications of norovirus P domain resulted in a new type of subviral particles, the small P particles. Virology. 2011;410(2):345.PubMedCrossRef
31.
go back to reference Tan M, Jiang X. Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine. 2012;7(6):889–97.PubMedCrossRef Tan M, Jiang X. Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine. 2012;7(6):889–97.PubMedCrossRef
32.
33.
go back to reference Elaish M, Kang KI, Xia M, Ali A, Shany SAS, Wang L, Jiang X, Lee CW. Immunogenicity and protective efficacy of the norovirus P particle-M2e chimeric vaccine in chickens. Vaccine. 2015;33(38):4901.PubMedCrossRef Elaish M, Kang KI, Xia M, Ali A, Shany SAS, Wang L, Jiang X, Lee CW. Immunogenicity and protective efficacy of the norovirus P particle-M2e chimeric vaccine in chickens. Vaccine. 2015;33(38):4901.PubMedCrossRef
34.
go back to reference Tan M, Xia M, Huang P, Wang L, Zhong W, Mcneal M, Wei C, Jiang X. Norovirus P particle as a platform for antigen presentation. Procedia in Vaccinology. 2011;4:19–26.CrossRef Tan M, Xia M, Huang P, Wang L, Zhong W, Mcneal M, Wei C, Jiang X. Norovirus P particle as a platform for antigen presentation. Procedia in Vaccinology. 2011;4:19–26.CrossRef
35.
go back to reference Tan M, Huang P, Xia M, Fang PA, Zhong W, Mcneal M, Wei C, Jiang W, Jiang X. Norovirus P particle, a novel platform for vaccine development and antibody production. J Virol. 2011;85(2):753.PubMedCrossRef Tan M, Huang P, Xia M, Fang PA, Zhong W, Mcneal M, Wei C, Jiang W, Jiang X. Norovirus P particle, a novel platform for vaccine development and antibody production. J Virol. 2011;85(2):753.PubMedCrossRef
36.
go back to reference Fu L, Li Y, Hu Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle: an excellent vaccine platform for antibody production against Alzheimer's disease. Immunol Lett. 2015;168(1):22–30.PubMedCrossRef Fu L, Li Y, Hu Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle: an excellent vaccine platform for antibody production against Alzheimer's disease. Immunol Lett. 2015;168(1):22–30.PubMedCrossRef
37.
go back to reference Fu L, Li Y, Hu Y, Zheng Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle-based active Aβ immunotherapy elicits sufficient immunogenicity and improves cognitive capacity in a mouse model of Alzheimer’s disease. Sci Rep. 2017;7:41041.PubMedPubMedCentralCrossRef Fu L, Li Y, Hu Y, Zheng Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle-based active Aβ immunotherapy elicits sufficient immunogenicity and improves cognitive capacity in a mouse model of Alzheimer’s disease. Sci Rep. 2017;7:41041.PubMedPubMedCentralCrossRef
39.
go back to reference Fonda I, Kenig M, Gabercporekar V, Pristovaek P, Menart V. Attachment of histidine tags to recombinant tumor necrosis factor-alpha drastically changes its properties. Sci World J. 2002;2:1312–25.CrossRef Fonda I, Kenig M, Gabercporekar V, Pristovaek P, Menart V. Attachment of histidine tags to recombinant tumor necrosis factor-alpha drastically changes its properties. Sci World J. 2002;2:1312–25.CrossRef
40.
go back to reference Wu J, Filutowicz M. Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale. Acta Biochim Pol. 1999;46(3):591.PubMed Wu J, Filutowicz M. Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale. Acta Biochim Pol. 1999;46(3):591.PubMed
41.
go back to reference Qazi S, Chew R, Bay DC, Turner RJ. Structural and functional comparison of hexahistidine tagged and untagged forms of small multidrug resistance protein, EmrE. Biochemistry & Biophysics Reports. 2015;1(1):22–32.CrossRef Qazi S, Chew R, Bay DC, Turner RJ. Structural and functional comparison of hexahistidine tagged and untagged forms of small multidrug resistance protein, EmrE. Biochemistry & Biophysics Reports. 2015;1(1):22–32.CrossRef
42.
go back to reference Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B. Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 2010;12(7):1313–22.CrossRef Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B. Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 2010;12(7):1313–22.CrossRef
43.
go back to reference Lu F, Hao J, Yu Y, Yu B, Zhang H, Wu J, Yin Y, Yu X, Hui W, Wei K. Characterization of NoV P particle-based chimeric protein vaccines developed from two different expression systems. Protein Expression & Purification. 2017;130:28–34.CrossRef Lu F, Hao J, Yu Y, Yu B, Zhang H, Wu J, Yin Y, Yu X, Hui W, Wei K. Characterization of NoV P particle-based chimeric protein vaccines developed from two different expression systems. Protein Expression & Purification. 2017;130:28–34.CrossRef
44.
go back to reference Kumar A, Singh A. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.PubMedCrossRef Kumar A, Singh A. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.PubMedCrossRef
45.
go back to reference Felice FGD, Ferreira ST. β-Amyloid production, aggregation, and clearance as targets for therapy in Alzheimer's disease. Cellular Mol Neurobiol. 2002;22(5–6):545–63.CrossRef Felice FGD, Ferreira ST. β-Amyloid production, aggregation, and clearance as targets for therapy in Alzheimer's disease. Cellular Mol Neurobiol. 2002;22(5–6):545–63.CrossRef
46.
47.
go back to reference Prins ND. Immunotherapy against amyloid-β in Alzheimer’s disease: an overview; 2016.CrossRef Prins ND. Immunotherapy against amyloid-β in Alzheimer’s disease: an overview; 2016.CrossRef
48.
go back to reference Wiessner C, Wiederhold KH, Tissot AC, Frey P, Danner S, Jacobson LH, Jennings GT, Lüönd R, Ortmann R, Reichwald J. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci. 2011;31(25):9323–31.PubMedPubMedCentralCrossRef Wiessner C, Wiederhold KH, Tissot AC, Frey P, Danner S, Jacobson LH, Jennings GT, Lüönd R, Ortmann R, Reichwald J. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci. 2011;31(25):9323–31.PubMedPubMedCentralCrossRef
49.
go back to reference Winblad B, Farlow M, Blennow K, Vostiar I, Imbert G, Tomovic A, Quarg P, Riviere ME, Andreasen N, Graf A: Aβ-specific antibodies induced by active immunotherapy CAD106 engage Aβ in plasma in AD patients. Alzheimers Dementia 2011, 7(4):S334-S334. Winblad B, Farlow M, Blennow K, Vostiar I, Imbert G, Tomovic A, Quarg P, Riviere ME, Andreasen N, Graf A: Aβ-specific antibodies induced by active immunotherapy CAD106 engage Aβ in plasma in AD patients. Alzheimers Dementia 2011, 7(4):S334-S334.
50.
go back to reference Vellas B, Black R, Thal L, et al. Long-Term Follow-Up of Patients Immunized with AN1792: Reduced Functional Decline in Antibody Responders[J]. Current Alzheimer Research. 2009;6(2):144-151. Vellas B, Black R, Thal L, et al. Long-Term Follow-Up of Patients Immunized with AN1792: Reduced Functional Decline in Antibody Responders[J]. Current Alzheimer Research. 2009;6(2):144-151.
51.
go back to reference B W AN, L M AF, G I TD, RP M KB, J L MS. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer's disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 2012;11(7):597–604.CrossRef B W AN, L M AF, G I TD, RP M KB, J L MS. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer's disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 2012;11(7):597–604.CrossRef
52.
go back to reference Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology. 2003;61(1):46–54.PubMedCrossRef Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology. 2003;61(1):46–54.PubMedCrossRef
53.
go back to reference Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS. Progress in the active immunotherapeutic approach to Alzheimer's disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis. 2008;5(3–4):194–6.PubMedCrossRef Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS. Progress in the active immunotherapeutic approach to Alzheimer's disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis. 2008;5(3–4):194–6.PubMedCrossRef
54.
go back to reference Wang X, Hunter A, Mozier N. Host cell proteins in biologics development: identification, quantitation and risk assessment. Biotechnol Bioeng. 2010;103(3):446–58.CrossRef Wang X, Hunter A, Mozier N. Host cell proteins in biologics development: identification, quantitation and risk assessment. Biotechnol Bioeng. 2010;103(3):446–58.CrossRef
55.
go back to reference Peden K, Sheng L, Pal A, Lewis A. Biological activity of residual cell-substrate DNA. Dev Biol. 2006;123:45–53. Peden K, Sheng L, Pal A, Lewis A. Biological activity of residual cell-substrate DNA. Dev Biol. 2006;123:45–53.
56.
go back to reference Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23.PubMedCrossRef Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23.PubMedCrossRef
57.
go back to reference Boche D, Denham N, Holmes C, Nicoll JAR. Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol. 2010;120(3):369–84.PubMedCrossRef Boche D, Denham N, Holmes C, Nicoll JAR. Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol. 2010;120(3):369–84.PubMedCrossRef
58.
go back to reference Lacosta AM, Pascuallucas M, Pesini P, Casabona D, Pérezgrijalba V, Marcoscampos I, Sarasa L, Canudas J, Badi H, Monleón I. Safety, tolerability and immunogenicity of an active anti-Aβ 40 vaccine (ABvac40) in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase I trial. Alzheimers Res Ther. 2018;10(1):12.PubMedPubMedCentralCrossRef Lacosta AM, Pascuallucas M, Pesini P, Casabona D, Pérezgrijalba V, Marcoscampos I, Sarasa L, Canudas J, Badi H, Monleón I. Safety, tolerability and immunogenicity of an active anti-Aβ 40 vaccine (ABvac40) in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase I trial. Alzheimers Res Ther. 2018;10(1):12.PubMedPubMedCentralCrossRef
59.
go back to reference Tamminen K, Huhti L, Koho T, Lappalainen S, Hytönen VP, Vesikari T, Blazevic V. A comparison of immunogenicity of norovirus GII-4 virus-like particles and P-particles. Immunology. 2012;135(1):89–99.PubMedPubMedCentralCrossRef Tamminen K, Huhti L, Koho T, Lappalainen S, Hytönen VP, Vesikari T, Blazevic V. A comparison of immunogenicity of norovirus GII-4 virus-like particles and P-particles. Immunology. 2012;135(1):89–99.PubMedPubMedCentralCrossRef
Metadata
Title
Active immunization with norovirus P particle-based amyloid-β chimeric protein vaccine induces high titers of anti-Aβ antibodies in mice
Authors
Ping Yang
Yongqing Guo
Yao Sun
Bin Yu
Haihong Zhang
Jiaxin Wu
Xianghui Yu
Hui Wu
Wei Kong
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2019
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-019-0289-9

Other articles of this Issue 1/2019

BMC Immunology 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.