Skip to main content
Top
Published in: Journal of Translational Medicine 1/2016

Open Access 01-12-2016 | Research

Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice

Authors: Daniele M. Guizoni, Gabriel G. Dorighello, Helena C. F. Oliveira, Maria A. Delbin, Marta H. Krieger, Ana P. Davel

Published in: Journal of Translational Medicine | Issue 1/2016

Login to get access

Abstract

Background

Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. Aerobic exercise training (AET) has been demonstrated to ameliorate atherosclerotic lesions and oxidative stress in advanced atherosclerosis. However, whether AET protects against the early mechanisms of endothelial dysfunction in familial hypercholesterolemia remains unclear. This study investigated the effects of AET on endothelial dysfunction and vascular redox status in the aortas of LDL receptor knockout mice (LDLr−/−), a genetic model of familial hypercholesterolemia.

Methods

Twelve-week-old C57BL/6J (WT) and LDLr−/− mice were divided into sedentary and exercised (AET on a treadmill 1 h/5 × per week) groups for 4 weeks. Changes in lipid profiles, endothelial function, and aortic NO, H2O2 and superoxide production were examined.

Results

Total cholesterol and triglycerides were increased in sedentary and exercised LDLr−/− mice. Endothelium-dependent relaxation induced by acetylcholine was impaired in aortas of sedentary LDLr−/− mice but not in the exercised group. Inhibition of NO synthase (NOS) activity or H2O2 decomposition by catalase abolished the differences in the acetylcholine response between the animals. No changes were noted in the relaxation response induced by NO donor sodium nitroprusside or H2O2. Neuronal NOS expression and endothelial NOS phosphorylation (Ser1177), as well as NO and H2O2 production, were reduced in aortas of sedentary LDLr−/− mice and restored by AET. Incubation with apocynin increased acetylcholine-induced relaxation in sedentary, but not exercised LDLr−/− mice, suggesting a minor participation of NADPH oxidase in the endothelium-dependent relaxation after AET. Consistent with these findings, Nox2 expression and superoxide production were reduced in the aortas of exercised compared to sedentary LDLr−/− mice. Furthermore, the aortas of sedentary LDLr−/− mice showed reduced expression of superoxide dismutase (SOD) isoforms and minor participation of Cu/Zn-dependent SODs in acetylcholine-induced, endothelium-dependent relaxation, abnormalities that were partially attenuated in exercised LDLr−/− mice.

Conclusion

The data gathered by this study suggest AET as a potential non-pharmacological therapy in the prevention of very early endothelial dysfunction and redox imbalance in familial hypercholesterolemia via increases in NO bioavailability and H2O2 production.
Literature
1.
go back to reference Vlahos AP, Naka KK, Bechlioulis A, Theoharis P, Vakalis K, Moutzouri E, et al. Endothelial dysfunction, but not structural atherosclerosis, is evident early in children with heterozygous familial hypercholesterolemia. Pediatr Cardiol. 2014;35:63–70.CrossRefPubMed Vlahos AP, Naka KK, Bechlioulis A, Theoharis P, Vakalis K, Moutzouri E, et al. Endothelial dysfunction, but not structural atherosclerosis, is evident early in children with heterozygous familial hypercholesterolemia. Pediatr Cardiol. 2014;35:63–70.CrossRefPubMed
2.
go back to reference Vita JA, Keaney JF Jr. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002;106:640–2.CrossRefPubMed Vita JA, Keaney JF Jr. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002;106:640–2.CrossRefPubMed
3.
go back to reference Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediatedgene delivery. J Clin Invest. 1993;92:883–93.CrossRefPubMedPubMedCentral Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediatedgene delivery. J Clin Invest. 1993;92:883–93.CrossRefPubMedPubMedCentral
4.
go back to reference Rabelo LA, Cortes SF, Alvarez-Leite JI, Lemos VS. Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2. Br J Pharmacol. 2003;138:1215–20.CrossRefPubMedPubMedCentral Rabelo LA, Cortes SF, Alvarez-Leite JI, Lemos VS. Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2. Br J Pharmacol. 2003;138:1215–20.CrossRefPubMedPubMedCentral
5.
go back to reference Langbein H, Hofmann A, Brunssen C, Goettsch W, Morawietz H. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice. Atheroscler Suppl. 2015;18:59–66.CrossRefPubMed Langbein H, Hofmann A, Brunssen C, Goettsch W, Morawietz H. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice. Atheroscler Suppl. 2015;18:59–66.CrossRefPubMed
6.
go back to reference Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 1994;93:1885–93.CrossRefPubMedPubMedCentral Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 1994;93:1885–93.CrossRefPubMedPubMedCentral
7.
go back to reference Moore RE, Kawashiri MA, Kitajima K, Secreto A, Millar JS, Pratico D, et al. Polipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. Arterioscler Thromb Vasc Biol. 2003;23:1914–20.CrossRefPubMed Moore RE, Kawashiri MA, Kitajima K, Secreto A, Millar JS, Pratico D, et al. Polipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. Arterioscler Thromb Vasc Biol. 2003;23:1914–20.CrossRefPubMed
8.
go back to reference Dorighello GG, Rovani JC, Luhman CJ, Paim BA, Raposo HF, Vercesi AE, et al. Food restriction by intermittent fasting induces diabetes and obesity and aggra-vates spontaneous atherosclerosis development in hypercholesterolaemic mice. Br J Nutr. 2014;111:979–86.CrossRefPubMed Dorighello GG, Rovani JC, Luhman CJ, Paim BA, Raposo HF, Vercesi AE, et al. Food restriction by intermittent fasting induces diabetes and obesity and aggra-vates spontaneous atherosclerosis development in hypercholesterolaemic mice. Br J Nutr. 2014;111:979–86.CrossRefPubMed
9.
go back to reference Capettini LS, Cortes SF, Lemos VS. Relative contribution of eNOS and nNOS to endothelium-dependent vasodilation in the mouse aorta. Eur J Pharmacol. 2010;643:260–6.CrossRefPubMed Capettini LS, Cortes SF, Lemos VS. Relative contribution of eNOS and nNOS to endothelium-dependent vasodilation in the mouse aorta. Eur J Pharmacol. 2010;643:260–6.CrossRefPubMed
10.
go back to reference Sorescu D, Weiss D, Lassegue B, Clempus RE, Szöcs K, Sorescu GP, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105:1429–35.CrossRefPubMed Sorescu D, Weiss D, Lassegue B, Clempus RE, Szöcs K, Sorescu GP, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105:1429–35.CrossRefPubMed
11.
go back to reference Laufs U, Wassmann S, Czech T, Münzel T, Eisenhauer M, Böhm M, et al. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25:809–14.CrossRefPubMed Laufs U, Wassmann S, Czech T, Münzel T, Eisenhauer M, Böhm M, et al. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25:809–14.CrossRefPubMed
12.
go back to reference Judkins CP, Diep H, Broughton BR, Mast AE, Hooker EU, Miller AA, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am J Physiol Heart Circ Physiol. 2010;298:H24–32.CrossRefPubMed Judkins CP, Diep H, Broughton BR, Mast AE, Hooker EU, Miller AA, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am J Physiol Heart Circ Physiol. 2010;298:H24–32.CrossRefPubMed
13.
go back to reference Pellegrin M, Berthelot A, Houdayer C, Gaume V, Deckert V, Laurant P. New insights into the vascular mechanisms underlying the beneficial effect of swimming training on the endothelial vasodilator function in apolipoprotein E-deficient mice. Atherosclerosis. 2007;190:35–42.CrossRefPubMed Pellegrin M, Berthelot A, Houdayer C, Gaume V, Deckert V, Laurant P. New insights into the vascular mechanisms underlying the beneficial effect of swimming training on the endothelial vasodilator function in apolipoprotein E-deficient mice. Atherosclerosis. 2007;190:35–42.CrossRefPubMed
14.
go back to reference de Moraes C, Davel AP, Rossoni LV, Antunes E, Zanesco A. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenter-ic rings from highcaloric diet-fed rats. BMC Physiol. 2008;8:12.CrossRefPubMedPubMedCentral de Moraes C, Davel AP, Rossoni LV, Antunes E, Zanesco A. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenter-ic rings from highcaloric diet-fed rats. BMC Physiol. 2008;8:12.CrossRefPubMedPubMedCentral
15.
go back to reference Li G, Liu JY, Zhang HX, Li Q, Zhang SW. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity. Physiol Res. 2015;64:355–67.PubMed Li G, Liu JY, Zhang HX, Li Q, Zhang SW. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity. Physiol Res. 2015;64:355–67.PubMed
16.
go back to reference Sastre E, Caracuel L, Balfagón G, Blanco-Rivero J. Aerobic exercise training increases nitrergic innervation function and decreases sympathetic innervation function in mesenteric artery from rats fed a high-fat diet. J Hypertens. 2015;33:1819–30.CrossRefPubMed Sastre E, Caracuel L, Balfagón G, Blanco-Rivero J. Aerobic exercise training increases nitrergic innervation function and decreases sympathetic innervation function in mesenteric artery from rats fed a high-fat diet. J Hypertens. 2015;33:1819–30.CrossRefPubMed
17.
go back to reference Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC. Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol. 2007;34:760–5.CrossRefPubMed Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC. Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol. 2007;34:760–5.CrossRefPubMed
18.
go back to reference Davel AP, Ceravolo GS, Wenceslau CF, Carvalho MH, Brum PC, Rossoni LV. Increased vascular contractility and oxidative stress in β2-adrenoceptor knockout mice: the role of NADPH oxidase. J Vasc Res. 2012;49:342–52.CrossRefPubMed Davel AP, Ceravolo GS, Wenceslau CF, Carvalho MH, Brum PC, Rossoni LV. Increased vascular contractility and oxidative stress in β2-adrenoceptor knockout mice: the role of NADPH oxidase. J Vasc Res. 2012;49:342–52.CrossRefPubMed
19.
go back to reference Delbin MA, Davel AP, Couto GK, Araújo GG, Rossoni LV, Antunes E, et al. In-teraction between advanced glycation end products formation and vascular re-sponses in femoral and coronary arteries from exercised diabetic rats. PLoS One. 2012;7:e53318.CrossRefPubMedPubMedCentral Delbin MA, Davel AP, Couto GK, Araújo GG, Rossoni LV, Antunes E, et al. In-teraction between advanced glycation end products formation and vascular re-sponses in femoral and coronary arteries from exercised diabetic rats. PLoS One. 2012;7:e53318.CrossRefPubMedPubMedCentral
21.
go back to reference Ramachandran S, Penumetcha M, Merchant NK, Santanam N, Rong R, Parthasarathy S. Exercise reduces preexisting atherosclerotic lesions in LDL receptor knockout mice. Atherosclerosis. 2005;178:33–8.CrossRefPubMed Ramachandran S, Penumetcha M, Merchant NK, Santanam N, Rong R, Parthasarathy S. Exercise reduces preexisting atherosclerotic lesions in LDL receptor knockout mice. Atherosclerosis. 2005;178:33–8.CrossRefPubMed
22.
go back to reference Pellegrin M, Miguet-Alfonsi C, Bouzourene K, Aubert JF, Deckert V, Berthelot A, et al. Long-term exercise stabilizes atherosclerotic plaque in ApoE knockout mice. Med Sci Sports Exerc. 2009;41:2128–35.CrossRefPubMed Pellegrin M, Miguet-Alfonsi C, Bouzourene K, Aubert JF, Deckert V, Berthelot A, et al. Long-term exercise stabilizes atherosclerotic plaque in ApoE knockout mice. Med Sci Sports Exerc. 2009;41:2128–35.CrossRefPubMed
23.
go back to reference Cacicedo JM, Gauthier MS, Lebrasseur NK, Jasuja R, Ruderman NB, Ido Y. Acute exercise activates AMPK and eNOS in the mouse aorta. Am J Physiol Heart Circ Physiol. 2011;301:1255–65.CrossRef Cacicedo JM, Gauthier MS, Lebrasseur NK, Jasuja R, Ruderman NB, Ido Y. Acute exercise activates AMPK and eNOS in the mouse aorta. Am J Physiol Heart Circ Physiol. 2011;301:1255–65.CrossRef
24.
go back to reference Hambrecht R, Adams V, Erbs S, Linke A, Kränkel N, Shu Y, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107:3152–8.CrossRefPubMed Hambrecht R, Adams V, Erbs S, Linke A, Kränkel N, Shu Y, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107:3152–8.CrossRefPubMed
25.
go back to reference Whitsett J, Martásek P, Zhao H, Schauer DW, Hatakeyama K, Kalyanaraman B, et al. Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution. Free Radic Biol Med. 2006;40:2056–68.CrossRefPubMed Whitsett J, Martásek P, Zhao H, Schauer DW, Hatakeyama K, Kalyanaraman B, et al. Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution. Free Radic Biol Med. 2006;40:2056–68.CrossRefPubMed
26.
go back to reference Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol. 1999;31:23–37.CrossRefPubMed Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol. 1999;31:23–37.CrossRefPubMed
27.
go back to reference Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, et al. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J. 2016;37:1753–61.CrossRefPubMed Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, et al. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J. 2016;37:1753–61.CrossRefPubMed
28.
go back to reference Capettini LS, Cortes SF, Silva JF, Alvarez-Leite JI, Lemos VS. Decreased pro-duction of neuronal NOS-derived hydrogen peroxide contributes to endotelial dysfunction in atherosclerosis. Br J Pharmacol. 2011;164:1738–48.CrossRefPubMedPubMedCentral Capettini LS, Cortes SF, Silva JF, Alvarez-Leite JI, Lemos VS. Decreased pro-duction of neuronal NOS-derived hydrogen peroxide contributes to endotelial dysfunction in atherosclerosis. Br J Pharmacol. 2011;164:1738–48.CrossRefPubMedPubMedCentral
29.
go back to reference Kuhlencordt PJ, Hötten S, Schödel J, Rützel S, Hu K, Widder J, et al. Atheroprotective effects of neuronal nitric oxide synthase in apolipoprotein e knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:1539–44.CrossRefPubMed Kuhlencordt PJ, Hötten S, Schödel J, Rützel S, Hu K, Widder J, et al. Atheroprotective effects of neuronal nitric oxide synthase in apolipoprotein e knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:1539–44.CrossRefPubMed
30.
go back to reference Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, et al. Reactive Oxygen Species Can Provide Atheroprotection via NOX4-Dependent Inhibition of Inflammation and Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2016;36:295–307.CrossRefPubMed Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, et al. Reactive Oxygen Species Can Provide Atheroprotection via NOX4-Dependent Inhibition of Inflammation and Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2016;36:295–307.CrossRefPubMed
31.
go back to reference Ito D, Ito O, Mori N, Cao P, Suda C, Muroya Y, et al. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Clin Exp Pharmacol Physiol. 2013;40:617–25.CrossRefPubMed Ito D, Ito O, Mori N, Cao P, Suda C, Muroya Y, et al. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Clin Exp Pharmacol Physiol. 2013;40:617–25.CrossRefPubMed
32.
go back to reference Blanco-Rivero J, Roque FR, Sastre E, Caracuel L, Couto GK, Avendaño MS, et al. Aerobic exercise training increases neuronal nitric oxide release and bioavailability and decreases noradrenaline release in mesenteric artery from spontaneously hypertensive rats. J Hypertens. 2013;31:916–26.CrossRefPubMed Blanco-Rivero J, Roque FR, Sastre E, Caracuel L, Couto GK, Avendaño MS, et al. Aerobic exercise training increases neuronal nitric oxide release and bioavailability and decreases noradrenaline release in mesenteric artery from spontaneously hypertensive rats. J Hypertens. 2013;31:916–26.CrossRefPubMed
33.
go back to reference Lee S, Park Y, Dellsperger KC, Zhang C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2011;301:H306–14.CrossRefPubMedPubMedCentral Lee S, Park Y, Dellsperger KC, Zhang C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2011;301:H306–14.CrossRefPubMedPubMedCentral
34.
go back to reference Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 2001;41:203–36.CrossRefPubMed Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 2001;41:203–36.CrossRefPubMed
35.
go back to reference Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DG. Vascular expression of extracellular superoxide dismutase in atherosclerosis. J Clin Invest. 1998;101:2101–11.CrossRefPubMedPubMedCentral Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DG. Vascular expression of extracellular superoxide dismutase in atherosclerosis. J Clin Invest. 1998;101:2101–11.CrossRefPubMedPubMedCentral
36.
go back to reference Wang X, Pu H, Ma C, Jiang T, Wei Q, Zhang C, et al. Adiponectin abates atherosclerosis by reducing oxidative stress. Med Sci Monit. 2014;20:1792–800.CrossRefPubMedPubMedCentral Wang X, Pu H, Ma C, Jiang T, Wei Q, Zhang C, et al. Adiponectin abates atherosclerosis by reducing oxidative stress. Med Sci Monit. 2014;20:1792–800.CrossRefPubMedPubMedCentral
37.
go back to reference Rush JW, Turk JR, Laughlin MH. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol. 2003;284:H1378–87.CrossRefPubMed Rush JW, Turk JR, Laughlin MH. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol. 2003;284:H1378–87.CrossRefPubMed
38.
go back to reference Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest. 2000;105:1631–9.CrossRefPubMedPubMedCentral Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest. 2000;105:1631–9.CrossRefPubMedPubMedCentral
Metadata
Title
Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice
Authors
Daniele M. Guizoni
Gabriel G. Dorighello
Helena C. F. Oliveira
Maria A. Delbin
Marta H. Krieger
Ana P. Davel
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2016
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0972-z

Other articles of this Issue 1/2016

Journal of Translational Medicine 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.