Skip to main content
Top
Published in: Indian Journal of Pediatrics 5/2019

01-05-2019 | Adenovirus | Original Article

Respiratory Pathogens in Infants Diagnosed with Acute Lower Respiratory Tract Infection in a Tertiary Care Hospital of Western India Using Multiplex Real Time PCR

Authors: Anuja A. Sonawane, Jayanthi Shastri, Sandeep B. Bavdekar

Published in: Indian Journal of Pediatrics | Issue 5/2019

Login to get access

Abstract

Objective

To determine the frequency of respiratory pathogens in infants diagnosed with acute lower respiratory tract infections.

Methods

A prospective cross-sectional observational study was conducted in infants hospitalized with a diagnosis of acute lower respiratory tract infection (ALRTI), in a tertiary care hospital in a metropolitan city of Western India. Nasopharyngeal swabs were analyzed by multiplex real time polymerase chain reaction, for 18 viruses and 3 bacteria (H. influenzae type b, C. pneumoniae and M. pneumoniae). The entire data was entered in Microsoft excel sheet and frequencies were determined.

Results

One hundred eligible infants were enrolled. Pathogens were detected in 82 samples, which included Respiratory syncytial viruses (RSV) A / B (35.4%), Human rhinovirus (25.6%), Adenovirus (22%), Human Parainfluenza viruses (11%), Human bocavirus (9.8), Human metapneumovirus A / B (8.5%), Influenza A (H1N1) pdm 09 (6.1%), Parechovirus (3.7%), Human coronaviruses (3.66%), Haemophilus influenzae type b (6.1%), Chlamydia pneumoniae (2.4%) and Mycoplasma pneumoniae (2.4%). Influenza A (other than H1N1), Influenza B, Human Coronavirus 229E and Enterovirus were not detected. The rate of coinfection was 34% and rhinovirus was the most common of the multiple pathogens.

Conclusions

Spectrum of viral etiologies of ALRTI is highlighted. Etiological diagnosis of ALRTI would enable specific antiviral therapy, restrict antibiotic use and help in knowing burden of disease.
Literature
1.
go back to reference Martins Júnior R, Carney S, Goldemberg D, et al. Detection of respiratory viruses by real-time polymerase chain reaction in outpatients with acute respiratory infection. Mem Inst Oswaldo Cruz. 2014;109:716–21.CrossRefPubMed Martins Júnior R, Carney S, Goldemberg D, et al. Detection of respiratory viruses by real-time polymerase chain reaction in outpatients with acute respiratory infection. Mem Inst Oswaldo Cruz. 2014;109:716–21.CrossRefPubMed
2.
go back to reference Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–128.CrossRef Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–128.CrossRef
3.
go back to reference Liu L, Johnson H, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379:2151–61.CrossRefPubMed Liu L, Johnson H, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379:2151–61.CrossRefPubMed
4.
go back to reference Yeolekar L, Damle R, Kamat A, Khude M, Simha V, Pandit A. Respiratory viruses in acute respiratory tract infections in Western India. Indian J Pediatr. 2008;75:341–5.CrossRefPubMed Yeolekar L, Damle R, Kamat A, Khude M, Simha V, Pandit A. Respiratory viruses in acute respiratory tract infections in Western India. Indian J Pediatr. 2008;75:341–5.CrossRefPubMed
5.
go back to reference Kabra S, Lodha R, Broor S, Chaudhary R, Ghosh M, Maitreyi R. Etiology of acute lower respiratory tract infection. Indian J Pediatr. 2003;70:33–6.CrossRefPubMed Kabra S, Lodha R, Broor S, Chaudhary R, Ghosh M, Maitreyi R. Etiology of acute lower respiratory tract infection. Indian J Pediatr. 2003;70:33–6.CrossRefPubMed
6.
go back to reference Singh AK, Jain A, Jain B, et al. Viral aetiology of acute lower respiratory tract illness in hospitalized paediatric patients of a tertiary hospital: one-year prospective study. Indian J Med Microbiol. 2014;32:13–8.CrossRefPubMed Singh AK, Jain A, Jain B, et al. Viral aetiology of acute lower respiratory tract illness in hospitalized paediatric patients of a tertiary hospital: one-year prospective study. Indian J Med Microbiol. 2014;32:13–8.CrossRefPubMed
7.
go back to reference Mathew JL, Singhi S, Ray P, et al. Etiology of community acquired pneumonia among children in India: prospective, cohort study. J Glob Health. 2015;5:050418.CrossRefPubMedPubMedCentral Mathew JL, Singhi S, Ray P, et al. Etiology of community acquired pneumonia among children in India: prospective, cohort study. J Glob Health. 2015;5:050418.CrossRefPubMedPubMedCentral
8.
go back to reference Bharaj P, Sullender WM, Kabra SK, et al. Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007. Virol J. 2009;6:89.CrossRefPubMedPubMedCentral Bharaj P, Sullender WM, Kabra SK, et al. Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007. Virol J. 2009;6:89.CrossRefPubMedPubMedCentral
9.
go back to reference Broor S, Parveen S, Bharaj P, et al. A prospective three-year cohort study of the epidemiology and virology of acute respiratory infections of children in rural India. PLoS One. 2007;2:e491. Broor S, Parveen S, Bharaj P, et al. A prospective three-year cohort study of the epidemiology and virology of acute respiratory infections of children in rural India. PLoS One. 2007;2:e491.
11.
go back to reference Centre for Disease Control & Prevention, World Food Programme. A Manual: Measuring and Interpreting Malnutrition and Mortality. Rome: CDS & World Food Programme: C; 2005: 17–20. Centre for Disease Control & Prevention, World Food Programme. A Manual: Measuring and Interpreting Malnutrition and Mortality. Rome: CDS & World Food Programme: C; 2005: 17–20.
14.
go back to reference Frayha H, Castriciano S, Mahony J, Chernesky M. Nasopharyngeal swabs and nasopharyngeal aspirates equally effective for the diagnosis of viral respiratory disease in hospitalized children. J Clin Microbiol. 1989;27:1387–9.PubMedPubMedCentral Frayha H, Castriciano S, Mahony J, Chernesky M. Nasopharyngeal swabs and nasopharyngeal aspirates equally effective for the diagnosis of viral respiratory disease in hospitalized children. J Clin Microbiol. 1989;27:1387–9.PubMedPubMedCentral
15.
go back to reference Hoffmann J, Rabezanahary H, Randriamarotia M, et al. Viral and atypical bacterial etiology of acute respiratory infections in children under 5 years old living in a rural tropical area of Madagascar. PLoS One. 2012;7:e43666.CrossRefPubMedPubMedCentral Hoffmann J, Rabezanahary H, Randriamarotia M, et al. Viral and atypical bacterial etiology of acute respiratory infections in children under 5 years old living in a rural tropical area of Madagascar. PLoS One. 2012;7:e43666.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Espínola E, Russomando G, Aquino C, Basualdo W. Phylogeny-based classification of human rhinoviruses detected in hospitalized children with acute lower respiratory infection in Paraguay, 2010-2011. J Med Virol. 2013;85:1645–51.CrossRefPubMed Espínola E, Russomando G, Aquino C, Basualdo W. Phylogeny-based classification of human rhinoviruses detected in hospitalized children with acute lower respiratory infection in Paraguay, 2010-2011. J Med Virol. 2013;85:1645–51.CrossRefPubMed
18.
go back to reference Pretorius MA, Madhi SA, Cohen C, et al. Respiratory viral coinfections identified by a 10-plex real-time reverse-transcription polymerase chain reaction assay in patients hospitalized with severe acute respiratory illness--South Africa, 2009-2010. J Infect Dis. 2012;206:S159–65.CrossRefPubMed Pretorius MA, Madhi SA, Cohen C, et al. Respiratory viral coinfections identified by a 10-plex real-time reverse-transcription polymerase chain reaction assay in patients hospitalized with severe acute respiratory illness--South Africa, 2009-2010. J Infect Dis. 2012;206:S159–65.CrossRefPubMed
21.
go back to reference Meerhoff T, Houben M, Coenjaerts F, et al. Detection of multiple respiratory pathogens during primary respiratory infection: nasal swab versus nasopharyngeal aspirate using real-time polymerase chain reaction. Eur J Clin Microbiol Infect Dis. 2010;29:365–71.CrossRefPubMedPubMedCentral Meerhoff T, Houben M, Coenjaerts F, et al. Detection of multiple respiratory pathogens during primary respiratory infection: nasal swab versus nasopharyngeal aspirate using real-time polymerase chain reaction. Eur J Clin Microbiol Infect Dis. 2010;29:365–71.CrossRefPubMedPubMedCentral
22.
go back to reference Proenca-Modena JL, Pereira Valera FC, Jacob M, et al. High rates of detection of respiratory viruses in tonsillar tissues from children with chronic adenotonsillar disease. PLoS One. 2012;7:e42136. Proenca-Modena JL, Pereira Valera FC, Jacob M, et al. High rates of detection of respiratory viruses in tonsillar tissues from children with chronic adenotonsillar disease. PLoS One. 2012;7:e42136.
23.
go back to reference Nunes MC, Kuschner ZC, Rabede Z, et al. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children. PLoS One. 2014;9:e86448.CrossRefPubMedPubMedCentral Nunes MC, Kuschner ZC, Rabede Z, et al. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children. PLoS One. 2014;9:e86448.CrossRefPubMedPubMedCentral
24.
go back to reference Martin E, Fairchok M, Stednick Z, Kuyperss J, Englund J. Epidemiology of multiple respiratory viruses in childcare attendees. J Infect Dis. 2013;207:982–9.CrossRefPubMed Martin E, Fairchok M, Stednick Z, Kuyperss J, Englund J. Epidemiology of multiple respiratory viruses in childcare attendees. J Infect Dis. 2013;207:982–9.CrossRefPubMed
25.
go back to reference da Silva ER, Pitrez MCP, Arruda E, et al. Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors. BMC Infect Dis. 2013;13:41.CrossRefPubMedPubMedCentral da Silva ER, Pitrez MCP, Arruda E, et al. Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors. BMC Infect Dis. 2013;13:41.CrossRefPubMedPubMedCentral
26.
go back to reference Robert S, Lhommet C, Brun C, et al. Diagnostic performance of multiplex PCR on pulmonary samples versus nasopharyngeal aspirates in community-acquired severe lower respiratory tract infections. J Clin Virol. 2018;108:1–5.CrossRefPubMed Robert S, Lhommet C, Brun C, et al. Diagnostic performance of multiplex PCR on pulmonary samples versus nasopharyngeal aspirates in community-acquired severe lower respiratory tract infections. J Clin Virol. 2018;108:1–5.CrossRefPubMed
27.
go back to reference Zhang X, Lu A, Shi P, Wang L, Qian L. Diagnostic value of nasopharyngeal aspirates in children with lower respiratory tract infections. Chiness Med J. 2017;130:647–51.CrossRef Zhang X, Lu A, Shi P, Wang L, Qian L. Diagnostic value of nasopharyngeal aspirates in children with lower respiratory tract infections. Chiness Med J. 2017;130:647–51.CrossRef
Metadata
Title
Respiratory Pathogens in Infants Diagnosed with Acute Lower Respiratory Tract Infection in a Tertiary Care Hospital of Western India Using Multiplex Real Time PCR
Authors
Anuja A. Sonawane
Jayanthi Shastri
Sandeep B. Bavdekar
Publication date
01-05-2019
Publisher
Springer India
Published in
Indian Journal of Pediatrics / Issue 5/2019
Print ISSN: 0019-5456
Electronic ISSN: 0973-7693
DOI
https://doi.org/10.1007/s12098-018-2840-8

Other articles of this Issue 5/2019

Indian Journal of Pediatrics 5/2019 Go to the issue