Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Acute Myeloid Leukemia | Research

PHF6 loss reduces leukemia stem cell activity in an acute myeloid leukemia mouse model

Authors: Shengnan Yuan, Mingming Gao, Yizhou Wang, Yanjie Lan, Mengrou Li, Yuwei Du, Yue Li, Wen Ju, Yujin Huang, Ke Yuan, Lingyu Zeng

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Acute myeloid leukemia (AML) is a malignant hematologic disease caused by gene mutations and genomic rearrangements in hematologic progenitors. The PHF6 (PHD finger protein 6) gene is highly conserved and located on the X chromosome in humans and mice. We found that PHF6 was highly expressed in AML cells with MLL rearrangement and was related to the shortened survival time of AML patients. In our study, we knocked out the Phf6 gene at different disease stages in the AML mice model. Moreover, we knocked down PHF6 by shRNA in two AML cell lines and examined the cell growth, apoptosis, and cell cycle. We found that PHF6 deletion significantly inhibited the proliferation of leukemic cells and prolonged the survival time of AML mice. Interestingly, the deletion of PHF6 at a later stage of the disease displayed a better anti-leukemia effect. The expressions of genes related to cell differentiation were increased, while genes that inhibit cell differentiation were decreased with PHF6 knockout. It is very important to analyze the maintenance role of PHF6 in AML, which is different from its tumor-suppressing function in T-cell acute lymphoblastic leukemia (T-ALL). Our study showed that inhibiting PHF6 expression may be a potential therapeutic strategy targeting AML patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Padmakumar D, Chandraprabha VR, Gopinath P, Vimala Devi ART, Anitha GRJ, Sreelatha MM, et al. A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res. 2021;111:106727.CrossRefPubMed Padmakumar D, Chandraprabha VR, Gopinath P, Vimala Devi ART, Anitha GRJ, Sreelatha MM, et al. A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res. 2021;111:106727.CrossRefPubMed
2.
go back to reference Uckelmann HJ, Armstrong SA. Chromatin complexes maintain Self-Renewal of myeloid progenitors in AML: opportunities for therapeutic intervention. Stem cell Rep. 2020;15(1):6–12.CrossRef Uckelmann HJ, Armstrong SA. Chromatin complexes maintain Self-Renewal of myeloid progenitors in AML: opportunities for therapeutic intervention. Stem cell Rep. 2020;15(1):6–12.CrossRef
3.
go back to reference Santini V, Lubbert M, Wierzbowska A, Ossenkoppele GJ. The clinical value of Decitabine Monotherapy in patients with Acute myeloid leukemia. Adv Ther. 2021. Santini V, Lubbert M, Wierzbowska A, Ossenkoppele GJ. The clinical value of Decitabine Monotherapy in patients with Acute myeloid leukemia. Adv Ther. 2021.
5.
go back to reference Slany RK. MLL fusion proteins and transcriptional control. Biochim Biophys Acta Gene Regul Mech. 2020;1863(3):194503.CrossRefPubMed Slany RK. MLL fusion proteins and transcriptional control. Biochim Biophys Acta Gene Regul Mech. 2020;1863(3):194503.CrossRefPubMed
6.
go back to reference Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17(24):3029–35.CrossRefPubMedPubMedCentral Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17(24):3029–35.CrossRefPubMedPubMedCentral
8.
go back to reference Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute myeloid leukemia: a review of the current knowledge. Genes. 2021;12(6). Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute myeloid leukemia: a review of the current knowledge. Genes. 2021;12(6).
9.
go back to reference Wang F, Li Z, Wang G, Tian X, Zhou J, Yu W, et al. Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLLAF9 translocation. Mol Med Rep. 2020;21(2):883–93.PubMed Wang F, Li Z, Wang G, Tian X, Zhou J, Yu W, et al. Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLLAF9 translocation. Mol Med Rep. 2020;21(2):883–93.PubMed
10.
go back to reference Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823–33.CrossRefPubMed Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823–33.CrossRefPubMed
11.
go back to reference Liu H, Lee S, Zhang Q, Chen Z, Zhang G. The potential underlying mechanism of the leukemia caused by MLL-fusion and potential treatments. Mol Carcinog. 2020;59(7):839–51.CrossRefPubMed Liu H, Lee S, Zhang Q, Chen Z, Zhang G. The potential underlying mechanism of the leukemia caused by MLL-fusion and potential treatments. Mol Carcinog. 2020;59(7):839–51.CrossRefPubMed
12.
go back to reference Lanza F, Bazarbachi A. Targeted therapies and druggable genetic anomalies in acute myeloid leukemia: from diagnostic tools to therapeutic interventions. Cancers (Basel). 2021;13:18.CrossRef Lanza F, Bazarbachi A. Targeted therapies and druggable genetic anomalies in acute myeloid leukemia: from diagnostic tools to therapeutic interventions. Cancers (Basel). 2021;13:18.CrossRef
13.
go back to reference Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell. 2021;28(6):1074–89e7.CrossRefPubMedPubMedCentral Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell. 2021;28(6):1074–89e7.CrossRefPubMedPubMedCentral
15.
go back to reference Wang J, Leung JW, Gong Z, Feng L, Shi X, Chen J. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem. 2013;288(5):3174–83.CrossRefPubMed Wang J, Leung JW, Gong Z, Feng L, Shi X, Chen J. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem. 2013;288(5):3174–83.CrossRefPubMed
16.
go back to reference Hsu YC, Chen TC, Lin CC, Yuan CT, Hsu CL, Hou HA, et al. Phf6-null hematopoietic stem cells have enhanced self-renewal capacity and oncogenic potentials. Blood Adv. 2019;3(15):2355–67.CrossRefPubMedPubMedCentral Hsu YC, Chen TC, Lin CC, Yuan CT, Hsu CL, Hou HA, et al. Phf6-null hematopoietic stem cells have enhanced self-renewal capacity and oncogenic potentials. Blood Adv. 2019;3(15):2355–67.CrossRefPubMedPubMedCentral
17.
go back to reference Van Vlierberghe P, Patel J, Abdel-Wahab O, Lobry C, Hedvat CV, Balbin M, et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia. 2011;25(1):130–4.CrossRefPubMed Van Vlierberghe P, Patel J, Abdel-Wahab O, Lobry C, Hedvat CV, Balbin M, et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia. 2011;25(1):130–4.CrossRefPubMed
18.
go back to reference McRae HM, Garnham AL, Hu Y, Witkowski MT, Corbett MA, Dixon MP, et al. PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood. 2019;133(16):1729–41.CrossRefPubMedPubMedCentral McRae HM, Garnham AL, Hu Y, Witkowski MT, Corbett MA, Dixon MP, et al. PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood. 2019;133(16):1729–41.CrossRefPubMedPubMedCentral
20.
go back to reference Wendorff AA, Quinn SA, Rashkovan M, Madubata CJ, Ambesi-Impiombato A, Litzow MR, et al. Phf6 loss enhances HSC Self-Renewal driving tumor initiation and leukemia stem cell activity in T-ALL. Cancer Discov. 2019;9(3):436–51.CrossRefPubMed Wendorff AA, Quinn SA, Rashkovan M, Madubata CJ, Ambesi-Impiombato A, Litzow MR, et al. Phf6 loss enhances HSC Self-Renewal driving tumor initiation and leukemia stem cell activity in T-ALL. Cancer Discov. 2019;9(3):436–51.CrossRefPubMed
21.
go back to reference Yuan S, Wang X, Hou S, Guo T, Lan Y, Yang S, et al. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression. Leukemia. 2022;36(2):370–82.CrossRefPubMed Yuan S, Wang X, Hou S, Guo T, Lan Y, Yang S, et al. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression. Leukemia. 2022;36(2):370–82.CrossRefPubMed
22.
go back to reference Jalnapurkar SS, Pawar A, Somers P, Ochoco G, George SS, Pimkin M, et al. PHF6 restricts AML Acceleration by promoting myeloid differentiation genes in leukemic cells. Blood. 2020;136(Supplement 1):42–3.CrossRef Jalnapurkar SS, Pawar A, Somers P, Ochoco G, George SS, Pimkin M, et al. PHF6 restricts AML Acceleration by promoting myeloid differentiation genes in leukemic cells. Blood. 2020;136(Supplement 1):42–3.CrossRef
23.
go back to reference Hou S, Wang X, Guo T, Lan Y, Yuan S, Yang S et al. PHF6 maintains acute myeloid leukemia via regulating NF-kappaB signaling pathway. Leukemia. 2023. Hou S, Wang X, Guo T, Lan Y, Yuan S, Yang S et al. PHF6 maintains acute myeloid leukemia via regulating NF-kappaB signaling pathway. Leukemia. 2023.
24.
go back to reference Meacham CE, Lawton LN, Soto-Feliciano YM, Pritchard JR, Joughin BA, Ehrenberger T, et al. A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth. Genes Dev. 2015;29(5):483–8.CrossRefPubMedPubMedCentral Meacham CE, Lawton LN, Soto-Feliciano YM, Pritchard JR, Joughin BA, Ehrenberger T, et al. A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth. Genes Dev. 2015;29(5):483–8.CrossRefPubMedPubMedCentral
25.
go back to reference Soto-Feliciano YM, Bartlebaugh JME, Liu Y, Sanchez-Rivera FJ, Bhutkar A, Weintraub AS, et al. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev. 2017;31(10):973–89.CrossRefPubMedPubMedCentral Soto-Feliciano YM, Bartlebaugh JME, Liu Y, Sanchez-Rivera FJ, Bhutkar A, Weintraub AS, et al. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev. 2017;31(10):973–89.CrossRefPubMedPubMedCentral
26.
go back to reference Huang H, Jiang X, Li Z, Li Y, Song CX, He C, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA. 2013;110(29):11994–9.ADSCrossRefPubMedPubMedCentral Huang H, Jiang X, Li Z, Li Y, Song CX, He C, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA. 2013;110(29):11994–9.ADSCrossRefPubMedPubMedCentral
27.
go back to reference Lin PH, Li HY, Fan SC, Yuan TH, Chen M, Hsu YH, et al. A targeted next-generation sequencing in the molecular risk stratification of adult acute myeloid leukemia: implications for clinical practice. Cancer Med. 2017;6(2):349–60.CrossRefPubMedPubMedCentral Lin PH, Li HY, Fan SC, Yuan TH, Chen M, Hsu YH, et al. A targeted next-generation sequencing in the molecular risk stratification of adult acute myeloid leukemia: implications for clinical practice. Cancer Med. 2017;6(2):349–60.CrossRefPubMedPubMedCentral
28.
go back to reference Miyagi S, Sroczynska P, Kato Y, Nakajima-Takagi Y, Oshima M, Rizq O, et al. The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood. 2019;133(23):2495–506.CrossRefPubMed Miyagi S, Sroczynska P, Kato Y, Nakajima-Takagi Y, Oshima M, Rizq O, et al. The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood. 2019;133(23):2495–506.CrossRefPubMed
29.
go back to reference METTL14 Inhibits Hematopoietic Stem/Progenitor. Differentiation and promotes Leukemogenesis via mRNA m(6)a modification. Cell Stem Cell. 2018;22(2):191–205.CrossRef METTL14 Inhibits Hematopoietic Stem/Progenitor. Differentiation and promotes Leukemogenesis via mRNA m(6)a modification. Cell Stem Cell. 2018;22(2):191–205.CrossRef
30.
31.
go back to reference Zhao C, Xiu Y, Ashton J, Xing L, Morita Y, Jordan CT, et al. Noncanonical NF-kappaB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells. 2012;30(4):709–18.CrossRefPubMed Zhao C, Xiu Y, Ashton J, Xing L, Morita Y, Jordan CT, et al. Noncanonical NF-kappaB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells. 2012;30(4):709–18.CrossRefPubMed
32.
go back to reference Jiang L, Meng W, Yu G, Yin C, Wang Z, Liao L, et al. MicroRNA-144 targets APP to regulate AML1/ETO(+) leukemia cell migration via the p-ERK/c-Myc/MMP-2 pathway. Oncol Lett. 2019;18(2):2034–42.PubMedPubMedCentral Jiang L, Meng W, Yu G, Yin C, Wang Z, Liao L, et al. MicroRNA-144 targets APP to regulate AML1/ETO(+) leukemia cell migration via the p-ERK/c-Myc/MMP-2 pathway. Oncol Lett. 2019;18(2):2034–42.PubMedPubMedCentral
33.
go back to reference Xu ZJ, Jin Y, Zhang XL, Xia PH, Wen XM, Ma JC et al. Pan-cancer analysis identifies CD300 molecules as potential immune regulators and promising therapeutic targets in acute myeloid leukemia. Cancer Med. 2022. Xu ZJ, Jin Y, Zhang XL, Xia PH, Wen XM, Ma JC et al. Pan-cancer analysis identifies CD300 molecules as potential immune regulators and promising therapeutic targets in acute myeloid leukemia. Cancer Med. 2022.
Metadata
Title
PHF6 loss reduces leukemia stem cell activity in an acute myeloid leukemia mouse model
Authors
Shengnan Yuan
Mingming Gao
Yizhou Wang
Yanjie Lan
Mengrou Li
Yuwei Du
Yue Li
Wen Ju
Yujin Huang
Ke Yuan
Lingyu Zeng
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03265-w

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine