Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | NSCLC | Research

RGS20 promotes non-small cell lung carcinoma proliferation via autophagy activation and inhibition of the PKA-Hippo signaling pathway

Authors: Xiaoyan Ding, Xiaoxia Li, Yanxia Jiang, Yujun Li, Hong Li, Lipeng Shang, Guilin Feng, Huhu Zhang, Ziyuan Xu, Lina Yang, Bing Li, Robert Chunhua Zhao

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Background

Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways.

Methods

Immunohistochemistry and lung cancer tissue microarray were used to verify the expression of RGS20 between NSCLC patients. CCK8 and cell cloning were conducted to determine the proliferation ability of H1299 and Anip973 cells in vitro. Furthermore, Transcriptome sequencing was performed to show enrichment genes and pathways. Immunofluorescence was used to detect the translocation changes of YAP to nucleus. Western blotting demonstrated different expressions of autophagy and the Hippo-PKA signal pathway. In vitro and in vivo experiments verified whether overexpression of RGS20 affect the proliferation and autophagy of NSCLC through regulating the Hippo pathway.

Results

The higher RGS20 expression was found to be significantly correlated with a poorer five-year survival rate. Further, RGS20 accelerated cell proliferation by increasing autophagy. Transcriptomic sequencing suggested the involvement of the Hippo signaling pathway in the action of RGS20 in NSCLC. RGS20 activation reduced YAP phosphorylation and facilitated its nuclear translocation. Remarkably, inhibiting Hippo signaling with GA-017 promoted cell proliferation and activated autophagy in RGS20 knock-down cells. However, forskolin, a GPCR activator, increased YAP phosphorylation and reversed the promoting effect of RGS20 in RGS20-overexpressing cells. Lastly, in vivo experiments further confirmed role of RGS20 in aggravating tumorigenicity, as its overexpression increased NSCLC cell proliferation.

Conclusion

Our findings indicate that RGS20 drives NSCLC cell proliferation by triggering autophagy via the inhibition of PKA-Hippo signaling. These insights support the role of RGS20 as a promising novel molecular marker and a target for future targeted therapies in lung cancer treatment.
Appendix
Available only for authorised users
Literature
1.
2.
3.
go back to reference Guo H, Zhang J, Qin C, Yan H, Liu T, Hu H et al. Biomarker-targeted therapies in non-small cell lung cancer: current status and perspectives. Cells. 2022;11(20). Guo H, Zhang J, Qin C, Yan H, Liu T, Hu H et al. Biomarker-targeted therapies in non-small cell lung cancer: current status and perspectives. Cells. 2022;11(20).
4.
go back to reference Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol. 2020;13(1):58.PubMedPubMedCentralCrossRef Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol. 2020;13(1):58.PubMedPubMedCentralCrossRef
5.
go back to reference Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021;27(8):1345–56.PubMedCrossRef Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021;27(8):1345–56.PubMedCrossRef
6.
go back to reference Hsu WH, Yang JC, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Annals Oncology: Official J Eur Soc Med Oncol. 2018;29(suppl1):i3–i9.CrossRef Hsu WH, Yang JC, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Annals Oncology: Official J Eur Soc Med Oncol. 2018;29(suppl1):i3–i9.CrossRef
7.
go back to reference Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–58.PubMedCrossRef Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–58.PubMedCrossRef
8.
go back to reference Alqinyah M, Hooks SB. Regulating the regulators: epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cell Signal. 2018;42:77–87.PubMedCrossRef Alqinyah M, Hooks SB. Regulating the regulators: epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cell Signal. 2018;42:77–87.PubMedCrossRef
9.
go back to reference Shi D, Tong S, Han H, Hu X. RGS20 promotes tumor progression through modulating pi3k/akt signaling activation in penile cancer. J Oncol. 2022;2022:1293622.PubMedPubMedCentralCrossRef Shi D, Tong S, Han H, Hu X. RGS20 promotes tumor progression through modulating pi3k/akt signaling activation in penile cancer. J Oncol. 2022;2022:1293622.PubMedPubMedCentralCrossRef
10.
go back to reference Yang L, Lee MM, Leung MM, Wong YH. Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cell Signal. 2016;28(11):1663–72.PubMedCrossRef Yang L, Lee MM, Leung MM, Wong YH. Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cell Signal. 2016;28(11):1663–72.PubMedCrossRef
11.
go back to reference Li G, Wang M, Ren L, Li H, Liu Q, Ouyang Y, et al. Regulator of G protein signaling 20 promotes proliferation and migration in bladder cancer via NF-kappaB signaling. Biomed Pharmacother. 2019;117:109112.PubMedCrossRef Li G, Wang M, Ren L, Li H, Liu Q, Ouyang Y, et al. Regulator of G protein signaling 20 promotes proliferation and migration in bladder cancer via NF-kappaB signaling. Biomed Pharmacother. 2019;117:109112.PubMedCrossRef
12.
go back to reference Huang G, He X, Wei XL. lncRNA NEAT1 promotes cell proliferation and invasion by regulating miR–365/RGS20 in oral squamous cell carcinoma. Oncol Rep. 2018;39(4):1948–56.PubMed Huang G, He X, Wei XL. lncRNA NEAT1 promotes cell proliferation and invasion by regulating miR–365/RGS20 in oral squamous cell carcinoma. Oncol Rep. 2018;39(4):1948–56.PubMed
13.
go back to reference Li Q, Jin W, Cai Y, Yang F, Chen E, Ye D, et al. Regulator of G protein signaling 20 correlates with clinicopathological features and prognosis in triple-negative breast cancer. Biochem Biophys Res Commun. 2017;485(3):693–7.PubMedCrossRef Li Q, Jin W, Cai Y, Yang F, Chen E, Ye D, et al. Regulator of G protein signaling 20 correlates with clinicopathological features and prognosis in triple-negative breast cancer. Biochem Biophys Res Commun. 2017;485(3):693–7.PubMedCrossRef
14.
go back to reference Jiang L, Shen J, Zhang N, He Y, Wan Z. Association of RGS20 expression with the progression and prognosis of renal cell carcinoma. Oncol Lett. 2021;22(3):643.PubMedPubMedCentralCrossRef Jiang L, Shen J, Zhang N, He Y, Wan Z. Association of RGS20 expression with the progression and prognosis of renal cell carcinoma. Oncol Lett. 2021;22(3):643.PubMedPubMedCentralCrossRef
16.
go back to reference Luo J, Yu FX. GPCR-Hippo signaling in cancer. Cells. 2019;8(5). Luo J, Yu FX. GPCR-Hippo signaling in cancer. Cells. 2019;8(5).
17.
go back to reference Watson N, Linder ME, Druey KM, Kehrl JH, Blumer KJ. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature. 1996;383(6596):172–5.ADSPubMedCrossRef Watson N, Linder ME, Druey KM, Kehrl JH, Blumer KJ. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature. 1996;383(6596):172–5.ADSPubMedCrossRef
18.
go back to reference Masuho I, Balaji S, Muntean BS, Skamangas NK, Chavali S, Tesmer JJG, et al. A global map of G protein signaling regulation by RGS proteins. Cell. 2020;183(2):503–21e19.PubMedPubMedCentralCrossRef Masuho I, Balaji S, Muntean BS, Skamangas NK, Chavali S, Tesmer JJG, et al. A global map of G protein signaling regulation by RGS proteins. Cell. 2020;183(2):503–21e19.PubMedPubMedCentralCrossRef
19.
go back to reference Bodle CR, Mackie DI, Roman DL. RGS17: an emerging therapeutic target for lung and prostate cancers. Future Med Chem. 2013;5(9):995–1007.PubMedCrossRef Bodle CR, Mackie DI, Roman DL. RGS17: an emerging therapeutic target for lung and prostate cancers. Future Med Chem. 2013;5(9):995–1007.PubMedCrossRef
20.
go back to reference Bae GH, Kim YS, Park JY, Lee M, Lee SK, Kim JC, et al. Unique characteristics of lung-resident neutrophils are maintained by PGE2/PKA/Tgm2-mediated signaling. Blood. 2022;140(8):889–99.PubMedPubMedCentralCrossRef Bae GH, Kim YS, Park JY, Lee M, Lee SK, Kim JC, et al. Unique characteristics of lung-resident neutrophils are maintained by PGE2/PKA/Tgm2-mediated signaling. Blood. 2022;140(8):889–99.PubMedPubMedCentralCrossRef
21.
go back to reference Yang X, Ma X, Don O, Song Y, Chen X, Liu J, et al. Mesenchymal stem cells combined with liraglutide relieve acute lung injury through apoptotic signaling restrained by PKA/β-catenin. Stem Cell Res Ther. 2020;11(1):182.PubMedPubMedCentralCrossRef Yang X, Ma X, Don O, Song Y, Chen X, Liu J, et al. Mesenchymal stem cells combined with liraglutide relieve acute lung injury through apoptotic signaling restrained by PKA/β-catenin. Stem Cell Res Ther. 2020;11(1):182.PubMedPubMedCentralCrossRef
22.
go back to reference Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, et al. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 2021;11(12):5650–74.PubMedPubMedCentralCrossRef Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, et al. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 2021;11(12):5650–74.PubMedPubMedCentralCrossRef
23.
go back to reference Chung JH, Choi HJ, Kang YJ, Kim YS, Lee SY, Kwon RJ, et al. MHY4571, a novel diarylcyclohexanone derivative, exerts anti-cancer activity by regulating the PKA-cAMP-response element-binding protein pathway in squamous cell lung cancer. Experimental Hematol Oncol. 2022;11(1):68.CrossRef Chung JH, Choi HJ, Kang YJ, Kim YS, Lee SY, Kwon RJ, et al. MHY4571, a novel diarylcyclohexanone derivative, exerts anti-cancer activity by regulating the PKA-cAMP-response element-binding protein pathway in squamous cell lung cancer. Experimental Hematol Oncol. 2022;11(1):68.CrossRef
24.
go back to reference Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discovery. 2020;19(7):480–94.PubMedCrossRef Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discovery. 2020;19(7):480–94.PubMedCrossRef
25.
go back to reference Driskill JH, Pan D. The Hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol. 2021;16:299–322.PubMedCrossRef Driskill JH, Pan D. The Hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol. 2021;16:299–322.PubMedCrossRef
26.
go back to reference Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Therapy. 2022;7(1):376.CrossRef Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Therapy. 2022;7(1):376.CrossRef
27.
go back to reference Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.PubMedCrossRef Ma S, Meng Z, Chen R, Guan KL. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.PubMedCrossRef
28.
go back to reference Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–84. Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–84.
29.
go back to reference Wang Y, Xu X, Maglic D, Dill MT, Mojumdar K, Ng PK, et al. Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 2018;25(5):1304–17e5.PubMedPubMedCentralCrossRef Wang Y, Xu X, Maglic D, Dill MT, Mojumdar K, Ng PK, et al. Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 2018;25(5):1304–17e5.PubMedPubMedCentralCrossRef
30.
go back to reference Cancer Genome Atlas Research N, Analysis Working Group, Asan U, Agency BCC, Brigham, Women’s H, Broad I, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75.CrossRef Cancer Genome Atlas Research N, Analysis Working Group, Asan U, Agency BCC, Brigham, Women’s H, Broad I, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75.CrossRef
31.
go back to reference Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell. 2018;33(4):690–705e9.PubMedPubMedCentralCrossRef Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell. 2018;33(4):690–705e9.PubMedPubMedCentralCrossRef
32.
go back to reference Lee BS, Park DI, Lee DH, Lee JE, Yeo MK, Park YH, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun. 2017;491(2):493–9.PubMedCrossRef Lee BS, Park DI, Lee DH, Lee JE, Yeo MK, Park YH, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun. 2017;491(2):493–9.PubMedCrossRef
33.
go back to reference Xie M, Zhang L, He CS, Hou JH, Lin SX, Hu ZH, et al. Prognostic significance of TAZ expression in resected non-small cell lung cancer. J Thorac Oncology: Official Publication Int Association Study Lung Cancer. 2012;7(5):799–807.CrossRef Xie M, Zhang L, He CS, Hou JH, Lin SX, Hu ZH, et al. Prognostic significance of TAZ expression in resected non-small cell lung cancer. J Thorac Oncology: Official Publication Int Association Study Lung Cancer. 2012;7(5):799–807.CrossRef
34.
go back to reference Malik SA, Khan MS, Dar M, Hussain MU, Mudassar S. TAZ is an independent prognostic factor in non-small cell lung carcinoma: elucidation at protein level. Cancer Biomark. 2017;18(4):389–95.PubMedCrossRef Malik SA, Khan MS, Dar M, Hussain MU, Mudassar S. TAZ is an independent prognostic factor in non-small cell lung carcinoma: elucidation at protein level. Cancer Biomark. 2017;18(4):389–95.PubMedCrossRef
35.
go back to reference Totaro A, Zhuang Q, Panciera T, Battilana G, Azzolin L, Brumana G, et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc Natl Acad Sci USA. 2019;116(36):17848–57.ADSPubMedPubMedCentralCrossRef Totaro A, Zhuang Q, Panciera T, Battilana G, Azzolin L, Brumana G, et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc Natl Acad Sci USA. 2019;116(36):17848–57.ADSPubMedPubMedCentralCrossRef
36.
go back to reference Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Füllgrabe J, et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun. 2018;9(1):2961.ADSPubMedPubMedCentralCrossRef Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Füllgrabe J, et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun. 2018;9(1):2961.ADSPubMedPubMedCentralCrossRef
37.
go back to reference Barthet VJA, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot AD et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7(23). Barthet VJA, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot AD et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7(23).
39.
go back to reference Cai J, Li R, Xu X, Zhang L, Lian R, Fang L, et al. CK1alpha suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nat Cell Biol. 2018;20(4):465–78.PubMedCrossRef Cai J, Li R, Xu X, Zhang L, Lian R, Fang L, et al. CK1alpha suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nat Cell Biol. 2018;20(4):465–78.PubMedCrossRef
40.
go back to reference Humpton TJ, Alagesan B, DeNicola GM, Lu D, Yordanov GN, Leonhardt CS, et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 2019;9(9):1268–87.PubMedPubMedCentralCrossRef Humpton TJ, Alagesan B, DeNicola GM, Lu D, Yordanov GN, Leonhardt CS, et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 2019;9(9):1268–87.PubMedPubMedCentralCrossRef
43.
go back to reference Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 2019;26(4):690–702.PubMedPubMedCentralCrossRef Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 2019;26(4):690–702.PubMedPubMedCentralCrossRef
44.
go back to reference Miao CC, Hwang W, Chu LY, Yang LH, Ha CT, Chen PY, et al. LC3A-mediated autophagy regulates lung cancer cell plasticity. Autophagy. 2022;18(4):921–34.PubMedCrossRef Miao CC, Hwang W, Chu LY, Yang LH, Ha CT, Chen PY, et al. LC3A-mediated autophagy regulates lung cancer cell plasticity. Autophagy. 2022;18(4):921–34.PubMedCrossRef
45.
go back to reference Chen X, Mao R, Su W, Yang X, Geng Q, Guo C, et al. Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy. 2020;16(4):659–71.PubMedCrossRef Chen X, Mao R, Su W, Yang X, Geng Q, Guo C, et al. Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy. 2020;16(4):659–71.PubMedCrossRef
Metadata
Title
RGS20 promotes non-small cell lung carcinoma proliferation via autophagy activation and inhibition of the PKA-Hippo signaling pathway
Authors
Xiaoyan Ding
Xiaoxia Li
Yanxia Jiang
Yujun Li
Hong Li
Lipeng Shang
Guilin Feng
Huhu Zhang
Ziyuan Xu
Lina Yang
Bing Li
Robert Chunhua Zhao
Publication date
01-12-2024
Publisher
BioMed Central
Keywords
NSCLC
NSCLC
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03282-9

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine