Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Acute Myeloid Leukemia | Primary research

Deciphering molecular mechanisms underlying chemoresistance in relapsed AML patients: towards precision medicine overcoming drug resistance

Authors: May Levin, Michal Stark, Yishai Ofran, Yehuda G. Assaraf

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Acute myeloid leukemia (AML) remains a devastating disease with a 5-year survival rate of less than 30%. AML treatment has undergone significant changes in recent years, incorporating novel targeted therapies along with improvements in allogeneic bone marrow transplantation techniques. However, the standard of care remains cytarabine and anthracyclines, and the primary hindrance towards curative treatment is the frequent emergence of intrinsic and acquired anticancer drug resistance. In this respect, patients presenting with chemoresistant AML face dismal prognosis even with most advanced therapies. Herein, we aimed to explore the potential implementation of the characterization of chemoresistance mechanisms in individual AML patients towards efficacious personalized medicine.

Methods

Towards the identification of tailored treatments for individual patients, we herein present the cases of relapsed AML patients, and compare them to patients displaying durable remissions following the same chemotherapeutic induction treatment. We quantified the expression levels of specific genes mediating drug transport and metabolism, nucleotide biosynthesis, and apoptosis, in order to decipher the molecular mechanisms underlying intrinsic and/or acquired chemoresistance modalities in relapsed patients. This was achieved by real-time PCR using patient cDNA, and could be readily implemented in the clinical setting.

Results

This analysis revealed pre-existing differences in gene expression levels between the relapsed patients and patients with lasting remissions, as well as drug-induced alterations at different relapse stages compared to diagnosis. Each of the relapsed patients displayed unique chemoresistance mechanisms following similar treatment protocols, which could have been missed in a large study aimed at identifying common drug resistance determinants.

Conclusions

Our findings emphasize the need for standardized evaluation of key drug transport and metabolism genes as an integral component of routine AML management, thereby allowing for the selection of treatments of choice for individual patients. This approach could facilitate the design of efficacious personalized treatment regimens, thereby reducing relapse rates of therapy refractory disease.
Appendix
Available only for authorised users
Literature
2.
go back to reference Blum WG, Mims AS. Treating acute myeloid leukemia in the modern era: a primer. Cancer. 2020;126:4668.PubMedCrossRef Blum WG, Mims AS. Treating acute myeloid leukemia in the modern era: a primer. Cancer. 2020;126:4668.PubMedCrossRef
3.
go back to reference Patel SA, Gerber JM. A user’s guide to novel therapies for acute myeloid leukemia. Clin Lymphoma Myeloma Leukemia. 2020;20:277–88.CrossRef Patel SA, Gerber JM. A user’s guide to novel therapies for acute myeloid leukemia. Clin Lymphoma Myeloma Leukemia. 2020;20:277–88.CrossRef
6.
go back to reference Heuser M, Ofran Y, Boissel N, Brunet Mauri S, Craddock C, Janssen J, et al. Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2020;31:697–712.PubMedCrossRef Heuser M, Ofran Y, Boissel N, Brunet Mauri S, Craddock C, Janssen J, et al. Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2020;31:697–712.PubMedCrossRef
8.
go back to reference Lazzarino M, Morra E, Alessandrino EP, Orlandi E, Pagnucco G, Merante S, et al. Mitoxantrone and etoposide: an effective regimen for refractory or relapsed acute myelogenous leukemia. Eur J Haematol. 1989;43:411–6.PubMedCrossRef Lazzarino M, Morra E, Alessandrino EP, Orlandi E, Pagnucco G, Merante S, et al. Mitoxantrone and etoposide: an effective regimen for refractory or relapsed acute myelogenous leukemia. Eur J Haematol. 1989;43:411–6.PubMedCrossRef
9.
go back to reference Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 2019;46:100645.PubMedCrossRef Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 2019;46:100645.PubMedCrossRef
10.
go back to reference Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, et al. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resistance Updates. 2016;27:14–29.PubMedCrossRef Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, et al. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resistance Updates. 2016;27:14–29.PubMedCrossRef
11.
go back to reference Kanno S, Hiura T, Ohtake T, Koiwai K, Suzuki H, Ujibe M, et al. Characterization of resistance to cytosine arabinoside (Ara-C) in NALM-6 human B leukemia cells. Clin Chim Acta. 2007;377:144–9.PubMedCrossRef Kanno S, Hiura T, Ohtake T, Koiwai K, Suzuki H, Ujibe M, et al. Characterization of resistance to cytosine arabinoside (Ara-C) in NALM-6 human B leukemia cells. Clin Chim Acta. 2007;377:144–9.PubMedCrossRef
12.
go back to reference Galmarini CM, Thomas X, Calvo F, Rousselot P, Rabilloud M, El Jaffari A, et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol. 2002;117:860–8.PubMedCrossRef Galmarini CM, Thomas X, Calvo F, Rousselot P, Rabilloud M, El Jaffari A, et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol. 2002;117:860–8.PubMedCrossRef
13.
go back to reference Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters—a review. Nucleosides, Nucleotides Nucleic Acids. 2017;36:7–30.PubMedCrossRef Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters—a review. Nucleosides, Nucleotides Nucleic Acids. 2017;36:7–30.PubMedCrossRef
14.
go back to reference Zhang J, Visser F, King KM, Baldwin SA, Young JD, Cass CE. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev. 2007;26:85–110.PubMedCrossRef Zhang J, Visser F, King KM, Baldwin SA, Young JD, Cass CE. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev. 2007;26:85–110.PubMedCrossRef
15.
go back to reference Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat. 2006;9:227–46.PubMedCrossRef Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat. 2006;9:227–46.PubMedCrossRef
16.
go back to reference Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol. 2012;82:1008–21.PubMedCrossRef Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol. 2012;82:1008–21.PubMedCrossRef
17.
go back to reference Abraham A, Varatharajan S, Karathedath S, Philip C, Lakshmi KM, Jayavelu AK, et al. RNA expression of genes involved in cytarabine metabolism and transport predicts cytarabine response in acute myeloid leukemia. Pharmacogenomics. 2015;16:877–90.PubMedCrossRef Abraham A, Varatharajan S, Karathedath S, Philip C, Lakshmi KM, Jayavelu AK, et al. RNA expression of genes involved in cytarabine metabolism and transport predicts cytarabine response in acute myeloid leukemia. Pharmacogenomics. 2015;16:877–90.PubMedCrossRef
18.
go back to reference Månsson E, Flordal E, Liliemark J, Spasokoukotskaja T, Elford H, Lagercrantz S, et al. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem Pharmacol. 2003;65:237–47.PubMedCrossRef Månsson E, Flordal E, Liliemark J, Spasokoukotskaja T, Elford H, Lagercrantz S, et al. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem Pharmacol. 2003;65:237–47.PubMedCrossRef
19.
go back to reference Hodzic J, Giovannetti E, Calvo BD, Adema AD, Peters GJ, Peters GJ. Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells. Nucleosides, Nucleotides Nucleic Acids. 2011;30:1214–22.PubMedCrossRef Hodzic J, Giovannetti E, Calvo BD, Adema AD, Peters GJ, Peters GJ. Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells. Nucleosides, Nucleotides Nucleic Acids. 2011;30:1214–22.PubMedCrossRef
20.
go back to reference Lotfi K, Juliusson G, Albertioni F. Pharmacological Basis for Cladribine Resistance. Leuk Lymphoma. 2003;44:1705–12.PubMedCrossRef Lotfi K, Juliusson G, Albertioni F. Pharmacological Basis for Cladribine Resistance. Leuk Lymphoma. 2003;44:1705–12.PubMedCrossRef
21.
go back to reference Veuger MJ, Honders MW, Landegent JE, Willemze R, Barge RM. High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia. Blood. 2000;96:1517–24.PubMedCrossRef Veuger MJ, Honders MW, Landegent JE, Willemze R, Barge RM. High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia. Blood. 2000;96:1517–24.PubMedCrossRef
22.
go back to reference Stegmann AP, Honders MW, Kester MG, Landegent JE, Willemze R. Role of deoxycytidine kinase in an in vitro model for AraC- and DAC-resistance: substrate-enzyme interactions with deoxycytidine, 1-beta-D-arabinofuranosylcytosine and 5-aza-2’-deoxycytidine. Leukemia. 1993;7:1005–11.PubMed Stegmann AP, Honders MW, Kester MG, Landegent JE, Willemze R. Role of deoxycytidine kinase in an in vitro model for AraC- and DAC-resistance: substrate-enzyme interactions with deoxycytidine, 1-beta-D-arabinofuranosylcytosine and 5-aza-2’-deoxycytidine. Leukemia. 1993;7:1005–11.PubMed
23.
go back to reference Månsson E, Spasokoukotskaja T, Sällström J, Eriksson S, Albertioni F. Molecular and biochemical mechanisms of fludarabine and cladribine resistance in a human promyelocytic cell line. Cancer Res. 1999;59:5956–63.PubMed Månsson E, Spasokoukotskaja T, Sällström J, Eriksson S, Albertioni F. Molecular and biochemical mechanisms of fludarabine and cladribine resistance in a human promyelocytic cell line. Cancer Res. 1999;59:5956–63.PubMed
24.
go back to reference Fanciullino R, Farnault L, Donnette M, Imbs D-C, Roche C, Venton G, et al. CDA as a predictive marker for life-threatening toxicities in patients with AML treated with cytarabine. Blood Adv. 2018;2:462–9.PubMedPubMedCentralCrossRef Fanciullino R, Farnault L, Donnette M, Imbs D-C, Roche C, Venton G, et al. CDA as a predictive marker for life-threatening toxicities in patients with AML treated with cytarabine. Blood Adv. 2018;2:462–9.PubMedPubMedCentralCrossRef
25.
go back to reference Mao Y, Yu C, Hsieh TS, Nitiss JL, Liu AA, Wang H, et al. Mutations of human topoisomerase IIα affecting multidrug resistance and sensitivity. Biochemistry. 1999;38:10793–800.PubMedCrossRef Mao Y, Yu C, Hsieh TS, Nitiss JL, Liu AA, Wang H, et al. Mutations of human topoisomerase IIα affecting multidrug resistance and sensitivity. Biochemistry. 1999;38:10793–800.PubMedCrossRef
26.
go back to reference Okada Y, Tosaka A, Nimura Y, Kikuchi A, Yoshida S, Suzuki M. Atypical multidrug resistance may be associated with catalytically active mutants of human DNA topoisomerase II α. Gene. 2001;272:141–8.PubMedCrossRef Okada Y, Tosaka A, Nimura Y, Kikuchi A, Yoshida S, Suzuki M. Atypical multidrug resistance may be associated with catalytically active mutants of human DNA topoisomerase II α. Gene. 2001;272:141–8.PubMedCrossRef
27.
go back to reference Urasaki Y, Ueda T, Yoshida A, Fukushima T, Takeuchi N, Tsuruo T, et al. Establishment of a daunorubicin-resistant cell line which shows multi-drug resistance by multifactorial mechanisms. Anticancer Res. 1996;16:709–14.PubMed Urasaki Y, Ueda T, Yoshida A, Fukushima T, Takeuchi N, Tsuruo T, et al. Establishment of a daunorubicin-resistant cell line which shows multi-drug resistance by multifactorial mechanisms. Anticancer Res. 1996;16:709–14.PubMed
28.
29.
go back to reference Zhitomirsky B, Assaraf YG. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat. 2016;24:23–33.PubMedCrossRef Zhitomirsky B, Assaraf YG. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat. 2016;24:23–33.PubMedCrossRef
30.
31.
go back to reference Yee SW, Mefford JA, Singh N, Percival M-E, Stecula A, Yang K, et al. Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia. J Hum Genet. 2013;58:353–61.PubMedPubMedCentralCrossRef Yee SW, Mefford JA, Singh N, Percival M-E, Stecula A, Yang K, et al. Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia. J Hum Genet. 2013;58:353–61.PubMedPubMedCentralCrossRef
32.
go back to reference Drenberg CD, Gibson AA, Pounds SB, Shi L, Rhinehart DP, Li L, et al. OCTN1 is a high-affinity carrier of nucleoside analogues. Cancer Res. 2017;77:2102–11.PubMedPubMedCentralCrossRef Drenberg CD, Gibson AA, Pounds SB, Shi L, Rhinehart DP, Li L, et al. OCTN1 is a high-affinity carrier of nucleoside analogues. Cancer Res. 2017;77:2102–11.PubMedPubMedCentralCrossRef
33.
go back to reference Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB, et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene. 2003;22:7524–36.PubMedCrossRef Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB, et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene. 2003;22:7524–36.PubMedCrossRef
34.
go back to reference Cai J, Damaraju VL, Groulx N, Mowles D, Peng Y, Robins MJ, et al. Two distinct molecular mechanisms underlying cytarabine resistance in human leukemic cells. Cancer Res. 2008;68:2349–57.PubMedCrossRef Cai J, Damaraju VL, Groulx N, Mowles D, Peng Y, Robins MJ, et al. Two distinct molecular mechanisms underlying cytarabine resistance in human leukemic cells. Cancer Res. 2008;68:2349–57.PubMedCrossRef
35.
go back to reference Bhise NS, Lamba V, Lamba J. Microrna expression and drug-induced changes in gene expression correlate with Ara-C chemosensitivity in AML cell lines. Blood. 2014;124. Bhise NS, Lamba V, Lamba J. Microrna expression and drug-induced changes in gene expression correlate with Ara-C chemosensitivity in AML cell lines. Blood. 2014;124.
36.
go back to reference Song JH, Cho K-M, Kim H-J, Kim Y-K, Kim NY, Kim H-J, et al. Concentrative nucleoside transporter 3 as a prognostic indicator for favorable outcome of t(8;21)-positive acute myeloid leukemia patients after cytarabine-based chemotherapy. Oncol Rep. 2015;34:488–94.PubMedCrossRef Song JH, Cho K-M, Kim H-J, Kim Y-K, Kim NY, Kim H-J, et al. Concentrative nucleoside transporter 3 as a prognostic indicator for favorable outcome of t(8;21)-positive acute myeloid leukemia patients after cytarabine-based chemotherapy. Oncol Rep. 2015;34:488–94.PubMedCrossRef
37.
go back to reference Nowak D, Liem NLMM, Mossner M, Klaumunzer M, Papa RA, Nowak V, et al. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance. Exp Hemat. 2015;43:32–43.e435.PubMedCrossRef Nowak D, Liem NLMM, Mossner M, Klaumunzer M, Papa RA, Nowak V, et al. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance. Exp Hemat. 2015;43:32–43.e435.PubMedCrossRef
38.
go back to reference Rathe SK, Largaespada DA. Deoxycytidine kinase is downregulated in Ara-C-resistant acute myeloid leukemia murine cell lines. Leukemia. 2010;24:1513–5.PubMedCrossRef Rathe SK, Largaespada DA. Deoxycytidine kinase is downregulated in Ara-C-resistant acute myeloid leukemia murine cell lines. Leukemia. 2010;24:1513–5.PubMedCrossRef
39.
go back to reference Song JH, Kim SH, Kweon SH, Lee TH, Kim H-J, Kim H-J, et al. Defective expression of deoxycytidine kinase in cytarabine-resistant acute myeloid leukemia cells. Int J Oncol. 2009;34:1165–71.PubMed Song JH, Kim SH, Kweon SH, Lee TH, Kim H-J, Kim H-J, et al. Defective expression of deoxycytidine kinase in cytarabine-resistant acute myeloid leukemia cells. Int J Oncol. 2009;34:1165–71.PubMed
40.
go back to reference Veuger MJT, Heemskerk MHM, Honders MW, Willemze R, Barge RMY. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood. 2002;99:1373–80.PubMedCrossRef Veuger MJT, Heemskerk MHM, Honders MW, Willemze R, Barge RMY. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood. 2002;99:1373–80.PubMedCrossRef
41.
go back to reference Degwert N, Latuske E, Vohwinkel G, Stamm H, Klokow M, Bokemeyer C, et al. Deoxycytidine kinase is downregulated under hypoxic conditions and confers resistance against cytarabine in acute myeloid leukaemia. Eur J Haematol. 2016;97:239–44.PubMedCrossRef Degwert N, Latuske E, Vohwinkel G, Stamm H, Klokow M, Bokemeyer C, et al. Deoxycytidine kinase is downregulated under hypoxic conditions and confers resistance against cytarabine in acute myeloid leukaemia. Eur J Haematol. 2016;97:239–44.PubMedCrossRef
42.
go back to reference Levin M, Stark M, Berman B, Assaraf YG. Surmounting Cytarabine-resistance in acute myeloblastic leukemia cells and specimens with a synergistic combination of hydroxyurea and azidothymidine. Cell Death Dis. 2019;10:1.CrossRef Levin M, Stark M, Berman B, Assaraf YG. Surmounting Cytarabine-resistance in acute myeloblastic leukemia cells and specimens with a synergistic combination of hydroxyurea and azidothymidine. Cell Death Dis. 2019;10:1.CrossRef
43.
44.
go back to reference Regev R, Yeheskely-Hayon D, Katzir H, Eytan GD. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem Pharmacol. 2005;70:161–9.PubMedCrossRef Regev R, Yeheskely-Hayon D, Katzir H, Eytan GD. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem Pharmacol. 2005;70:161–9.PubMedCrossRef
45.
go back to reference Fukushima T, Takemura H, Yamashita T, Ishisaka T, Inai K, Imamura S, et al. Multidrug resistance due to impaired DNA cleavage in a VP-16-resistant human leukemia cell line. Anticancer Res. 1999;19:5111–5.PubMed Fukushima T, Takemura H, Yamashita T, Ishisaka T, Inai K, Imamura S, et al. Multidrug resistance due to impaired DNA cleavage in a VP-16-resistant human leukemia cell line. Anticancer Res. 1999;19:5111–5.PubMed
46.
go back to reference Jaffrézou JP, Chen G, Durán GE, Kühl JS, Sikic BI. Mutation rates and mechanisms of resistance to etoposide determined from flucattion analysis. J Natl Cancer Inst. 1994;86:1152–8.PubMedCrossRef Jaffrézou JP, Chen G, Durán GE, Kühl JS, Sikic BI. Mutation rates and mechanisms of resistance to etoposide determined from flucattion analysis. J Natl Cancer Inst. 1994;86:1152–8.PubMedCrossRef
47.
go back to reference Long BH, Wang L, Lorico A, Wang RCC, Brattain MG, Casazza AM. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines’. Cancer Res. 1991;51:5275–83. Long BH, Wang L, Lorico A, Wang RCC, Brattain MG, Casazza AM. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines’. Cancer Res. 1991;51:5275–83.
48.
go back to reference Friche E, Danks MK, Schmidt CA, Beck WT. Decreased DNA topoisomerase II in daunorubicin-resistant ehrlich ascites tumor cells. Cancer Res. 1991;51:4213.PubMed Friche E, Danks MK, Schmidt CA, Beck WT. Decreased DNA topoisomerase II in daunorubicin-resistant ehrlich ascites tumor cells. Cancer Res. 1991;51:4213.PubMed
49.
go back to reference Ross DD, Wooten PJ, Sridhara R, Ordonez JV, Lee EJ, Schiffer CA. Enhancement of daunorubicin accumulation, retention, and cytotoxicity by verapamil or cyclosporin A in blast cells from patients with previously untreated acute myeloid leukemia. Blood. 1993;82:1288–99.PubMedCrossRef Ross DD, Wooten PJ, Sridhara R, Ordonez JV, Lee EJ, Schiffer CA. Enhancement of daunorubicin accumulation, retention, and cytotoxicity by verapamil or cyclosporin A in blast cells from patients with previously untreated acute myeloid leukemia. Blood. 1993;82:1288–99.PubMedCrossRef
50.
go back to reference Nielsen D, Maare C, Skovsgaard T. Cellular resistance to anthracyclines. Gen Pharmacol. 1996;27:251–5.PubMedCrossRef Nielsen D, Maare C, Skovsgaard T. Cellular resistance to anthracyclines. Gen Pharmacol. 1996;27:251–5.PubMedCrossRef
51.
go back to reference Choi CH, Ling V. Isolation and characterization of daunorubicin-resistant AML-2 sublines. Mol Cells. 1997;7:170–7.PubMed Choi CH, Ling V. Isolation and characterization of daunorubicin-resistant AML-2 sublines. Mol Cells. 1997;7:170–7.PubMed
52.
go back to reference Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57:727–41.PubMedCrossRef Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57:727–41.PubMedCrossRef
53.
go back to reference Vasanthakumar G, Ahmed NK. Uptake and metabolism of daunorubicin by human myelocytic cells. Cancer Chemother Pharmacol. 1985;15:35–9.PubMedCrossRef Vasanthakumar G, Ahmed NK. Uptake and metabolism of daunorubicin by human myelocytic cells. Cancer Chemother Pharmacol. 1985;15:35–9.PubMedCrossRef
54.
go back to reference Bogason A, Masquelier M, Lafolie P, Skogastierna C, Paul C, Gruber A, et al. Daunorubicin metabolism in leukemic cells isolated from patients with acute myeloid leukemia. Drug Metab Lett. 2010;4:228–32.PubMedCrossRef Bogason A, Masquelier M, Lafolie P, Skogastierna C, Paul C, Gruber A, et al. Daunorubicin metabolism in leukemic cells isolated from patients with acute myeloid leukemia. Drug Metab Lett. 2010;4:228–32.PubMedCrossRef
55.
go back to reference Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosomedependent cancer multidrug resistance. Oncotarget. 2015;6:1143–56.PubMedCrossRef Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosomedependent cancer multidrug resistance. Oncotarget. 2015;6:1143–56.PubMedCrossRef
56.
go back to reference Stark M, Silva TFD, Levin G, Machuqueiro M, Assaraf YG. The lysosomotropic activity of hydrophobic weak base drugs is mediated via their intercalation into the lysosomal membrane. Cells. 2020;9:1082.PubMedCentralCrossRef Stark M, Silva TFD, Levin G, Machuqueiro M, Assaraf YG. The lysosomotropic activity of hydrophobic weak base drugs is mediated via their intercalation into the lysosomal membrane. Cells. 2020;9:1082.PubMedCentralCrossRef
57.
go back to reference Biasoli D, Kahn SA, Cornélio TA, Furtado M, Campanati L, Chneiweiss H, et al. Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death Dis. 2013;4:e767.PubMedPubMedCentralCrossRef Biasoli D, Kahn SA, Cornélio TA, Furtado M, Campanati L, Chneiweiss H, et al. Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death Dis. 2013;4:e767.PubMedPubMedCentralCrossRef
59.
60.
go back to reference Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256:42–9.PubMedCrossRef Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256:42–9.PubMedCrossRef
61.
go back to reference Ferrer A, Marcé S, Bellosillo B, Villamor N, Bosch F, López-Guillermo A, et al. Activation of mitochondrial apoptotic pathway in mantle cell lymphoma: high sensitivity to mitoxantrone in cases with functional DNA-damage response genes. Oncogene. 2004;23:8941–9.PubMedCrossRef Ferrer A, Marcé S, Bellosillo B, Villamor N, Bosch F, López-Guillermo A, et al. Activation of mitochondrial apoptotic pathway in mantle cell lymphoma: high sensitivity to mitoxantrone in cases with functional DNA-damage response genes. Oncogene. 2004;23:8941–9.PubMedCrossRef
62.
go back to reference Bailly JD, Skladanowski A, Bettaieb A, Mansat V, Larsen AK, Laurent G. Natural resistance of acute myeloid leukemia cell lines to mitoxantrone is associated with lack of apoptosis. Leukemia. 1997;11:1523–32.PubMedCrossRef Bailly JD, Skladanowski A, Bettaieb A, Mansat V, Larsen AK, Laurent G. Natural resistance of acute myeloid leukemia cell lines to mitoxantrone is associated with lack of apoptosis. Leukemia. 1997;11:1523–32.PubMedCrossRef
63.
go back to reference Shahar N, Larisch S. Inhibiting the inhibitors: targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updates. 2020;52:100712.CrossRef Shahar N, Larisch S. Inhibiting the inhibitors: targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updates. 2020;52:100712.CrossRef
64.
go back to reference DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.PubMedPubMedCentralCrossRef DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.PubMedPubMedCentralCrossRef
66.
go back to reference Ganzel C, Ram R, Gural A, Wolach O, Gino-Moor S, Vainstein V, et al. Venetoclax is safe and efficacious in relapsed/ refractory AML. Blood. 2019;134(Supplement_1):5091–5091.CrossRef Ganzel C, Ram R, Gural A, Wolach O, Gino-Moor S, Vainstein V, et al. Venetoclax is safe and efficacious in relapsed/ refractory AML. Blood. 2019;134(Supplement_1):5091–5091.CrossRef
67.
go back to reference Hormi M, Birsen R, Belhadj M, Huynh T, Cantero Aguilar L, Grignano E, et al. Pairing MCL‐1 inhibition with venetoclax improves therapeutic efficiency of BH3‐mimetics in AML. Eur J Haematol. 2020;13492. Hormi M, Birsen R, Belhadj M, Huynh T, Cantero Aguilar L, Grignano E, et al. Pairing MCL‐1 inhibition with venetoclax improves therapeutic efficiency of BH3‐mimetics in AML. Eur J Haematol. 2020;13492.
68.
go back to reference Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10:536–51.PubMedPubMedCentralCrossRef Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10:536–51.PubMedPubMedCentralCrossRef
69.
go back to reference Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.PubMedPubMedCentralCrossRef Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.PubMedPubMedCentralCrossRef
70.
go back to reference Zhang Q, Han L, Shi C, Pan R, MA MCJ, Ryan J, et al. Upregulation of MAPK/MCL-1 Maintaining Mitochondrial Oxidative Phosphorylation Confers Acquired Resistance to BCL-2 Inhibitor Venetoclax in AML. Blood. 2016;128:101–101. Zhang Q, Han L, Shi C, Pan R, MA MCJ, Ryan J, et al. Upregulation of MAPK/MCL-1 Maintaining Mitochondrial Oxidative Phosphorylation Confers Acquired Resistance to BCL-2 Inhibitor Venetoclax in AML. Blood. 2016;128:101–101.
71.
go back to reference Ahmed F, Allehyani OA, Alfayez M, Schulten H-J, Alkhattabi H, Chaudhary AGA, et al. Novel genetic mechanism of venetoclax resistance in AML: BAX Deletion. Blood. 2019;134(Supplement_1):5057–5057.CrossRef Ahmed F, Allehyani OA, Alfayez M, Schulten H-J, Alkhattabi H, Chaudhary AGA, et al. Novel genetic mechanism of venetoclax resistance in AML: BAX Deletion. Blood. 2019;134(Supplement_1):5057–5057.CrossRef
72.
go back to reference Weiss J, Gajek T, Köhler BC, Haefeli WE. Venetoclax (Abt-199) might act as a perpetrator in pharmacokinetic drug–drug interactions. Pharmaceutics. 2016;8:5.PubMedCentralCrossRef Weiss J, Gajek T, Köhler BC, Haefeli WE. Venetoclax (Abt-199) might act as a perpetrator in pharmacokinetic drug–drug interactions. Pharmaceutics. 2016;8:5.PubMedCentralCrossRef
73.
go back to reference Ricart AD. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res. 2011;17:6417–27.PubMedCrossRef Ricart AD. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res. 2011;17:6417–27.PubMedCrossRef
74.
go back to reference Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19:176–82.PubMedCrossRef Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19:176–82.PubMedCrossRef
75.
go back to reference Walker S, Landovitz R, Ding WD, Ellestad GA, Kahne D. Cleavage behavior of calicheamicin γ1 and calicheamicin T. Proc Natl Acad Sci U S A. 1992;89:4608–12.PubMedPubMedCentralCrossRef Walker S, Landovitz R, Ding WD, Ellestad GA, Kahne D. Cleavage behavior of calicheamicin γ1 and calicheamicin T. Proc Natl Acad Sci U S A. 1992;89:4608–12.PubMedPubMedCentralCrossRef
76.
go back to reference Taksin AL, Legrand O, Raffoux E, de Revel T, Thomas X, Contentin N, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21:66–71.PubMedCrossRef Taksin AL, Legrand O, Raffoux E, de Revel T, Thomas X, Contentin N, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21:66–71.PubMedCrossRef
77.
go back to reference Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML. Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood. 2003;102:1466–73.PubMedCrossRef Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML. Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood. 2003;102:1466–73.PubMedCrossRef
78.
go back to reference Hopper-Borge E, Xu X, Shen T, Shi Z, Chen ZS, Kruh GD. Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogues and epothilone B. Cancer Res. 2009;69:178–84.PubMedPubMedCentralCrossRef Hopper-Borge E, Xu X, Shen T, Shi Z, Chen ZS, Kruh GD. Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogues and epothilone B. Cancer Res. 2009;69:178–84.PubMedPubMedCentralCrossRef
79.
go back to reference Drenberg C, Hu S, Li L, Buelow D, Orwick S, Gibson A, et al. ABCC4 Is a determinant of cytarabine-induced cytotoxicity and myelosuppression. Clin Transl Sci. 2016;9:51–9.PubMedPubMedCentralCrossRef Drenberg C, Hu S, Li L, Buelow D, Orwick S, Gibson A, et al. ABCC4 Is a determinant of cytarabine-induced cytotoxicity and myelosuppression. Clin Transl Sci. 2016;9:51–9.PubMedPubMedCentralCrossRef
80.
go back to reference Guo Y, Kock K, Ritter CA, Chen ZS, Grube M, Jedlitschky G, et al. Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Cancer Res. 2009;15:1762–9.PubMedPubMedCentralCrossRef Guo Y, Kock K, Ritter CA, Chen ZS, Grube M, Jedlitschky G, et al. Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Cancer Res. 2009;15:1762–9.PubMedPubMedCentralCrossRef
81.
go back to reference Chauvier D, Morjani H, Manfait M. Homocamptothecin-daunorubicin association overcomes multidrug-resistance in breast cancer MCF7 cells. Breast Cancer Res Treat. 2002;73:113–25.PubMedCrossRef Chauvier D, Morjani H, Manfait M. Homocamptothecin-daunorubicin association overcomes multidrug-resistance in breast cancer MCF7 cells. Breast Cancer Res Treat. 2002;73:113–25.PubMedCrossRef
82.
go back to reference Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: a historic approach and recent advances. Medicinal Res Rev. 2019;39:176–264.CrossRef Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: a historic approach and recent advances. Medicinal Res Rev. 2019;39:176–264.CrossRef
83.
go back to reference Zunino F, Capranico G. DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anti-Cancer Drug Design. 1990;5:307–17.PubMed Zunino F, Capranico G. DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anti-Cancer Drug Design. 1990;5:307–17.PubMed
84.
go back to reference Aubel-Sadron G, Londos-Gagliardi D. Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review. Biochimie. 1984;66:333–52.PubMedCrossRef Aubel-Sadron G, Londos-Gagliardi D. Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review. Biochimie. 1984;66:333–52.PubMedCrossRef
85.
go back to reference Evison BJ, Sleebs BE, Watson KG, Phillips DR, Cutts SM. Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev. 2016;36:248–99.PubMedCrossRef Evison BJ, Sleebs BE, Watson KG, Phillips DR, Cutts SM. Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev. 2016;36:248–99.PubMedCrossRef
86.
go back to reference Ma Y, Wink M. The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phyther Res. 2010;24:146–9.CrossRef Ma Y, Wink M. The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phyther Res. 2010;24:146–9.CrossRef
87.
go back to reference Nakanishi T, Doyle LA, Hassel B, Wei Y, Bauer KS, Wu S, et al. Functional Characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol Pharmacol. 2003;64:1452–62.PubMedCrossRef Nakanishi T, Doyle LA, Hassel B, Wei Y, Bauer KS, Wu S, et al. Functional Characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol Pharmacol. 2003;64:1452–62.PubMedCrossRef
88.
go back to reference Morrow CS, Peklak-Scott C, Bishwokarma B, Kute TE, Smitherman PK, Townsend AJ. Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol Pharmacol. 2006;69:1499–505.PubMedCrossRef Morrow CS, Peklak-Scott C, Bishwokarma B, Kute TE, Smitherman PK, Townsend AJ. Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol Pharmacol. 2006;69:1499–505.PubMedCrossRef
89.
go back to reference Wang X, Furukawa T, Nitanda T, Okamoto M, Sugimoto Y, Akiyama SI, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol. 2003;63:65–72.PubMedCrossRef Wang X, Furukawa T, Nitanda T, Okamoto M, Sugimoto Y, Akiyama SI, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol. 2003;63:65–72.PubMedCrossRef
90.
go back to reference Ifergan I, Scheffer GL, Assaraf YG. Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance. Cancer Res. 2005;65:10952–8.PubMedCrossRef Ifergan I, Scheffer GL, Assaraf YG. Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance. Cancer Res. 2005;65:10952–8.PubMedCrossRef
92.
go back to reference Yang J, Bogni A, Schuetz EG, Ratain M, Eileen Dolan M, McLeod H, et al. Etoposide pathway. Pharmacogenetics Genomics. 2009;19:552–3.PubMedCrossRef Yang J, Bogni A, Schuetz EG, Ratain M, Eileen Dolan M, McLeod H, et al. Etoposide pathway. Pharmacogenetics Genomics. 2009;19:552–3.PubMedCrossRef
93.
94.
go back to reference Gonen N, Assaraf YG. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist Updat. 2012;15:183–210.PubMedCrossRef Gonen N, Assaraf YG. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist Updat. 2012;15:183–210.PubMedCrossRef
95.
go back to reference Chiney MS, Menon RM, Bueno OF, Tong B, Salem AH. Clinical evaluation of P-glycoprotein inhibition by venetoclax: a drug interaction study with digoxin. Xenobiotica. 2018;48:904–10.PubMedCrossRef Chiney MS, Menon RM, Bueno OF, Tong B, Salem AH. Clinical evaluation of P-glycoprotein inhibition by venetoclax: a drug interaction study with digoxin. Xenobiotica. 2018;48:904–10.PubMedCrossRef
96.
go back to reference Raz S, Sheban D, Gonen N, Stark M, Berman B, Assaraf YG. Severe hypoxia induces complete antifolate resistance in carcinoma cells due to cell cycle arrest. Cell Death Dis. 2014;5:e1067–e1067.PubMedPubMedCentralCrossRef Raz S, Sheban D, Gonen N, Stark M, Berman B, Assaraf YG. Severe hypoxia induces complete antifolate resistance in carcinoma cells due to cell cycle arrest. Cell Death Dis. 2014;5:e1067–e1067.PubMedPubMedCentralCrossRef
97.
go back to reference Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM, et al. The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J. 2007;21:3592–605.PubMedCrossRef Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM, et al. The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J. 2007;21:3592–605.PubMedCrossRef
98.
go back to reference Zhitomirsky B, Yunaev A, Kreiserman R, Kaplan A, Stark M, Assaraf YG. Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 2018;9:1191.PubMedPubMedCentralCrossRef Zhitomirsky B, Yunaev A, Kreiserman R, Kaplan A, Stark M, Assaraf YG. Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 2018;9:1191.PubMedPubMedCentralCrossRef
99.
go back to reference Gonen N, Assaraf YG. The obligatory intestinal folate transporter PCFT (SLC46A1) is regulated by nuclear respiratory factor 1. J Biol Chem. 2010;285:33602–13.PubMedPubMedCentralCrossRef Gonen N, Assaraf YG. The obligatory intestinal folate transporter PCFT (SLC46A1) is regulated by nuclear respiratory factor 1. J Biol Chem. 2010;285:33602–13.PubMedPubMedCentralCrossRef
100.
go back to reference Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.PubMedPubMedCentralCrossRef Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.PubMedPubMedCentralCrossRef
101.
go back to reference Veuger MJT, Honders MW, Willemze R, Barge RMY. Deoxycytidine kinase expression and activity in patients with resistant versus sensitive acute myeloid leukemia. Eur J Haematol. 2002;69:171–8.PubMedCrossRef Veuger MJT, Honders MW, Willemze R, Barge RMY. Deoxycytidine kinase expression and activity in patients with resistant versus sensitive acute myeloid leukemia. Eur J Haematol. 2002;69:171–8.PubMedCrossRef
102.
go back to reference Veuger MJT, Heemskerk MHM, Willy Honders M, Willemze R, Barge RMY. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood. 2002;99:1373–80.PubMedCrossRef Veuger MJT, Heemskerk MHM, Willy Honders M, Willemze R, Barge RMY. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood. 2002;99:1373–80.PubMedCrossRef
103.
go back to reference Peniket A, Wainscoat J, Side L, Daly S, Kusec R, Buck G, et al. Del (9q) AML: clinical and cytological characteristics and prognostic implications. Br J Haematol. 2005;129:210–20.PubMedCrossRef Peniket A, Wainscoat J, Side L, Daly S, Kusec R, Buck G, et al. Del (9q) AML: clinical and cytological characteristics and prognostic implications. Br J Haematol. 2005;129:210–20.PubMedCrossRef
104.
go back to reference Naarmann-de Vries IS, Sackmann Y, Klein F, Ostareck-Lederer A, Ostareck DH, Jost E, et al. Characterization of acute myeloid leukemia with del(9q)—impact of the genes in the minimally deleted region. Leuk Res. 2019;76:15–23.PubMedCrossRef Naarmann-de Vries IS, Sackmann Y, Klein F, Ostareck-Lederer A, Ostareck DH, Jost E, et al. Characterization of acute myeloid leukemia with del(9q)—impact of the genes in the minimally deleted region. Leuk Res. 2019;76:15–23.PubMedCrossRef
105.
go back to reference Balk B, Stengel A, Meggendorfer M, Fasan A, Kern W, Haferlach T, et al. Impact of 9q Deletions on the classification in AML. Blood. 2017;130(Supplement 1):3925–3925. Balk B, Stengel A, Meggendorfer M, Fasan A, Kern W, Haferlach T, et al. Impact of 9q Deletions on the classification in AML. Blood. 2017;130(Supplement 1):3925–3925.
106.
go back to reference Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–43.PubMedCentralCrossRef Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–43.PubMedCentralCrossRef
107.
go back to reference Consoli U, Van NT, Neamati N, Mahadevia R, Beran M, Zhao S, et al. Cellular pharmacology of mitoxantrone in p-glycoprotein-positive and -negative human myeloid leukemic cell lines. Leukemia. 1997;11:2066–74.PubMedCrossRef Consoli U, Van NT, Neamati N, Mahadevia R, Beran M, Zhao S, et al. Cellular pharmacology of mitoxantrone in p-glycoprotein-positive and -negative human myeloid leukemic cell lines. Leukemia. 1997;11:2066–74.PubMedCrossRef
108.
go back to reference Adar Y, Stark M, Bram EE, Nowak-Sliwinska P, Van Den Bergh H, Szewczyk G, et al. Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers. Cell Death Dis. 2012;3:e293.PubMedPubMedCentralCrossRef Adar Y, Stark M, Bram EE, Nowak-Sliwinska P, Van Den Bergh H, Szewczyk G, et al. Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers. Cell Death Dis. 2012;3:e293.PubMedPubMedCentralCrossRef
109.
go back to reference Zhao B, Dierichs L, Gu JN, Trajkovic-Arsic M, Axel Hilger R, Savvatakis K, et al. TFEB-mediated lysosomal biogenesis and lysosomal drug sequestration confer resistance to MEK inhibition in pancreatic cancer. Cell Death Discov. 2020;6:12.PubMedPubMedCentralCrossRef Zhao B, Dierichs L, Gu JN, Trajkovic-Arsic M, Axel Hilger R, Savvatakis K, et al. TFEB-mediated lysosomal biogenesis and lysosomal drug sequestration confer resistance to MEK inhibition in pancreatic cancer. Cell Death Discov. 2020;6:12.PubMedPubMedCentralCrossRef
110.
go back to reference Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Le Y, et al. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med. 2010;16:214–8.PubMedPubMedCentralCrossRef Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Le Y, et al. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med. 2010;16:214–8.PubMedPubMedCentralCrossRef
111.
go back to reference Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20:3852–66.PubMedCrossRef Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20:3852–66.PubMedCrossRef
112.
go back to reference Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–96.PubMedPubMedCentralCrossRef Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–96.PubMedPubMedCentralCrossRef
113.
go back to reference Kuzu OF, Gowda R, Sharma A, Robertson GP. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol Cancer Ther. 2014;13:1690–703.PubMedPubMedCentralCrossRef Kuzu OF, Gowda R, Sharma A, Robertson GP. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol Cancer Ther. 2014;13:1690–703.PubMedPubMedCentralCrossRef
114.
go back to reference Filippakis H, Alesi N, Ogorek B, Nijmeh J, Khabibullin D, Gutierrez C, et al. Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R. Oncotarget. 2017;8:38099–112.PubMedPubMedCentralCrossRef Filippakis H, Alesi N, Ogorek B, Nijmeh J, Khabibullin D, Gutierrez C, et al. Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R. Oncotarget. 2017;8:38099–112.PubMedPubMedCentralCrossRef
115.
go back to reference Kristiana I, Sharpe LJ, Catts VS, Lutze-Mann LH, Brown AJ. Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein-derived cholesterol. Pharmacogenomics J. 2010;10:396–407.PubMedCrossRef Kristiana I, Sharpe LJ, Catts VS, Lutze-Mann LH, Brown AJ. Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein-derived cholesterol. Pharmacogenomics J. 2010;10:396–407.PubMedCrossRef
116.
go back to reference Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res. 2017;117:177–84.PubMedCrossRef Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res. 2017;117:177–84.PubMedCrossRef
117.
go back to reference Amici A, Emanuelli M, Magni G, Raffaelli N, Ruggieri S. Pyrimidine nucleotidases from human erythrocyte possess phosphotransferase activities specific for pyrimidine nucleotides. FEBS Lett. 1997;419:263–7.PubMedCrossRef Amici A, Emanuelli M, Magni G, Raffaelli N, Ruggieri S. Pyrimidine nucleotidases from human erythrocyte possess phosphotransferase activities specific for pyrimidine nucleotides. FEBS Lett. 1997;419:263–7.PubMedCrossRef
118.
go back to reference Amici A, Magni G. Human erythrocyte pyrimidine 5′-nucleotidase. PN-I Arch Biochem Biophys. 2002;397:184–90.PubMedCrossRef Amici A, Magni G. Human erythrocyte pyrimidine 5′-nucleotidase. PN-I Arch Biochem Biophys. 2002;397:184–90.PubMedCrossRef
119.
go back to reference Li A, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, et al. Gemcitabine and cytosine arabinoside cytotoxicity: Association with lymphoblastoid cell expression. Cancer Res. 2008;68:7050–8.PubMedPubMedCentralCrossRef Li A, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, et al. Gemcitabine and cytosine arabinoside cytotoxicity: Association with lymphoblastoid cell expression. Cancer Res. 2008;68:7050–8.PubMedPubMedCentralCrossRef
120.
go back to reference Hunsucker SA, Mitchell BS, Spychala J. The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Therapeutics. 2005;107:1–30.CrossRef Hunsucker SA, Mitchell BS, Spychala J. The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Therapeutics. 2005;107:1–30.CrossRef
121.
go back to reference Iwasaki H, Huang P, Keating MJ, Plunkett W. Differential incorporation of ara-C, gemcitabine, and fludarabine into replicating and repairing DNA in proliferating human leukemia cells. Blood. 1997;90:270–8.PubMedCrossRef Iwasaki H, Huang P, Keating MJ, Plunkett W. Differential incorporation of ara-C, gemcitabine, and fludarabine into replicating and repairing DNA in proliferating human leukemia cells. Blood. 1997;90:270–8.PubMedCrossRef
122.
go back to reference Lavie A, Schlichting I, Vetter IR, Konrad M, Reinstein J, Goody RS. The bottleneck in AZT activation. Nat Med. 1997;3:922–4.PubMedCrossRef Lavie A, Schlichting I, Vetter IR, Konrad M, Reinstein J, Goody RS. The bottleneck in AZT activation. Nat Med. 1997;3:922–4.PubMedCrossRef
123.
go back to reference Törnevik Y, Ullman B, Balzarini J, Wahren B, Eriksson S. Cytotoxicity of 3′-azido-3′-deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AZTMP) levels, whereas antihuman immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-triphosphate (AZTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol. 1995;49:829–37.PubMedCrossRef Törnevik Y, Ullman B, Balzarini J, Wahren B, Eriksson S. Cytotoxicity of 3′-azido-3′-deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AZTMP) levels, whereas antihuman immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-triphosphate (AZTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol. 1995;49:829–37.PubMedCrossRef
124.
go back to reference Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, et al. Phosphorylation of 3’-azido-3’-deoxythymidine and selective interaction of the 5’-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986;83:8333–7.PubMedPubMedCentralCrossRef Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, et al. Phosphorylation of 3’-azido-3’-deoxythymidine and selective interaction of the 5’-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986;83:8333–7.PubMedPubMedCentralCrossRef
125.
go back to reference Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93:1267–91.PubMedCrossRef Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93:1267–91.PubMedCrossRef
126.
go back to reference Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: Effect of polyglutamylation on MTX transport. Cancer Res. 2001;61:7225–32.PubMed Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: Effect of polyglutamylation on MTX transport. Cancer Res. 2001;61:7225–32.PubMed
127.
go back to reference Walter RB, Gooley TA, Van Der Velden VHJ, Loken MR, Van Dongen JJM, Flowers DA, et al. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109:4168–70.PubMedPubMedCentralCrossRef Walter RB, Gooley TA, Van Der Velden VHJ, Loken MR, Van Dongen JJM, Flowers DA, et al. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109:4168–70.PubMedPubMedCentralCrossRef
128.
go back to reference Liu R, Page C, Beidler DR, Wicha MS, Núñez G. Overexpression of Bcl-X(L) promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. Am J Pathol. 1999;155:1861–7.PubMedPubMedCentralCrossRef Liu R, Page C, Beidler DR, Wicha MS, Núñez G. Overexpression of Bcl-X(L) promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. Am J Pathol. 1999;155:1861–7.PubMedPubMedCentralCrossRef
129.
go back to reference Miyashita T, Reed JC. Bcl-2 Oncoprotein Blocks Chemotherapy-Induced Apoptosis in a Human Leukemia Cell Line. Miyashita T, Reed JC. Bcl-2 Oncoprotein Blocks Chemotherapy-Induced Apoptosis in a Human Leukemia Cell Line.
130.
go back to reference Arthur C, Jeffrey A, Yip E, Katsioulas V, Nalpantidis A, Kerridge I, et al. Prolonged administration of low-dose cytarabine and thioguanine in elderly patients with acute myeloid leukaemia (AML) achieves high complete remission rates and prolonged survival. Leuk Lymphoma. 2020;61:831–9.PubMedCrossRef Arthur C, Jeffrey A, Yip E, Katsioulas V, Nalpantidis A, Kerridge I, et al. Prolonged administration of low-dose cytarabine and thioguanine in elderly patients with acute myeloid leukaemia (AML) achieves high complete remission rates and prolonged survival. Leuk Lymphoma. 2020;61:831–9.PubMedCrossRef
131.
go back to reference Choi YW, Jeong SH, Ahn MS, Lee HW, Kang SY, Choi JH, et al. Oral maintenance chemotherapy with 6-Mercaptopurine and methotrexate in patients with acute myeloid leukemia ineligible for transplantation. J Korean Med Sci. 2015;30:1416–22.PubMedPubMedCentralCrossRef Choi YW, Jeong SH, Ahn MS, Lee HW, Kang SY, Choi JH, et al. Oral maintenance chemotherapy with 6-Mercaptopurine and methotrexate in patients with acute myeloid leukemia ineligible for transplantation. J Korean Med Sci. 2015;30:1416–22.PubMedPubMedCentralCrossRef
132.
go back to reference Ferrero D, Crisà E, Marmont F, Audisio E, Frairia C, Giai V, et al. Survival improvement of poor-prognosis AML/MDS patients by maintenance treatment with low-dose chemotherapy and differentiating agents. Ann Hematol. 2014;93:1391–400.PubMedCrossRef Ferrero D, Crisà E, Marmont F, Audisio E, Frairia C, Giai V, et al. Survival improvement of poor-prognosis AML/MDS patients by maintenance treatment with low-dose chemotherapy and differentiating agents. Ann Hematol. 2014;93:1391–400.PubMedCrossRef
133.
go back to reference Fotoohi AK, Lindqvist M, Peterson C, Albertioni F. Involvement of the concentrative nucleoside transporter 3 and equilibrative nucleoside transporter 2 in the resistance of T-lymphoblastic cell lines to thiopurines. Biochem Biophys Res Commun. 2006;343:208–15.PubMedCrossRef Fotoohi AK, Lindqvist M, Peterson C, Albertioni F. Involvement of the concentrative nucleoside transporter 3 and equilibrative nucleoside transporter 2 in the resistance of T-lymphoblastic cell lines to thiopurines. Biochem Biophys Res Commun. 2006;343:208–15.PubMedCrossRef
135.
go back to reference Ma G, Wang Y, Ahmed T, Zaslav AL, Hogan L, Avila C, et al. Anti-CD19 chimeric antigen receptor targeting of CD19+ acute myeloid leukemia. Leuk Res Rep. 2018;9:42–4.PubMedPubMedCentral Ma G, Wang Y, Ahmed T, Zaslav AL, Hogan L, Avila C, et al. Anti-CD19 chimeric antigen receptor targeting of CD19+ acute myeloid leukemia. Leuk Res Rep. 2018;9:42–4.PubMedPubMedCentral
137.
139.
go back to reference Tina E, Prenkert M, Höglund M, Paul C, Tidefelt U. Topoisomerase IIα expression in acute myeloid leukaemia cells that survive after exposure to daunorubicin or ara-C. Oncol Rep. 2009;22:1527–31.PubMedCrossRef Tina E, Prenkert M, Höglund M, Paul C, Tidefelt U. Topoisomerase IIα expression in acute myeloid leukaemia cells that survive after exposure to daunorubicin or ara-C. Oncol Rep. 2009;22:1527–31.PubMedCrossRef
140.
go back to reference Hurwitz SJ, Terashima M, Mizunuma N, Slapak CA. Vesicular anthracycline accumulation in doxorubicin-selected U-937 cells: participation of lysosomes. Blood. 1997;89:3745–54.PubMedCrossRef Hurwitz SJ, Terashima M, Mizunuma N, Slapak CA. Vesicular anthracycline accumulation in doxorubicin-selected U-937 cells: participation of lysosomes. Blood. 1997;89:3745–54.PubMedCrossRef
141.
go back to reference Hraběta J, Belhajová M, Šubrtová H, Rodrigo MMA, Heger Z, Eckschlager T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci. 2020;21:4392.PubMedCentralCrossRef Hraběta J, Belhajová M, Šubrtová H, Rodrigo MMA, Heger Z, Eckschlager T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci. 2020;21:4392.PubMedCentralCrossRef
142.
go back to reference Circu M, Cardelli J, Barr M, O’Byrne K, Mills G, El-Osta H. Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells. PLoS One. 2017;12:e0184922.PubMedPubMedCentralCrossRef Circu M, Cardelli J, Barr M, O’Byrne K, Mills G, El-Osta H. Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells. PLoS One. 2017;12:e0184922.PubMedPubMedCentralCrossRef
143.
go back to reference Groth-Pedersen L, Ostenfeld MS, Høyer-Hansen M, Nylandsted J, Jäättelä M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res. 2007;67:2217–25.PubMedCrossRef Groth-Pedersen L, Ostenfeld MS, Høyer-Hansen M, Nylandsted J, Jäättelä M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res. 2007;67:2217–25.PubMedCrossRef
144.
go back to reference Patel C, Stenke L, Varma S, Lindberg ML, Björkholm M, Sjöberg J, et al. Multidrug resistance in relapsed acute myeloid leukemia: evidence of biological heterogeneity. Cancer. 2013;119:3076–83.PubMedCrossRef Patel C, Stenke L, Varma S, Lindberg ML, Björkholm M, Sjöberg J, et al. Multidrug resistance in relapsed acute myeloid leukemia: evidence of biological heterogeneity. Cancer. 2013;119:3076–83.PubMedCrossRef
Metadata
Title
Deciphering molecular mechanisms underlying chemoresistance in relapsed AML patients: towards precision medicine overcoming drug resistance
Authors
May Levin
Michal Stark
Yishai Ofran
Yehuda G. Assaraf
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-01746-w

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine