Skip to main content
Top
Published in: Clinical Pharmacokinetics 2/2020

01-02-2020 | Acute Lymphoblastic Leukemia | Original Research Article

A Semi-Mechanistic Population Pharmacokinetic/Pharmacodynamic Model of Bortezomib in Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia

Authors: Julie M. Janssen, T. P. C. Dorlo, D. Niewerth, A. J. Wilhelm, C. M. Zwaan, J. H. Beijnen, A. Attarbaschi, A. Baruchel, F. Fagioli, T. Klingebiel, B. De Moerloose, G. Palumbo, A. von Stackelberg, G. J. L. Kaspers, A. D. R. Huitema

Published in: Clinical Pharmacokinetics | Issue 2/2020

Login to get access

Abstract

Introduction

The pharmacokinetics (PK) of the 20S proteasome inhibitor bortezomib are characterized by a large volume of distribution and a rapid decline in plasma concentrations within the first hour after administration. An increase in exposure was observed in the second week of treatment, which has previously been explained by extensive binding of bortezomib to proteasome in erythrocytes and peripheral tissues. We characterized the nonlinear population PK and pharmacodynamics (PD) of bortezomib in children with acute lymphoblastic leukemia.

Methods

Overall, 323 samples from 28 patients were available from a pediatric clinical study investigating bortezomib at an intravenous dose of 1.3 mg/m2 twice weekly (Dutch Trial Registry number 1881/ITCC021). A semi-physiological PK model for bortezomib was first developed; the PK were linked to the decrease in 20S proteasome activity in the final PK/PD model.

Results

The plasma PK data were adequately described using a two-compartment model with linear elimination. Increased concentrations were observed in week 2 compared with week 1, which was described using a Langmuir binding model. The decrease in 20S proteasome activity was best described by a direct effect model with a sigmoidal maximal inhibitory effect, representing the relationship between plasma concentrations and effect. The maximal inhibitory effect was 0.696 pmol AMC/s/mg protein (95% confidence interval 0.664–0.728) after administration.

Conclusion

The semi-physiological model adequately described the nonlinear PK and PD of bortezomib in plasma. This model can be used to further optimize dosing of bortezomib.
Literature
1.
go back to reference Pui C-H, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.PubMedPubMedCentral Pui C-H, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.PubMedPubMedCentral
2.
go back to reference Moreno L, Pearson ADJ, Paoletti X, Jimenez I, Geoerger B, Kearns PR, et al. Early phase clinical trials of anticancer agents in children and adolescents—an ITCC perspective. Nat Rev Clin Oncol. 2017;14:497–507.PubMed Moreno L, Pearson ADJ, Paoletti X, Jimenez I, Geoerger B, Kearns PR, et al. Early phase clinical trials of anticancer agents in children and adolescents—an ITCC perspective. Nat Rev Clin Oncol. 2017;14:497–507.PubMed
3.
go back to reference Bross PF, Kane R, Farrell AT, Abraham S, Benson K, Brower ME, et al. Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin Cancer Res. 2004;10(2 Pt 1):3954–64.PubMed Bross PF, Kane R, Farrell AT, Abraham S, Benson K, Brower ME, et al. Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin Cancer Res. 2004;10(2 Pt 1):3954–64.PubMed
4.
go back to reference Tan CRC, Abdul-Majeed S, Cael B, Barta SK. Clinical pharmacokinetics and pharmacodynamics of bortezomib. Clin Pharmacokinet. 2019;58(2):157–68.PubMed Tan CRC, Abdul-Majeed S, Cael B, Barta SK. Clinical pharmacokinetics and pharmacodynamics of bortezomib. Clin Pharmacokinet. 2019;58(2):157–68.PubMed
5.
go back to reference Houghton PJ, Morton CL, Kolb EA, Lock R, Carol H, Reynolds CP, et al. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50:37–45.PubMed Houghton PJ, Morton CL, Kolb EA, Lock R, Carol H, Reynolds CP, et al. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50:37–45.PubMed
6.
go back to reference Reece DE, Sullivan D, Lonial S, Mohrbacher AF, Chatta G, Shustik C, et al. Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemother Pharmacol. 2011;67:57–67.PubMed Reece DE, Sullivan D, Lonial S, Mohrbacher AF, Chatta G, Shustik C, et al. Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemother Pharmacol. 2011;67:57–67.PubMed
7.
go back to reference Horton TM, Pati D, Plon SE, Thompson PA, Bomgaars LR, Adamson PC, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin Cancer Res. 2007;13:1516–22.PubMed Horton TM, Pati D, Plon SE, Thompson PA, Bomgaars LR, Adamson PC, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin Cancer Res. 2007;13:1516–22.PubMed
8.
go back to reference Muscal JA, Thompson PA, Horton TM, Ingle AM, Ahern CH, McGovern RM, et al. A Phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase I Consortium Study (ADVL0916). Pediatr Blood Cancer. 2013;60:390–5.PubMed Muscal JA, Thompson PA, Horton TM, Ingle AM, Ahern CH, McGovern RM, et al. A Phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase I Consortium Study (ADVL0916). Pediatr Blood Cancer. 2013;60:390–5.PubMed
9.
go back to reference Blaney SM, Bernstein M, Neville K, Ginsberg J, Kitchen B, Horton T, et al. Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study (ADVL0015). J Clin Oncol. 2004;22:4804–6.PubMed Blaney SM, Bernstein M, Neville K, Ginsberg J, Kitchen B, Horton T, et al. Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study (ADVL0015). J Clin Oncol. 2004;22:4804–6.PubMed
10.
go back to reference Hanley MJ, Mould DR, Taylor TJ, Gupta N, Suryanarayan K, Neuwirth R, et al. Population pharmacokinetic analysis of bortezomib in pediatric leukemia patients: model-based support for body surface area-based dosing over the 2- to 16-year age range. J Clin Pharmacol. 2017;57(9):1183–93.PubMedPubMedCentral Hanley MJ, Mould DR, Taylor TJ, Gupta N, Suryanarayan K, Neuwirth R, et al. Population pharmacokinetic analysis of bortezomib in pediatric leukemia patients: model-based support for body surface area-based dosing over the 2- to 16-year age range. J Clin Pharmacol. 2017;57(9):1183–93.PubMedPubMedCentral
11.
go back to reference Kaspers GJL, Niewerth D, Wilhelm BAJ, Scholte-van Houtem P, Lopez-Yurda M, Berkhof J, et al. An effective modestly intensive re-induction regimen with bortezomib in relapsed or refractory paediatric acute lymphoblastic leukaemia. Br J Haematol. 2018;181(4):523–7.PubMed Kaspers GJL, Niewerth D, Wilhelm BAJ, Scholte-van Houtem P, Lopez-Yurda M, Berkhof J, et al. An effective modestly intensive re-induction regimen with bortezomib in relapsed or refractory paediatric acute lymphoblastic leukaemia. Br J Haematol. 2018;181(4):523–7.PubMed
12.
go back to reference Zhang L, Mager DE. Physiologically-based pharmacokinetic modeling of target-mediated drug disposition of bortezomib in mice. J Pharmacokinet Pharmacodyn. 2015;42:541–52.PubMedPubMedCentral Zhang L, Mager DE. Physiologically-based pharmacokinetic modeling of target-mediated drug disposition of bortezomib in mice. J Pharmacokinet Pharmacodyn. 2015;42:541–52.PubMedPubMedCentral
13.
go back to reference West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6.PubMed West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6.PubMed
14.
go back to reference Anderson BJ, Holford NHG. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.PubMed Anderson BJ, Holford NHG. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.PubMed
15.
go back to reference Germovsek E, Barker C, Sharland M, Standing JF. Scaling clearance in paediatric pharmacokinetics: all models are wrong, which are useful? Br J Clin Pharmacol. 2016;83:777–90.PubMedPubMedCentral Germovsek E, Barker C, Sharland M, Standing JF. Scaling clearance in paediatric pharmacokinetics: all models are wrong, which are useful? Br J Clin Pharmacol. 2016;83:777–90.PubMedPubMedCentral
16.
go back to reference Upton RN, Mould DR. Basic concepts in population modeling, simulation, and model-based drug development: part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacomet Syst Pharmacol. 2014;3:e88. Upton RN, Mould DR. Basic concepts in population modeling, simulation, and model-based drug development: part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacomet Syst Pharmacol. 2014;3:e88.
17.
go back to reference Nguyen T, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker A, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109. Nguyen T, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker A, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109.
18.
go back to reference Dosne A-G, Bergstrand M, Karlsson MO. An automated sampling importance resampling procedure for estimating parameter uncertainty. J Pharmacokinet Pharmacodyn. 2017;44:509–20.PubMedPubMedCentral Dosne A-G, Bergstrand M, Karlsson MO. An automated sampling importance resampling procedure for estimating parameter uncertainty. J Pharmacokinet Pharmacodyn. 2017;44:509–20.PubMedPubMedCentral
19.
go back to reference Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75:85–94.PubMed Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75:85–94.PubMed
20.
go back to reference Keizer RJ, van Benten M, Beijnen JH, Schellens JHM, Huitema ADR. Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed. 2011;101:72–9.PubMed Keizer RJ, van Benten M, Beijnen JH, Schellens JHM, Huitema ADR. Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed. 2011;101:72–9.PubMed
21.
go back to reference Beal S, Boeckmann A, Sheiner L. NONMEM user guides. San Francisco: University of California, San Francisco; 1988. Beal S, Boeckmann A, Sheiner L. NONMEM user guides. San Francisco: University of California, San Francisco; 1988.
22.
go back to reference Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2009. Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2009.
23.
go back to reference Osawa T, Naito T, Kaneko T, Mino Y, Ohnishi K, Yamada H, et al. Blood distribution of bortezomib and its kinetics in multiple myeloma patients. Clin Biochem. 2014;47:54–9.PubMed Osawa T, Naito T, Kaneko T, Mino Y, Ohnishi K, Yamada H, et al. Blood distribution of bortezomib and its kinetics in multiple myeloma patients. Clin Biochem. 2014;47:54–9.PubMed
24.
go back to reference Moreau P, Karamanesht II, Domnikova N, Kyselyova MY, Vilchevska KV, Doronin VA, et al. Pharmacokinetic, pharmacodynamic and covariate analysis of subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma. Clin Pharmacokinet. 2012;51:823–9.PubMed Moreau P, Karamanesht II, Domnikova N, Kyselyova MY, Vilchevska KV, Doronin VA, et al. Pharmacokinetic, pharmacodynamic and covariate analysis of subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma. Clin Pharmacokinet. 2012;51:823–9.PubMed
Metadata
Title
A Semi-Mechanistic Population Pharmacokinetic/Pharmacodynamic Model of Bortezomib in Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia
Authors
Julie M. Janssen
T. P. C. Dorlo
D. Niewerth
A. J. Wilhelm
C. M. Zwaan
J. H. Beijnen
A. Attarbaschi
A. Baruchel
F. Fagioli
T. Klingebiel
B. De Moerloose
G. Palumbo
A. von Stackelberg
G. J. L. Kaspers
A. D. R. Huitema
Publication date
01-02-2020
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 2/2020
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00803-y

Other articles of this Issue 2/2020

Clinical Pharmacokinetics 2/2020 Go to the issue