Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2020

Open Access 01-12-2020 | Acute Kidney Injury | Research article

A novel nomogram to predict perioperative acute kidney injury following isolated coronary artery bypass grafting surgery with impaired left ventricular ejection fraction

Authors: Hongyuan Lin, Jianfeng Hou, Hanwei Tang, Kai Chen, Hansong Sun, Zhe Zheng, Shengshou Hu

Published in: BMC Cardiovascular Disorders | Issue 1/2020

Login to get access

Abstract

Background and objective

Heart failure (HF) is a global health issue, and coronary artery bypass graft (CABG) is one of the most effective surgical treatments for HF with coronary artery disease. Unfortunately, the incidence of postoperative acute kidney injury (AKI) is high in HF patients following CABG, and there are few tools to predict AKI after CABG surgery for such patients. The aim of this study is to establish a nomogram to predict the incidence of AKI after CABG in patients with impaired left ventricular ejection fraction (LVEF).

Methods

From 2012 to 2017, Clinical information of 1208 consecutive patients who had LVEF< 50% and underwent isolated CABG was collected to establish a derivation cohort. A novel nomogram was developed using the logistic regression model to predict postoperative AKI among these patients. According to the same inclusion criteria and the same period, we extracted the data of patients from 6 other large cardiac centers in China (n = 540) from the China Heart Failure Surgery Registry (China-HFSR) database for external validation of the new model. The nomogram was compared with 3 other available models predicting renal failure after cardiac surgery in terms of calibration, discrimination and net benefit.

Results

In the derivation cohort (n = 1208), 90 (7.45%) patients were diagnosed with postoperative AKI. The nomogram included 7 independent risk factors: female, increased preoperative creatinine(> 2 mg/dL), LVEF< 35%, previous myocardial infarction (MI), hypertension, cardiopulmonary bypass(CPB) used and perioperative blood transfusion. The area under the receiver operating characteristic curve (AUC) was 0.738, higher than the other 3 models. By comparing calibration curves and decision curve analyses (DCA) with other models, the novel nomogram showed better calibration and greater net benefit. Among the 540 patients in the validation cohort, 104 (19.3%) had postoperative AKI, and the novel nomogram performed better with respect to calibration, discrimination and net benefit.

Conclusions

The novel nomogram is a reliable model to predict postoperative AKI following isolated CABG for patients with impaired LVEF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yancy CW, Jessup M, Bozkurt B, Masoudi FA, Wilkoff BL. 2013 ACCF/AHA guideline for the Management of Heart Failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128(16):E147–239. Yancy CW, Jessup M, Bozkurt B, Masoudi FA, Wilkoff BL. 2013 ACCF/AHA guideline for the Management of Heart Failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128(16):E147–239.
2.
go back to reference F WSKPA. ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):78. F WSKPA. ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):78.
3.
go back to reference Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41(4):734–44 discussion 744-735.CrossRef Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41(4):734–44 discussion 744-735.CrossRef
4.
go back to reference Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119(18):2444–53.CrossRef Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, Bihorac A. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119(18):2444–53.CrossRef
5.
go back to reference Bedside Tool for Predicting the Risk of Postoperative Dialysis in Patients Undergoing Cardiac Surgery. Circulation, 114(21):2208–2216. Bedside Tool for Predicting the Risk of Postoperative Dialysis in Patients Undergoing Cardiac Surgery. Circulation, 114(21):2208–2216.
6.
go back to reference Oezkur M, Wagner M, Weismann D, Krannich JH, Schimmer C, Riegler C, Rücker V, Leyh R, Heuschmann PU. Chronic hyperglycemia is associated with acute kidney injury in patients undergoing CABG surgery--a cohort study. BMC Cardiovasc Disord. 2015;15:41.CrossRef Oezkur M, Wagner M, Weismann D, Krannich JH, Schimmer C, Riegler C, Rücker V, Leyh R, Heuschmann PU. Chronic hyperglycemia is associated with acute kidney injury in patients undergoing CABG surgery--a cohort study. BMC Cardiovasc Disord. 2015;15:41.CrossRef
7.
go back to reference Chen SW, Chang CH, Fan PC, Chen YC, Chu PH, Chen TH, Wu VC, Chang SW, Lin PJ, Tsai FC. Comparison of contemporary preoperative risk models at predicting acute kidney injury after isolated coronary artery bypass grafting: a retrospective cohort study. BMJ Open. 2016;6(6):e010176.CrossRef Chen SW, Chang CH, Fan PC, Chen YC, Chu PH, Chen TH, Wu VC, Chang SW, Lin PJ, Tsai FC. Comparison of contemporary preoperative risk models at predicting acute kidney injury after isolated coronary artery bypass grafting: a retrospective cohort study. BMJ Open. 2016;6(6):e010176.CrossRef
8.
go back to reference Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.CrossRef Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.CrossRef
9.
go back to reference Mehta RH, Grab JD, O'Brien SM, Bridges CR, Gammie JS, Haan CK, Ferguson TB, Peterson ED. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16 quiz 2208.CrossRef Mehta RH, Grab JD, O'Brien SM, Bridges CR, Gammie JS, Haan CK, Ferguson TB, Peterson ED. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16 quiz 2208.CrossRef
10.
go back to reference Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, Beattie WS. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9.CrossRef Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, Beattie WS. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9.CrossRef
11.
go back to reference None. KDIGO clinical practice guideline, section 2: AKI definition. Kidney Int Suppl. 2012;2(1):19–36.CrossRef None. KDIGO clinical practice guideline, section 2: AKI definition. Kidney Int Suppl. 2012;2(1):19–36.CrossRef
12.
go back to reference Shahian DM, O'Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 1--coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88(1 Suppl):S2–22.CrossRef Shahian DM, O'Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, Normand SL, DeLong ER, Shewan CM, Dokholyan RS, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 1--coronary artery bypass grafting surgery. Ann Thorac Surg. 2009;88(1 Suppl):S2–22.CrossRef
13.
go back to reference Shroyer AL, Hattler B, Wagner TH, Collins JF, Baltz JH, Quin JA, Almassi GH, Kozora E, Bakaeen F, Cleveland JC Jr, et al. Five-year outcomes after on-pump and off-pump coronary-artery bypass. N Engl J Med. 2017;377(7):623–32.CrossRef Shroyer AL, Hattler B, Wagner TH, Collins JF, Baltz JH, Quin JA, Almassi GH, Kozora E, Bakaeen F, Cleveland JC Jr, et al. Five-year outcomes after on-pump and off-pump coronary-artery bypass. N Engl J Med. 2017;377(7):623–32.CrossRef
14.
go back to reference Møller CH, Penninga L, Wetterslev J, Steinbrüchel DA, Gluud C. Off-pump versus on-pump coronary artery bypass grafting for ischaemic heart disease. Cochrane Database Syst Rev. 2012;3(3):Cd007224. Møller CH, Penninga L, Wetterslev J, Steinbrüchel DA, Gluud C. Off-pump versus on-pump coronary artery bypass grafting for ischaemic heart disease. Cochrane Database Syst Rev. 2012;3(3):Cd007224.
15.
go back to reference Garg AX, Devereaux PJ, Yusuf S, Cuerden MS, Parikh CR, Coca SG, Walsh M, Novick R, Cook RJ, Jain AR, et al. Kidney function after off-pump or on-pump coronary artery bypass graft surgery: a randomized clinical trial. Jama. 2014;311(21):2191–8.CrossRef Garg AX, Devereaux PJ, Yusuf S, Cuerden MS, Parikh CR, Coca SG, Walsh M, Novick R, Cook RJ, Jain AR, et al. Kidney function after off-pump or on-pump coronary artery bypass graft surgery: a randomized clinical trial. Jama. 2014;311(21):2191–8.CrossRef
16.
go back to reference Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.CrossRef Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.CrossRef
17.
go back to reference Zheng Z, Zhang L, Hu S, Li X, Yuan X, Gao H. Risk factors and in-hospital mortality in Chinese patients undergoing coronary artery bypass grafting: analysis of a large multi-institutional Chinese database. J Thorac Cardiovasc Surg. 2012;144(2):355–9 359.e351.CrossRef Zheng Z, Zhang L, Hu S, Li X, Yuan X, Gao H. Risk factors and in-hospital mortality in Chinese patients undergoing coronary artery bypass grafting: analysis of a large multi-institutional Chinese database. J Thorac Cardiovasc Surg. 2012;144(2):355–9 359.e351.CrossRef
18.
go back to reference Varma PK, Kundan S, Ananthanarayanan C, Panicker VT, Pillai VV, Sarma PS, Karunakaran J. Demographic profile, clinical characteristics and outcomes of patients undergoing coronary artery bypass grafting—retrospective analysis of 4,024 patients. Indian J Thor Cardiovasc Surg. 2014;30(4):272–7.CrossRef Varma PK, Kundan S, Ananthanarayanan C, Panicker VT, Pillai VV, Sarma PS, Karunakaran J. Demographic profile, clinical characteristics and outcomes of patients undergoing coronary artery bypass grafting—retrospective analysis of 4,024 patients. Indian J Thor Cardiovasc Surg. 2014;30(4):272–7.CrossRef
19.
go back to reference Parikh CR, Coca SG, Wang Y, Masoudi FA, Krumholz HM. Long-term prognosis of acute kidney injury after acute myocardial infarction. Arch Intern Med. 2008;168(9):987–95.CrossRef Parikh CR, Coca SG, Wang Y, Masoudi FA, Krumholz HM. Long-term prognosis of acute kidney injury after acute myocardial infarction. Arch Intern Med. 2008;168(9):987–95.CrossRef
20.
go back to reference Chen TH, Chang CH, Lin CY, Jenq CC, Chang MY, Tian YC, Hung CC, Fang JT, Yang CW, Wen MS, et al. Acute kidney injury biomarkers for patients in a coronary care unit: a prospective cohort study. PLoS One. 2012;7(2):e32328.CrossRef Chen TH, Chang CH, Lin CY, Jenq CC, Chang MY, Tian YC, Hung CC, Fang JT, Yang CW, Wen MS, et al. Acute kidney injury biomarkers for patients in a coronary care unit: a prospective cohort study. PLoS One. 2012;7(2):e32328.CrossRef
21.
go back to reference Lin CY, Tsai FC, Tian YC, Jenq CC, Chen YC, Fang JT, Yang CW. Evaluation of outcome scoring systems for patients on extracorporeal membrane oxygenation. Ann Thorac Surg. 2007;84(4):1256–62.CrossRef Lin CY, Tsai FC, Tian YC, Jenq CC, Chen YC, Fang JT, Yang CW. Evaluation of outcome scoring systems for patients on extracorporeal membrane oxygenation. Ann Thorac Surg. 2007;84(4):1256–62.CrossRef
22.
go back to reference Huen SC, Parikh CR. Predicting acute kidney injury after cardiac surgery: a systematic review. Ann Thorac Surg. 2012;93(1):337–47.CrossRef Huen SC, Parikh CR. Predicting acute kidney injury after cardiac surgery: a systematic review. Ann Thorac Surg. 2012;93(1):337–47.CrossRef
23.
go back to reference Wessler BS, Lundquist CM, Koethe B, Park JG, Brown K, Williamson T, Ajlan M, Natto Z, Lutz JS, Paulus JK, et al. Clinical prediction models for Valvular heart disease. J Am Heart Assoc. 2019;8(20):e011972.CrossRef Wessler BS, Lundquist CM, Koethe B, Park JG, Brown K, Williamson T, Ajlan M, Natto Z, Lutz JS, Paulus JK, et al. Clinical prediction models for Valvular heart disease. J Am Heart Assoc. 2019;8(20):e011972.CrossRef
24.
go back to reference Huang TM, Wu VC, Young GH, Lin YF, Shiao CC, Wu PC, Li WY, Yu HY, Hu FC, Lin JW, et al. Preoperative proteinuria predicts adverse renal outcomes after coronary artery bypass grafting. J Am Soc Nephrol. 2011;22(1):156–63.CrossRef Huang TM, Wu VC, Young GH, Lin YF, Shiao CC, Wu PC, Li WY, Yu HY, Hu FC, Lin JW, et al. Preoperative proteinuria predicts adverse renal outcomes after coronary artery bypass grafting. J Am Soc Nephrol. 2011;22(1):156–63.CrossRef
Metadata
Title
A novel nomogram to predict perioperative acute kidney injury following isolated coronary artery bypass grafting surgery with impaired left ventricular ejection fraction
Authors
Hongyuan Lin
Jianfeng Hou
Hanwei Tang
Kai Chen
Hansong Sun
Zhe Zheng
Shengshou Hu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2020
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-020-01799-1

Other articles of this Issue 1/2020

BMC Cardiovascular Disorders 1/2020 Go to the issue