Skip to main content
Top
Published in: Annals of Intensive Care 1/2022

Open Access 01-12-2022 | Acute Kidney Injury | Research

Cell cycle arrest biomarkers for predicting renal recovery from acute kidney injury: a prospective validation study

Authors: Hui-Miao Jia, Li Cheng, Yi-Bing Weng, Jing-Yi Wang, Xi Zheng, Yi-Jia Jiang, Xin Xin, Shu-Yan Guo, Chao-Dong Chen, Fang-Xing Guo, Yu-Zhen Han, Tian-En Zhang, Wen-Xiong Li

Published in: Annals of Intensive Care | Issue 1/2022

Login to get access

Abstract

Background

Acute kidney injury (AKI) is a common disease in the intensive care unit (ICU). AKI patients with nonrecovery of renal function have a markedly increased risk of death compared with patients with recovery. The current study aimed to explore and validate the utility of urinary cell cycle arrest biomarkers for predicting nonrecovery in patients who developed AKI after ICU admission.

Methods

We prospectively and consecutively enrolled 379 critically ill patients who developed AKI after admission to the ICU, which were divided into a derivation cohort (194 AKI patients) and a validation cohort (185 AKI patients). The biomarkers of urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) were detected at inclusion immediately after AKI diagnosis (day 0) and 24 h later (day 1). The optimal cut-off values of these biomarkers for predicting nonrecovery were estimated in the derivation cohort, and their predictive accuracy was assessed in the validation cohort. The primary endpoint was nonrecovery from AKI (within 7 days).

Results

Of 379 patients, 159 (41.9%) patients failed to recover from AKI onset, with 79 in the derivation cohort and 80 in the validation cohort. Urinary [TIMP-2]*[IGFBP7] on day 0 showed a better prediction ability for nonrecovery than TIMP-2 and IGFBP7 alone, with an area under the reciever operating characteristic curve (AUC) of 0.751 [95% confidence interval (CI) 0.701–0.852, p < 0.001] and an optimal cut-off value of 1.05 ((ng/mL)2/1000). When [TIMP-2]*[IGFBP7] was combined with the clinical factors of AKI diagnosed by the urine output (UO) criteria, AKI stage 2–3 and nonrenal SOFA score for predicting nonrecovery, the AUC was significantly improved to 0.852 (95% CI 0.750–0.891, p < 0.001), which achieved a sensitivity and specificity of 88.8% (72.9, 98.7) and 92.6% (80.8, 100.0), respectively. However, urine [TIMP-2]*[IGFBP7], TIMP-2 alone, and IGFBP7 alone on day 1 performed poorly for predicting AKI recovery.

Conclusion

Urinary [TIMP-2]*[IGFBP7] on day 0 showed a fair performance for predicting nonrecovery from AKI. The predictive accuracy can be improved when urinary [TIMP-2]*[IGFBP7] is combined with the clinical factors of AKI diagnosed by the UO criteria, AKI stage 2–3 and nonrenal SOFA score.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.CrossRef Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.CrossRef
2.
go back to reference Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.CrossRef Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.CrossRef
3.
go back to reference Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.CrossRef Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.CrossRef
4.
go back to reference Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS. Recovery after acute kidney injury. Am J Respir Crit Care Med. 2017;195:784–91.CrossRef Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS. Recovery after acute kidney injury. Am J Respir Crit Care Med. 2017;195:784–91.CrossRef
5.
go back to reference Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettilä V, Prowle JR, et al. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43:855–66.CrossRef Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettilä V, Prowle JR, et al. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43:855–66.CrossRef
6.
go back to reference Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris international conference. Ann Intensive Care. 2017;7:49.CrossRef Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris international conference. Ann Intensive Care. 2017;7:49.CrossRef
7.
go back to reference Cho WY, Lim SY, Yang JH, Oh SW, Kim MG, Jo SK. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J Intern Med. 2020;35:662–71.CrossRef Cho WY, Lim SY, Yang JH, Oh SW, Kim MG, Jo SK. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J Intern Med. 2020;35:662–71.CrossRef
8.
go back to reference Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25.CrossRef Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25.CrossRef
9.
go back to reference Pickkers P, Ostermann M, Joannidis M, Zarbock A, Hoste E, Bellomo R, et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 2017;43:1198–209.CrossRef Pickkers P, Ostermann M, Joannidis M, Zarbock A, Hoste E, Bellomo R, et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 2017;43:1198–209.CrossRef
10.
go back to reference Ronco C. Acute kidney injury: from clinical to molecular diagnosis. Crit Care. 2016;20:201.CrossRef Ronco C. Acute kidney injury: from clinical to molecular diagnosis. Crit Care. 2016;20:201.CrossRef
11.
go back to reference Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–61.CrossRef Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–61.CrossRef
12.
go back to reference Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6:e012799.CrossRef Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6:e012799.CrossRef
13.
go back to reference Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20:299.CrossRef Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20:299.CrossRef
15.
go back to reference Helou R. Should we continue to use the Cockcroft-Gault formula? Nephron Clin Pract. 2010;116:c172–85.CrossRef Helou R. Should we continue to use the Cockcroft-Gault formula? Nephron Clin Pract. 2010;116:c172–85.CrossRef
16.
go back to reference Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, Demircioglu E, Benedik J, Dohle DS, et al. Urinary [TIMP-2]*[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery. Ann Intensive Care. 2015;5:50.CrossRef Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, Demircioglu E, Benedik J, Dohle DS, et al. Urinary [TIMP-2]*[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery. Ann Intensive Care. 2015;5:50.CrossRef
17.
go back to reference O’Sullivan ED, Doyle A. The clinical utility of kinetic glomerular filtration rate. Clin Kidney J. 2017;10:202–8.PubMed O’Sullivan ED, Doyle A. The clinical utility of kinetic glomerular filtration rate. Clin Kidney J. 2017;10:202–8.PubMed
18.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRef Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRef
19.
go back to reference Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ, Gokden N, et al. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol. 2012;180:505–16.CrossRef Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ, Gokden N, et al. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol. 2012;180:505–16.CrossRef
21.
go back to reference Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT. Acute renal failure during sepsis: potential role of cell cycle regulation. J Infect. 2009;58:459–64.CrossRef Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT. Acute renal failure during sepsis: potential role of cell cycle regulation. J Infect. 2009;58:459–64.CrossRef
22.
go back to reference Gocze I, Koch M, Renner P, Zeman F, Graf BM, Dahlke MH, et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery. PLoS ONE. 2015;10:e0120863.CrossRef Gocze I, Koch M, Renner P, Zeman F, Graf BM, Dahlke MH, et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery. PLoS ONE. 2015;10:e0120863.CrossRef
23.
go back to reference Dewitte A, Joannès-Boyau O, Sidobre C, Fleureau C, Bats ML, Derache P, et al. Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol. 2015;10:1900–10.CrossRef Dewitte A, Joannès-Boyau O, Sidobre C, Fleureau C, Bats ML, Derache P, et al. Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol. 2015;10:1900–10.CrossRef
24.
go back to reference Küllmar M, Meersch M. Intraoperative oliguria: physiological or beginning acute kidney injury? Anesth Analg. 2018;127:1109–10.CrossRef Küllmar M, Meersch M. Intraoperative oliguria: physiological or beginning acute kidney injury? Anesth Analg. 2018;127:1109–10.CrossRef
25.
go back to reference Klein SJ, Lehner GF, Forni LG, Joannidis M. Oliguria in critically ill patients: a narrative review. J Nephrol. 2018;31:855–62.CrossRef Klein SJ, Lehner GF, Forni LG, Joannidis M. Oliguria in critically ill patients: a narrative review. J Nephrol. 2018;31:855–62.CrossRef
26.
go back to reference Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L, et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. 2018;31:351–9.CrossRef Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L, et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. 2018;31:351–9.CrossRef
27.
go back to reference Federspiel CK, Itenov TS, Mehta K, Hsu RK, Bestle MH, Liu KD. Duration of acute kidney injury in critically ill patients. Ann Intensive Care. 2018;8:30.CrossRef Federspiel CK, Itenov TS, Mehta K, Hsu RK, Bestle MH, Liu KD. Duration of acute kidney injury in critically ill patients. Ann Intensive Care. 2018;8:30.CrossRef
Metadata
Title
Cell cycle arrest biomarkers for predicting renal recovery from acute kidney injury: a prospective validation study
Authors
Hui-Miao Jia
Li Cheng
Yi-Bing Weng
Jing-Yi Wang
Xi Zheng
Yi-Jia Jiang
Xin Xin
Shu-Yan Guo
Chao-Dong Chen
Fang-Xing Guo
Yu-Zhen Han
Tian-En Zhang
Wen-Xiong Li
Publication date
01-12-2022
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2022
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-022-00989-8

Other articles of this Issue 1/2022

Annals of Intensive Care 1/2022 Go to the issue