Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2021

01-12-2021 | Acidosis

Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets

Authors: Henriette Berg Andersen, Renata Ialchina, Stine Falsig Pedersen, Dominika Czaplinska

Published in: Cancer and Metastasis Reviews | Issue 4/2021

Login to get access

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers globally with a mortality rate exceeding 95% and very limited therapeutic options. A hallmark of PDAC is its acidic tumor microenvironment, further characterized by excessive fibrosis and depletion of oxygen and nutrients due to poor vascularity. The combination of PDAC driver mutations and adaptation to this hostile environment drives extensive metabolic reprogramming of the cancer cells toward non-canonical metabolic pathways and increases reliance on scavenging mechanisms such as autophagy and macropinocytosis. In addition, the cancer cells benefit from metabolic crosstalk with nonmalignant cells within the tumor microenvironment, including pancreatic stellate cells, fibroblasts, and endothelial and immune cells. Increasing evidence shows that this metabolic rewiring is closely related to chemo- and radioresistance and immunosuppression, causing extensive treatment failure. Indeed, stratification of human PDAC tumors into subtypes based on their metabolic profiles was shown to predict disease outcome. Accordingly, an increasing number of clinical trials target pro-tumorigenic metabolic pathways, either as stand-alone treatment or in conjunction with chemotherapy. In this review, we highlight key findings and potential future directions of pancreatic cancer metabolism research, specifically focusing on novel therapeutic opportunities.
Literature
3.
5.
go back to reference Alistar, A., Morris, B. B., Desnoyer, R., Klepin, H. D., Hosseinzadeh, K., Clark, C., Cameron, A., Leyendecker, J., D’Agostino, R., Topaloglu, U., Boteju, L. W., Boteju, A. R., Shorr, R., Zachar, Z., Bingham, P. M., Ahmed, T., Crane, S., Shah, R., Migliano, J. J., … Pasche, B. (2017). Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: A single-centre, open-label, dose-escalation, phase 1 trial. The lancet Oncology, 18, 770–778. https://doi.org/10.1016/S1470-2045(17)30314-5CrossRefPubMedPubMedCentral Alistar, A., Morris, B. B., Desnoyer, R., Klepin, H. D., Hosseinzadeh, K., Clark, C., Cameron, A., Leyendecker, J., D’Agostino, R., Topaloglu, U., Boteju, L. W., Boteju, A. R., Shorr, R., Zachar, Z., Bingham, P. M., Ahmed, T., Crane, S., Shah, R., Migliano, J. J., … Pasche, B. (2017). Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: A single-centre, open-label, dose-escalation, phase 1 trial. The lancet Oncology, 18, 770–778. https://​doi.​org/​10.​1016/​S1470-2045(17)30314-5CrossRefPubMedPubMedCentral
12.
15.
go back to reference Daemen, A., Peterson, D., Sahu, N., McCord, R., Du, X., Liu, B., Kowanetz, K., Hong, R., Moffat, J., Gao, M., Boudreau, A., Mroue, R., Corson, L., O’Brien, T., Qing, J., Sampath, D., Merchant, M., Yauch, R., Manning, G., … Evangelista, M. (2015). Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proceedings of the National Academy of Sciences, 112, E4410–E4417. https://doi.org/10.1073/pnas.1501605112CrossRef Daemen, A., Peterson, D., Sahu, N., McCord, R., Du, X., Liu, B., Kowanetz, K., Hong, R., Moffat, J., Gao, M., Boudreau, A., Mroue, R., Corson, L., O’Brien, T., Qing, J., Sampath, D., Merchant, M., Yauch, R., Manning, G., … Evangelista, M. (2015). Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proceedings of the National Academy of Sciences, 112, E4410–E4417. https://​doi.​org/​10.​1073/​pnas.​1501605112CrossRef
16.
go back to reference Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sánchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., Kost-Alimova, M., Muller, F., Colla, S., Nezi, L., Genovese, G., Deem, A. K., Kapoor, A., Yao, W., Brunetto, E., … Draetta, G. F. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514, 628–632. https://doi.org/10.1038/nature13611CrossRefPubMedPubMedCentral Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sánchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., Kost-Alimova, M., Muller, F., Colla, S., Nezi, L., Genovese, G., Deem, A. K., Kapoor, A., Yao, W., Brunetto, E., … Draetta, G. F. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514, 628–632. https://​doi.​org/​10.​1038/​nature13611CrossRefPubMedPubMedCentral
17.
go back to reference Karasinska, J. M., Topham, J. T., Kalloger, S. E., Jang, G. H., Denroche, R. E., Culibrk, L., Williamson, L. M., Wong, H.-L., Lee, M. K. C., O’Kane, G. M., Moore, R. A., Mungall, A. J., Moore, M. J., Warren, C., Metcalfe, A., Notta, F., Knox, J. J., Gallinger, S., Laskin, J., … Schaeffer, D. F. (2020). Altered gene expression along the glycolysis–cholesterol synthesis axis is associated with outcome in pancreatic cancer. Clinical Cancer Research, 26, 135–146. https://doi.org/10.1158/1078-0432.CCR-19-1543CrossRefPubMed Karasinska, J. M., Topham, J. T., Kalloger, S. E., Jang, G. H., Denroche, R. E., Culibrk, L., Williamson, L. M., Wong, H.-L., Lee, M. K. C., O’Kane, G. M., Moore, R. A., Mungall, A. J., Moore, M. J., Warren, C., Metcalfe, A., Notta, F., Knox, J. J., Gallinger, S., Laskin, J., … Schaeffer, D. F. (2020). Altered gene expression along the glycolysis–cholesterol synthesis axis is associated with outcome in pancreatic cancer. Clinical Cancer Research, 26, 135–146. https://​doi.​org/​10.​1158/​1078-0432.​CCR-19-1543CrossRefPubMed
20.
go back to reference Kim, S. S., Xu, S., Cui, J., Poddar, S., Le, T. M., Hayrapetyan, H., Li, L., Wu, N., Moore, A. M., Zhou, L., Yu, A. C., Dann, A. M., Elliott, I. A., Abt, E. R., Kim, W., Dawson, D. W., Radu, C. G., & Donahue, T. R. (2020). Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression. Theranostics., 10, 829–840. https://doi.org/10.7150/thno.40195CrossRefPubMedPubMedCentral Kim, S. S., Xu, S., Cui, J., Poddar, S., Le, T. M., Hayrapetyan, H., Li, L., Wu, N., Moore, A. M., Zhou, L., Yu, A. C., Dann, A. M., Elliott, I. A., Abt, E. R., Kim, W., Dawson, D. W., Radu, C. G., & Donahue, T. R. (2020). Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression. Theranostics., 10, 829–840. https://​doi.​org/​10.​7150/​thno.​40195CrossRefPubMedPubMedCentral
23.
go back to reference Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., & Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531–537. https://doi.org/10.1126/science.286.5439.531CrossRef Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., & Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531–537. https://​doi.​org/​10.​1126/​science.​286.​5439.​531CrossRef
25.
go back to reference Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., & Gray, J. W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine, 17, 500–503. https://doi.org/10.1038/nm.2344CrossRefPubMedPubMedCentral Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., & Gray, J. W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine, 17, 500–503. https://​doi.​org/​10.​1038/​nm.​2344CrossRefPubMedPubMedCentral
26.
go back to reference Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G. H., Hoadley, K. A., Rashid, N. U., Williams, L. A., Eaton, S. C., Chung, A. H., Smyla, J. K., Anderson, J. M., Kim, H. J., Bentrem, D. J., Talamonti, M. S., Iacobuzio-Donahue, C. A., Hollingsworth, M. A., & Yeh, J. J. (2015). Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 47, 1168–1178. https://doi.org/10.1038/ng.3398CrossRefPubMedPubMedCentral Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G. H., Hoadley, K. A., Rashid, N. U., Williams, L. A., Eaton, S. C., Chung, A. H., Smyla, J. K., Anderson, J. M., Kim, H. J., Bentrem, D. J., Talamonti, M. S., Iacobuzio-Donahue, C. A., Hollingsworth, M. A., & Yeh, J. J. (2015). Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 47, 1168–1178. https://​doi.​org/​10.​1038/​ng.​3398CrossRefPubMedPubMedCentral
27.
go back to reference Australian Pancreatic Cancer Genome Initiative, Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A.-M., Gingras, M.-C., Miller, D. K., Christ, A. N., Bruxner, T. J. C., Quinn, M. C., Nourse, C., Murtaugh, L. C., Harliwong, I., Idrisoglu, S., Manning, S., Nourbakhsh, E., Wani, S., Fink, L., … Grimmond, S. M. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature., 531, 47–52. https://doi.org/10.1038/nature16965CrossRef Australian Pancreatic Cancer Genome Initiative, Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A.-M., Gingras, M.-C., Miller, D. K., Christ, A. N., Bruxner, T. J. C., Quinn, M. C., Nourse, C., Murtaugh, L. C., Harliwong, I., Idrisoglu, S., Manning, S., Nourbakhsh, E., Wani, S., Fink, L., … Grimmond, S. M. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature., 531, 47–52. https://​doi.​org/​10.​1038/​nature16965CrossRef
28.
go back to reference Puleo, F., Nicolle, R., Blum, Y., Cros, J., Marisa, L., Demetter, P., Quertinmont, E., Svrcek, M., Elarouci, N., Iovanna, J., Franchimont, D., Verset, L., Galdon, M. G., Devière, J., de Reyniès, A., Laurent-Puig, P., Van Laethem, J.-L., Bachet, J.-B., & Maréchal, R. (2018). Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology, 155, 1999-2013.e3. https://doi.org/10.1053/j.gastro.2018.08.033CrossRefPubMed Puleo, F., Nicolle, R., Blum, Y., Cros, J., Marisa, L., Demetter, P., Quertinmont, E., Svrcek, M., Elarouci, N., Iovanna, J., Franchimont, D., Verset, L., Galdon, M. G., Devière, J., de Reyniès, A., Laurent-Puig, P., Van Laethem, J.-L., Bachet, J.-B., & Maréchal, R. (2018). Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology, 155, 1999-2013.e3. https://​doi.​org/​10.​1053/​j.​gastro.​2018.​08.​033CrossRefPubMed
29.
go back to reference Noll, E. M., Eisen, C., Stenzinger, A., Espinet, E., Muckenhuber, A., Klein, C., Vogel, V., Klaus, B., Nadler, W., Rösli, C., Lutz, C., Kulke, M., Engelhardt, J., Zickgraf, F. M., Espinosa, O., Schlesner, M., Jiang, X., Kopp-Schneider, A., Neuhaus, P., … Sprick, M. R. (2016). CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nature Medicine, 22, 278–287. https://doi.org/10.1038/nm.4038CrossRefPubMedPubMedCentral Noll, E. M., Eisen, C., Stenzinger, A., Espinet, E., Muckenhuber, A., Klein, C., Vogel, V., Klaus, B., Nadler, W., Rösli, C., Lutz, C., Kulke, M., Engelhardt, J., Zickgraf, F. M., Espinosa, O., Schlesner, M., Jiang, X., Kopp-Schneider, A., Neuhaus, P., … Sprick, M. R. (2016). CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nature Medicine, 22, 278–287. https://​doi.​org/​10.​1038/​nm.​4038CrossRefPubMedPubMedCentral
33.
go back to reference Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J., Lim, C., Guimaraes, A. R., Martin, E. S., … DePinho, R. A. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149, 656–670. https://doi.org/10.1016/j.cell.2012.01.058CrossRefPubMedPubMedCentral Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J., Lim, C., Guimaraes, A. R., Martin, E. S., … DePinho, R. A. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149, 656–670. https://​doi.​org/​10.​1016/​j.​cell.​2012.​01.​058CrossRefPubMedPubMedCentral
36.
go back to reference Yabushita, S., Fukamachi, K., Tanaka, H., Fukuda, T., Sumida, K., Deguchi, Y., Mikata, K., Nishioka, K., Kawamura, S., Uwagawa, S., Suzui, M., Alexander, D. B., & Tsuda, H. (2013). Metabolomic and transcriptomic profiling of human K- ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Carcinogenesis, 34, 1251–1259. https://doi.org/10.1093/carcin/bgt053CrossRefPubMed Yabushita, S., Fukamachi, K., Tanaka, H., Fukuda, T., Sumida, K., Deguchi, Y., Mikata, K., Nishioka, K., Kawamura, S., Uwagawa, S., Suzui, M., Alexander, D. B., & Tsuda, H. (2013). Metabolomic and transcriptomic profiling of human K- ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Carcinogenesis, 34, 1251–1259. https://​doi.​org/​10.​1093/​carcin/​bgt053CrossRefPubMed
39.
go back to reference Kamphorst, J. J., Cross, J. R., Fan, J., de Stanchina, E., Mathew, R., White, E. P., Thompson, C. B., & Rabinowitz, J. D. (2013). Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proceedings of the National Academy of Sciences, 110, 8882–8887. https://doi.org/10.1073/pnas.1307237110CrossRef Kamphorst, J. J., Cross, J. R., Fan, J., de Stanchina, E., Mathew, R., White, E. P., Thompson, C. B., & Rabinowitz, J. D. (2013). Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proceedings of the National Academy of Sciences, 110, 8882–8887. https://​doi.​org/​10.​1073/​pnas.​1307237110CrossRef
40.
go back to reference Guillaumond, F., Bidaut, G., Ouaissi, M., Servais, S., Gouirand, V., Olivares, O., Lac, S., Borge, L., Roques, J., Gayet, O., Pinault, M., Guimaraes, C., Nigri, J., Loncle, C., Lavaut, M.-N., Garcia, S., Tailleux, A., Staels, B., Calvo, E., … Vasseur, S. (2015). Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences, 112, 2473–2478. https://doi.org/10.1073/pnas.1421601112CrossRef Guillaumond, F., Bidaut, G., Ouaissi, M., Servais, S., Gouirand, V., Olivares, O., Lac, S., Borge, L., Roques, J., Gayet, O., Pinault, M., Guimaraes, C., Nigri, J., Loncle, C., Lavaut, M.-N., Garcia, S., Tailleux, A., Staels, B., Calvo, E., … Vasseur, S. (2015). Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences, 112, 2473–2478. https://​doi.​org/​10.​1073/​pnas.​1421601112CrossRef
41.
go back to reference Gabitova-Cornell, L., Surumbayeva, A., Peri, S., Franco-Barraza, J., Restifo, D., Weitz, N., Ogier, C., Goldman, A. R., Hartman, T. R., Francescone, R., Tan, Y., Nicolas, E., Shah, N., Handorf, E. A., Cai, K. Q., O’Reilly, A. M., Sloma, I., Chiaverelli, R., Moffitt, R. A., … Astsaturov, I. (2020). Cholesterol pathway inhibition induces TGF-β signaling to promote basal differentiation in pancreatic cancer. Cancer Cell, 38, 567-583.e11. https://doi.org/10.1016/j.ccell.2020.08.015CrossRefPubMedPubMedCentral Gabitova-Cornell, L., Surumbayeva, A., Peri, S., Franco-Barraza, J., Restifo, D., Weitz, N., Ogier, C., Goldman, A. R., Hartman, T. R., Francescone, R., Tan, Y., Nicolas, E., Shah, N., Handorf, E. A., Cai, K. Q., O’Reilly, A. M., Sloma, I., Chiaverelli, R., Moffitt, R. A., … Astsaturov, I. (2020). Cholesterol pathway inhibition induces TGF-β signaling to promote basal differentiation in pancreatic cancer. Cancer Cell, 38, 567-583.e11. https://​doi.​org/​10.​1016/​j.​ccell.​2020.​08.​015CrossRefPubMedPubMedCentral
44.
go back to reference Kaira, K., Sunose, Y., Arakawa, K., Ogawa, T., Sunaga, N., Shimizu, K., Tominaga, H., Oriuchi, N., Itoh, H., Nagamori, S., Kanai, Y., Segawa, A., Furuya, M., Mori, M., Oyama, T., & Takeyoshi, I. (2012). Prognostic significance of L-type amino-acid transporter 1 expression in surgically resected pancreatic cancer. British Journal of Cancer, 107, 632–638. https://doi.org/10.1038/bjc.2012.310CrossRefPubMedPubMedCentral Kaira, K., Sunose, Y., Arakawa, K., Ogawa, T., Sunaga, N., Shimizu, K., Tominaga, H., Oriuchi, N., Itoh, H., Nagamori, S., Kanai, Y., Segawa, A., Furuya, M., Mori, M., Oyama, T., & Takeyoshi, I. (2012). Prognostic significance of L-type amino-acid transporter 1 expression in surgically resected pancreatic cancer. British Journal of Cancer, 107, 632–638. https://​doi.​org/​10.​1038/​bjc.​2012.​310CrossRefPubMedPubMedCentral
45.
go back to reference Coothankandaswamy, V., Cao, S., Xu, Y., Prasad, P. D., Singh, P. K., Reynolds, C. P., Yang, S., Ogura, J., Ganapathy, V., & Bhutia, Y. D. (2016). Amino acid transporter SLC6A14 is a novel and effective drug target for pancreatic cancer: SLC6A14 is a drug target for pancreatic cancer. British Journal of Pharmacology, 173, 3292–3306. https://doi.org/10.1111/bph.13616CrossRefPubMedPubMedCentral Coothankandaswamy, V., Cao, S., Xu, Y., Prasad, P. D., Singh, P. K., Reynolds, C. P., Yang, S., Ogura, J., Ganapathy, V., & Bhutia, Y. D. (2016). Amino acid transporter SLC6A14 is a novel and effective drug target for pancreatic cancer: SLC6A14 is a drug target for pancreatic cancer. British Journal of Pharmacology, 173, 3292–3306. https://​doi.​org/​10.​1111/​bph.​13616CrossRefPubMedPubMedCentral
48.
go back to reference Guillaumond, F., Leca, J., Olivares, O., Lavaut, M.-N., Vidal, N., Berthezene, P., Dusetti, N. J., Loncle, C., Calvo, E., Turrini, O., Iovanna, J. L., Tomasini, R., & Vasseur, S. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences, 110, 3919–3924. https://doi.org/10.1073/pnas.1219555110CrossRef Guillaumond, F., Leca, J., Olivares, O., Lavaut, M.-N., Vidal, N., Berthezene, P., Dusetti, N. J., Loncle, C., Calvo, E., Turrini, O., Iovanna, J. L., Tomasini, R., & Vasseur, S. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences, 110, 3919–3924. https://​doi.​org/​10.​1073/​pnas.​1219555110CrossRef
50.
go back to reference Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C., & Kimmelman, A. C. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 496, 101–105. https://doi.org/10.1038/nature12040CrossRefPubMedPubMedCentral Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C., & Kimmelman, A. C. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 496, 101–105. https://​doi.​org/​10.​1038/​nature12040CrossRefPubMedPubMedCentral
52.
go back to reference Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L. M., Tozzi, G., & Federici, G. (2001). Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin. Chem., 47, 1467–1469.CrossRef Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L. M., Tozzi, G., & Federici, G. (2001). Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin. Chem., 47, 1467–1469.CrossRef
53.
54.
go back to reference Commisso, C., Davidson, S. M., Soydaner-Azeloglu, R. G., Parker, S. J., Kamphorst, J. J., Hackett, S., Grabocka, E., Nofal, M., Drebin, J. A., Thompson, C. B., Rabinowitz, J. D., Metallo, C. M., Vander Heiden, M. G., & Bar-Sagi, D. (2013). Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature., 497, 633–637. https://doi.org/10.1038/nature12138CrossRefPubMedPubMedCentral Commisso, C., Davidson, S. M., Soydaner-Azeloglu, R. G., Parker, S. J., Kamphorst, J. J., Hackett, S., Grabocka, E., Nofal, M., Drebin, J. A., Thompson, C. B., Rabinowitz, J. D., Metallo, C. M., Vander Heiden, M. G., & Bar-Sagi, D. (2013). Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature., 497, 633–637. https://​doi.​org/​10.​1038/​nature12138CrossRefPubMedPubMedCentral
55.
go back to reference Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., Torrence, M. E., Fiske, B. P., Yuan, C., Bao, Y., Townsend, M. K., Tworoger, S. S., Davidson, S. M., Papagiannakopoulos, T., Yang, A., Dayton, T. L., Ogino, S., Stampfer, M. J., Giovannucci, E. L., Qian, Z. R., Rubinson, D. A., … Wolpin, B. M. (2014). Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med., 20, 1193–1198. https://doi.org/10.1038/nm.3686CrossRefPubMedPubMedCentral Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., Torrence, M. E., Fiske, B. P., Yuan, C., Bao, Y., Townsend, M. K., Tworoger, S. S., Davidson, S. M., Papagiannakopoulos, T., Yang, A., Dayton, T. L., Ogino, S., Stampfer, M. J., Giovannucci, E. L., Qian, Z. R., Rubinson, D. A., … Wolpin, B. M. (2014). Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med., 20, 1193–1198. https://​doi.​org/​10.​1038/​nm.​3686CrossRefPubMedPubMedCentral
56.
57.
go back to reference Olivares, O., Mayers, J. R., Gouirand, V., Torrence, M. E., Gicquel, T., Borge, L., Lac, S., Roques, J., Lavaut, M.-N., Berthezène, P., Rubis, M., Secq, V., Garcia, S., Moutardier, V., Lombardo, D., Iovanna, J. L., Tomasini, R., Guillaumond, F., Vander Heiden, M. G., & Vasseur, S. (2017). Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun., 8, 16031. https://doi.org/10.1038/ncomms16031CrossRefPubMedPubMedCentral Olivares, O., Mayers, J. R., Gouirand, V., Torrence, M. E., Gicquel, T., Borge, L., Lac, S., Roques, J., Lavaut, M.-N., Berthezène, P., Rubis, M., Secq, V., Garcia, S., Moutardier, V., Lombardo, D., Iovanna, J. L., Tomasini, R., Guillaumond, F., Vander Heiden, M. G., & Vasseur, S. (2017). Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun., 8, 16031. https://​doi.​org/​10.​1038/​ncomms16031CrossRefPubMedPubMedCentral
61.
go back to reference Perera, R. M., Stoykova, S., Nicolay, B. N., Ross, K. N., Fitamant, J., Boukhali, M., Lengrand, J., Deshpande, V., Selig, M. K., Ferrone, C. R., Settleman, J., Stephanopoulos, G., Dyson, N. J., Zoncu, R., Ramaswamy, S., Haas, W., & Bardeesy, N. (2015). Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature, 524, 361–365. https://doi.org/10.1038/nature14587CrossRefPubMedPubMedCentral Perera, R. M., Stoykova, S., Nicolay, B. N., Ross, K. N., Fitamant, J., Boukhali, M., Lengrand, J., Deshpande, V., Selig, M. K., Ferrone, C. R., Settleman, J., Stephanopoulos, G., Dyson, N. J., Zoncu, R., Ramaswamy, S., Haas, W., & Bardeesy, N. (2015). Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature, 524, 361–365. https://​doi.​org/​10.​1038/​nature14587CrossRefPubMedPubMedCentral
63.
go back to reference Kinsey, C. G., Camolotto, S. A., Boespflug, A. M., Guillen, K. P., Foth, M., Truong, A., Schuman, S. S., Shea, J. E., Seipp, M. T., Yap, J. T., Burrell, L. D., Lum, D. H., Whisenant, J. R., Gilcrease, G. W., Cavalieri, C. C., Rehbein, K. M., Cutler, S. L., Affolter, K. E., Welm, A. L., … McMahon, M. (2019). Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nature Medicine, 25, 620–627. https://doi.org/10.1038/s41591-019-0367-9CrossRefPubMedPubMedCentral Kinsey, C. G., Camolotto, S. A., Boespflug, A. M., Guillen, K. P., Foth, M., Truong, A., Schuman, S. S., Shea, J. E., Seipp, M. T., Yap, J. T., Burrell, L. D., Lum, D. H., Whisenant, J. R., Gilcrease, G. W., Cavalieri, C. C., Rehbein, K. M., Cutler, S. L., Affolter, K. E., Welm, A. L., … McMahon, M. (2019). Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nature Medicine, 25, 620–627. https://​doi.​org/​10.​1038/​s41591-019-0367-9CrossRefPubMedPubMedCentral
64.
go back to reference Su, H., Yang, F., Fu, R., Li, X., French, R., Mose, E., Pu, X., Trinh, B., Kumar, A., Liu, J., Antonucci, L., Todoric, J., Liu, Y., Hu, Y., Diaz-Meco, M. T., Moscat, J., Metallo, C. M., Lowy, A. M., Sun, B., & Karin, M. (2021). Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell, 39, 678-693.e11. https://doi.org/10.1016/j.ccell.2021.02.016CrossRefPubMed Su, H., Yang, F., Fu, R., Li, X., French, R., Mose, E., Pu, X., Trinh, B., Kumar, A., Liu, J., Antonucci, L., Todoric, J., Liu, Y., Hu, Y., Diaz-Meco, M. T., Moscat, J., Metallo, C. M., Lowy, A. M., Sun, B., & Karin, M. (2021). Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell, 39, 678-693.e11. https://​doi.​org/​10.​1016/​j.​ccell.​2021.​02.​016CrossRefPubMed
65.
go back to reference Karasic, T. B., O’Hara, M. H., Loaiza-Bonilla, A., Reiss, K. A., Teitelbaum, U. R., Borazanci, E., De Jesus-Acosta, A., Redlinger, C., Burrell, J. A., Laheru, D. A., Von Hoff, D. D., Amaravadi, R. K., Drebin, J. A., & O’Dwyer, P. J. (2019). Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: A phase 2 randomized clinical trial. JAMA Oncology, 5, 993. https://doi.org/10.1001/jamaoncol.2019.0684CrossRefPubMedPubMedCentral Karasic, T. B., O’Hara, M. H., Loaiza-Bonilla, A., Reiss, K. A., Teitelbaum, U. R., Borazanci, E., De Jesus-Acosta, A., Redlinger, C., Burrell, J. A., Laheru, D. A., Von Hoff, D. D., Amaravadi, R. K., Drebin, J. A., & O’Dwyer, P. J. (2019). Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: A phase 2 randomized clinical trial. JAMA Oncology, 5, 993. https://​doi.​org/​10.​1001/​jamaoncol.​2019.​0684CrossRefPubMedPubMedCentral
71.
go back to reference Bryant, K. L., Stalnecker, C. A., Zeitouni, D., Klomp, J. E., Peng, S., Tikunov, A. P., Gunda, V., Pierobon, M., Waters, A. M., George, S. D., Tomar, G., Papke, B., Hobbs, G. A., Yan, L., Hayes, T. K., Diehl, J. N., Goode, G. D., Chaika, N. V., Wang, Y., … Der, C. J. (2019). Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nature Medicine, 25, 628–640. https://doi.org/10.1038/s41591-019-0368-8CrossRefPubMedPubMedCentral Bryant, K. L., Stalnecker, C. A., Zeitouni, D., Klomp, J. E., Peng, S., Tikunov, A. P., Gunda, V., Pierobon, M., Waters, A. M., George, S. D., Tomar, G., Papke, B., Hobbs, G. A., Yan, L., Hayes, T. K., Diehl, J. N., Goode, G. D., Chaika, N. V., Wang, Y., … Der, C. J. (2019). Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nature Medicine, 25, 628–640. https://​doi.​org/​10.​1038/​s41591-019-0368-8CrossRefPubMedPubMedCentral
72.
go back to reference Lee, C.-S., Lee, L. C., Yuan, T. L., Chakka, S., Fellmann, C., Lowe, S. W., Caplen, N. J., McCormick, F., & Luo, J. (2019). MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proceedings of the National Academy of Sciences, 116, 4508–4517. https://doi.org/10.1073/pnas.1817494116CrossRef Lee, C.-S., Lee, L. C., Yuan, T. L., Chakka, S., Fellmann, C., Lowe, S. W., Caplen, N. J., McCormick, F., & Luo, J. (2019). MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proceedings of the National Academy of Sciences, 116, 4508–4517. https://​doi.​org/​10.​1073/​pnas.​1817494116CrossRef
82.
go back to reference Schofield, H. K., Zeller, J., Espinoza, C., Halbrook, C. J., Del Vecchio, A., Magnuson, B., Fabo, T., Daylan, A. E. C., Kovalenko, I., Lee, H.-J., Yan, W., Feng, Y., Karim, S. A., Kremer, D. M., Kumar-Sinha, C., Lyssiotis, C. A., Ljungman, M., Morton, J. P., Galbán, S., … Pasca di Magliano, M. (2018). Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight., 3, 97422. https://doi.org/10.1172/jci.insight.97422CrossRefPubMed Schofield, H. K., Zeller, J., Espinoza, C., Halbrook, C. J., Del Vecchio, A., Magnuson, B., Fabo, T., Daylan, A. E. C., Kovalenko, I., Lee, H.-J., Yan, W., Feng, Y., Karim, S. A., Kremer, D. M., Kumar-Sinha, C., Lyssiotis, C. A., Ljungman, M., Morton, J. P., Galbán, S., … Pasca di Magliano, M. (2018). Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight., 3, 97422. https://​doi.​org/​10.​1172/​jci.​insight.​97422CrossRefPubMed
85.
go back to reference Ezrova, Z., Nahacka, Z., Stursa, J., Werner, L., Vlcak, E., Kralova Viziova, P., Berridge, M. V., Sedlacek, R., Zobalova, R., Rohlena, J., Boukalova, S., & Neuzil, J. (2021). SMAD4 loss limits the vulnerability of pancreatic cancer cells to complex I inhibition via promotion of mitophagy. Oncogene., 40, 2539–2552. https://doi.org/10.1038/s41388-021-01726-4CrossRefPubMed Ezrova, Z., Nahacka, Z., Stursa, J., Werner, L., Vlcak, E., Kralova Viziova, P., Berridge, M. V., Sedlacek, R., Zobalova, R., Rohlena, J., Boukalova, S., & Neuzil, J. (2021). SMAD4 loss limits the vulnerability of pancreatic cancer cells to complex I inhibition via promotion of mitophagy. Oncogene., 40, 2539–2552. https://​doi.​org/​10.​1038/​s41388-021-01726-4CrossRefPubMed
86.
go back to reference Ju, H.-Q., Ying, H., Tian, T., Ling, J., Fu, J., Lu, Y., Wu, M., Yang, L., Achreja, A., Chen, G., Zhuang, Z., Wang, H., Nagrath, D., Yao, J., Hung, M.-C., DePinho, R. A., Huang, P., Xu, R.-H., & Chiao, P. J. (2017). Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nature Communications, 8, 14437. https://doi.org/10.1038/ncomms14437CrossRefPubMedPubMedCentral Ju, H.-Q., Ying, H., Tian, T., Ling, J., Fu, J., Lu, Y., Wu, M., Yang, L., Achreja, A., Chen, G., Zhuang, Z., Wang, H., Nagrath, D., Yao, J., Hung, M.-C., DePinho, R. A., Huang, P., Xu, R.-H., & Chiao, P. J. (2017). Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nature Communications, 8, 14437. https://​doi.​org/​10.​1038/​ncomms14437CrossRefPubMedPubMedCentral
90.
94.
go back to reference Yu, M., Nguyen, N. D., Huang, Y., Lin, D., Fujimoto, T. N., Molkentine, J. M., Deorukhkar, A., Kang, Y., San Lucas, F. A., Fernandes, C. J., Koay, E. J., Gupta, S., Ying, H., Koong, A. C., Herman, J. M., Fleming, J. B., Maitra, A., & Taniguchi, C. M. (2019). Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight., 4, e126915. https://doi.org/10.1172/jci.insight.126915CrossRefPubMedCentral Yu, M., Nguyen, N. D., Huang, Y., Lin, D., Fujimoto, T. N., Molkentine, J. M., Deorukhkar, A., Kang, Y., San Lucas, F. A., Fernandes, C. J., Koay, E. J., Gupta, S., Ying, H., Koong, A. C., Herman, J. M., Fleming, J. B., Maitra, A., & Taniguchi, C. M. (2019). Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight., 4, e126915. https://​doi.​org/​10.​1172/​jci.​insight.​126915CrossRefPubMedCentral
98.
104.
go back to reference Erkan, M., Adler, G., Apte, M. V., Bachem, M. G., Buchholz, M., Detlefsen, S., Esposito, I., Friess, H., Gress, T. M., Habisch, H.-J., Hwang, R. F., Jaster, R., Kleeff, J., Klöppel, G., Kordes, C., Logsdon, C. D., Masamune, A., Michalski, C. W., Oh, J., … Wilson, J. (2012). StellaTUM: Current consensus and discussion on pancreatic stellate cell research. Gut, 61, 172–178. https://doi.org/10.1136/gutjnl-2011-301220CrossRefPubMed Erkan, M., Adler, G., Apte, M. V., Bachem, M. G., Buchholz, M., Detlefsen, S., Esposito, I., Friess, H., Gress, T. M., Habisch, H.-J., Hwang, R. F., Jaster, R., Kleeff, J., Klöppel, G., Kordes, C., Logsdon, C. D., Masamune, A., Michalski, C. W., Oh, J., … Wilson, J. (2012). StellaTUM: Current consensus and discussion on pancreatic stellate cell research. Gut, 61, 172–178. https://​doi.​org/​10.​1136/​gutjnl-2011-301220CrossRefPubMed
106.
go back to reference Auciello, F. R., Bulusu, V., Oon, C., Tait-Mulder, J., Berry, M., Bhattacharyya, S., Tumanov, S., Allen-Petersen, B. L., Link, J., Kendsersky, N. D., Vringer, E., Schug, M., Novo, D., Hwang, R. F., Evans, R. M., Nixon, C., Dorrell, C., Morton, J. P., Norman, J. C., … Sherman, M. H. (2019). A stromal lysolipid–autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery, 9, 617–627. https://doi.org/10.1158/2159-8290.CD-18-1212CrossRefPubMedPubMedCentral Auciello, F. R., Bulusu, V., Oon, C., Tait-Mulder, J., Berry, M., Bhattacharyya, S., Tumanov, S., Allen-Petersen, B. L., Link, J., Kendsersky, N. D., Vringer, E., Schug, M., Novo, D., Hwang, R. F., Evans, R. M., Nixon, C., Dorrell, C., Morton, J. P., Norman, J. C., … Sherman, M. H. (2019). A stromal lysolipid–autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery, 9, 617–627. https://​doi.​org/​10.​1158/​2159-8290.​CD-18-1212CrossRefPubMedPubMedCentral
107.
go back to reference Apte, M. V., Yang, L., Phillips, P. A., Xu, Z., Kaplan, W., Cowley, M., Pirola, R. C., & Wilson, J. S. (2013). Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: Role of transgelin in PSC function, Am. J. Physiol.-Gastrointest. Liver Physiol., 305, G408–G417. https://doi.org/10.1152/ajpgi.00016.2013CrossRef Apte, M. V., Yang, L., Phillips, P. A., Xu, Z., Kaplan, W., Cowley, M., Pirola, R. C., & Wilson, J. S. (2013). Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: Role of transgelin in PSC function, Am. J. Physiol.-Gastrointest. Liver Physiol., 305, G408–G417. https://​doi.​org/​10.​1152/​ajpgi.​00016.​2013CrossRef
108.
go back to reference Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A., & Kimmelman, A. C. (2016). Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 536, 479–483. https://doi.org/10.1038/nature19084CrossRefPubMedPubMedCentral Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A., & Kimmelman, A. C. (2016). Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 536, 479–483. https://​doi.​org/​10.​1038/​nature19084CrossRefPubMedPubMedCentral
112.
go back to reference Collins, M. A., Bednar, F., Zhang, Y., Brisset, J.-C., Galbán, S., Galbán, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & Pasca di Magliano, M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. The Journal of Clinical Investigation, 122, 639–653. https://doi.org/10.1172/JCI59227CrossRefPubMedPubMedCentral Collins, M. A., Bednar, F., Zhang, Y., Brisset, J.-C., Galbán, S., Galbán, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & Pasca di Magliano, M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. The Journal of Clinical Investigation, 122, 639–653. https://​doi.​org/​10.​1172/​JCI59227CrossRefPubMedPubMedCentral
114.
go back to reference De Bock, K., Georgiadou, M., Schoors, S., Kuchnio, A., Wong, B. W., Cantelmo, A. R., Quaegebeur, A., Ghesquière, B., Cauwenberghs, S., Eelen, G., Phng, L.-K., Betz, I., Tembuyser, B., Brepoels, K., Welti, J., Geudens, I., Segura, I., Cruys, B., Bifari, F., … Carmeliet, P. (2013). Role of PFKFB3-driven glycolysis in vessel sprouting. Cell, 154, 651–663. https://doi.org/10.1016/j.cell.2013.06.037CrossRefPubMed De Bock, K., Georgiadou, M., Schoors, S., Kuchnio, A., Wong, B. W., Cantelmo, A. R., Quaegebeur, A., Ghesquière, B., Cauwenberghs, S., Eelen, G., Phng, L.-K., Betz, I., Tembuyser, B., Brepoels, K., Welti, J., Geudens, I., Segura, I., Cruys, B., Bifari, F., … Carmeliet, P. (2013). Role of PFKFB3-driven glycolysis in vessel sprouting. Cell, 154, 651–663. https://​doi.​org/​10.​1016/​j.​cell.​2013.​06.​037CrossRefPubMed
124.
go back to reference Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T., Molina, H., Xiang, J., Zhang, T., Theilen, T.-M., García-Santos, G., Williams, C., Ararso, Y., Huang, Y., Rodrigues, G., Shen, T.-L., … Lyden, D. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 17, 816–826. https://doi.org/10.1038/ncb3169CrossRefPubMedPubMedCentral Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T., Molina, H., Xiang, J., Zhang, T., Theilen, T.-M., García-Santos, G., Williams, C., Ararso, Y., Huang, Y., Rodrigues, G., Shen, T.-L., … Lyden, D. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 17, 816–826. https://​doi.​org/​10.​1038/​ncb3169CrossRefPubMedPubMedCentral
125.
126.
go back to reference Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S. W., & Kreutz, M. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 109, 3812–3819. https://doi.org/10.1182/blood-2006-07-035972CrossRefPubMed Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S. W., & Kreutz, M. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 109, 3812–3819. https://​doi.​org/​10.​1182/​blood-2006-07-035972CrossRefPubMed
128.
go back to reference Hossain, F., Al-Khami, A. A., Wyczechowska, D., Hernandez, C., Zheng, L., Reiss, K., Valle, L. D., Trillo-Tinoco, J., Maj, T., Zou, W., Rodriguez, P. C., & Ochoa, A. C. (2015). Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies, Cancer. Immunologic Research, 3, 1236–1247. https://doi.org/10.1158/2326-6066.CIR-15-0036CrossRef Hossain, F., Al-Khami, A. A., Wyczechowska, D., Hernandez, C., Zheng, L., Reiss, K., Valle, L. D., Trillo-Tinoco, J., Maj, T., Zou, W., Rodriguez, P. C., & Ochoa, A. C. (2015). Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies, Cancer. Immunologic Research, 3, 1236–1247. https://​doi.​org/​10.​1158/​2326-6066.​CIR-15-0036CrossRef
129.
go back to reference Jian, S.-L., Chen, W.-W., Su, Y.-C., Su, Y.-W., Chuang, T.-H., Hsu, S.-C., & Huang, L.-R. (2017). Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death & Disease, 8, e2779–e2779. https://doi.org/10.1038/cddis.2017.192CrossRef Jian, S.-L., Chen, W.-W., Su, Y.-C., Su, Y.-W., Chuang, T.-H., Hsu, S.-C., & Huang, L.-R. (2017). Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death & Disease, 8, e2779–e2779. https://​doi.​org/​10.​1038/​cddis.​2017.​192CrossRef
145.
go back to reference Schellenberg, D., Quon, A., Minn, A. Y., Graves, E. E., Kunz, P., Ford, J. M., Fisher, G. A., Goodman, K. A., Koong, A. C., & Chang, D. T. (2010). 18Fluorodeoxyglucose PET is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int. J. Radiat. Oncol., 77, 1420–1425. https://doi.org/10.1016/j.ijrobp.2009.06.049CrossRef Schellenberg, D., Quon, A., Minn, A. Y., Graves, E. E., Kunz, P., Ford, J. M., Fisher, G. A., Goodman, K. A., Koong, A. C., & Chang, D. T. (2010). 18Fluorodeoxyglucose PET is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int. J. Radiat. Oncol., 77, 1420–1425. https://​doi.​org/​10.​1016/​j.​ijrobp.​2009.​06.​049CrossRef
146.
go back to reference Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrishnan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences, 109, 13787–13792. https://doi.org/10.1073/pnas.1203339109CrossRef Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrishnan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences, 109, 13787–13792. https://​doi.​org/​10.​1073/​pnas.​1203339109CrossRef
151.
go back to reference Salani, B., Marini, C., Rio, A. D., Ravera, S., Massollo, M., Orengo, A. M., Amaro, A., Passalacqua, M., Maffioli, S., Pfeffer, U., Cordera, R., Maggi, D., & Sambuceti, G. (2013). Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Science and Reports, 3, 2070. https://doi.org/10.1038/srep02070CrossRef Salani, B., Marini, C., Rio, A. D., Ravera, S., Massollo, M., Orengo, A. M., Amaro, A., Passalacqua, M., Maffioli, S., Pfeffer, U., Cordera, R., Maggi, D., & Sambuceti, G. (2013). Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Science and Reports, 3, 2070. https://​doi.​org/​10.​1038/​srep02070CrossRef
158.
159.
go back to reference Qi, X.-F., Zheng, L., Lee, K.-J., Kim, D.-H., Kim, C.-S., Cai, D.-Q., Wu, Z., Qin, J.-W., Yu, Y.-H., & Kim, S.-K. (2013). HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death & Disease, 4, e518–e518. https://doi.org/10.1038/cddis.2013.44CrossRef Qi, X.-F., Zheng, L., Lee, K.-J., Kim, D.-H., Kim, C.-S., Cai, D.-Q., Wu, Z., Qin, J.-W., Yu, Y.-H., & Kim, S.-K. (2013). HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death & Disease, 4, e518–e518. https://​doi.​org/​10.​1038/​cddis.​2013.​44CrossRef
165.
go back to reference Rozenblum, E., Schutte, M., Goggins, M., Hahn, S. A., Panzer, S., Zahurak, M., Goodman, S. N., Sohn, T. A., Hruban, R. H., Yeo, C. J., & Kern, S. E. (1997). Tumor-suppressive pathways in pancreatic carcinoma. Cancer Research, 57, 1731–1734.PubMed Rozenblum, E., Schutte, M., Goggins, M., Hahn, S. A., Panzer, S., Zahurak, M., Goodman, S. N., Sohn, T. A., Hruban, R. H., Yeo, C. J., & Kern, S. E. (1997). Tumor-suppressive pathways in pancreatic carcinoma. Cancer Research, 57, 1731–1734.PubMed
173.
go back to reference Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., Baylin, S. B., Kern, S. E., & Herman, J. G. (1997). Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.PubMed Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., Baylin, S. B., Kern, S. E., & Herman, J. G. (1997). Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.PubMed
174.
go back to reference Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J.C.-H., Leary, R. J., Eshleman, J. R., Goggins, M., Jaffee, E. M., Iacobuzio-Donahue, C. A., Maitra, A., Cameron, J. L., Olino, K., Schulick, R., Winter, J., Herman, J. M., … Hruban, R. H. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15, 4674–4679. https://doi.org/10.1158/1078-0432.CCR-09-0227CrossRefPubMedPubMedCentral Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J.C.-H., Leary, R. J., Eshleman, J. R., Goggins, M., Jaffee, E. M., Iacobuzio-Donahue, C. A., Maitra, A., Cameron, J. L., Olino, K., Schulick, R., Winter, J., Herman, J. M., … Hruban, R. H. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15, 4674–4679. https://​doi.​org/​10.​1158/​1078-0432.​CCR-09-0227CrossRefPubMedPubMedCentral
Metadata
Title
Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets
Authors
Henriette Berg Andersen
Renata Ialchina
Stine Falsig Pedersen
Dominika Czaplinska
Publication date
01-12-2021
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2021
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-021-10004-4

Other articles of this Issue 4/2021

Cancer and Metastasis Reviews 4/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine