Skip to main content
Top
Published in: Archives of Virology 4/2016

01-04-2016 | Original Article

A lack of Fas/FasL signalling leads to disturbances in the antiviral response during ectromelia virus infection

Authors: K. Bień, Z. Sobańska, J. Sokołowska, P. Bąska, Z. Nowak, A. Winnicka, M. Krzyzowska

Published in: Archives of Virology | Issue 4/2016

Login to get access

Abstract

Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4+ and CD8+ T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4+ and CD8+ T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4+ T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response.
Literature
1.
go back to reference Stanford MM, McFadden G, Karupiah G, Chaudhri G (2007) Immunopathogenesis of poxvirus infections: forecasting the impending storm. Immunol Cell Biol 85:93–102CrossRefPubMed Stanford MM, McFadden G, Karupiah G, Chaudhri G (2007) Immunopathogenesis of poxvirus infections: forecasting the impending storm. Immunol Cell Biol 85:93–102CrossRefPubMed
2.
go back to reference Esteban DJR, Buller ML (2005) Ectromelia virus: the causative agent of mousepox. J Gen Virol 861:2645–2659CrossRef Esteban DJR, Buller ML (2005) Ectromelia virus: the causative agent of mousepox. J Gen Virol 861:2645–2659CrossRef
3.
go back to reference Wallace GD, Buller RM (1985) Kinetics of ectromelia virus (mousepox) transmission and clinical response in C57BL/6j, BALB/cByj and AKR/J inbred mice. Lab Anim Sci 35:41–46PubMed Wallace GD, Buller RM (1985) Kinetics of ectromelia virus (mousepox) transmission and clinical response in C57BL/6j, BALB/cByj and AKR/J inbred mice. Lab Anim Sci 35:41–46PubMed
4.
go back to reference Jacoby RO, Bhatt PN, Brownstein DG (1989) Evidence that NK cells and interferon are required for genetic resistance to lethal infection with ectromelia virus. Arch Virol 108:49–58CrossRefPubMed Jacoby RO, Bhatt PN, Brownstein DG (1989) Evidence that NK cells and interferon are required for genetic resistance to lethal infection with ectromelia virus. Arch Virol 108:49–58CrossRefPubMed
5.
go back to reference Delano ML, Brownstein DG (1995) Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 69:5875–5877PubMedPubMedCentral Delano ML, Brownstein DG (1995) Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 69:5875–5877PubMedPubMedCentral
6.
go back to reference Ramaswamy M, Cleland SY, Cruz AC, Siegel RM (2009) Many checkpoints on the road to cell death: regulation of Fas-FasL interactions and Fas signaling in peripheral immune responses. Results Probl Cell Differ 49:17–47CrossRefPubMedPubMedCentral Ramaswamy M, Cleland SY, Cruz AC, Siegel RM (2009) Many checkpoints on the road to cell death: regulation of Fas-FasL interactions and Fas signaling in peripheral immune responses. Results Probl Cell Differ 49:17–47CrossRefPubMedPubMedCentral
7.
go back to reference Davidson WF, Haudenschild C, Kwon J, Williams MS (2002) T cell receptor ligation triggers novel nonapoptotic cell death pathways that are Fas-independent or Fas-dependent. J Immunol 169:6218–6230CrossRefPubMed Davidson WF, Haudenschild C, Kwon J, Williams MS (2002) T cell receptor ligation triggers novel nonapoptotic cell death pathways that are Fas-independent or Fas-dependent. J Immunol 169:6218–6230CrossRefPubMed
8.
go back to reference Ju ST, Panka DJ, Cui H, Ettinger R et al (1995) Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444–448CrossRefPubMed Ju ST, Panka DJ, Cui H, Ettinger R et al (1995) Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444–448CrossRefPubMed
9.
go back to reference Stranges PB, Watson J, Cooper CJ et al (2007) Elimination of antigen-presenting cells and autoreactive T cells by fas contributes to prevention of autoimmunity. Immunity 26:629–641CrossRefPubMedPubMedCentral Stranges PB, Watson J, Cooper CJ et al (2007) Elimination of antigen-presenting cells and autoreactive T cells by fas contributes to prevention of autoimmunity. Immunity 26:629–641CrossRefPubMedPubMedCentral
11.
go back to reference Lyons C, Fernandes P, Fanning LJ, Houston A, Brint E (2015) Engagement of Fas on macrophages modulates poly I:C induced cytokine production with specific enhancement of IP-10. PLoS One 10:e0123635CrossRefPubMedPubMedCentral Lyons C, Fernandes P, Fanning LJ, Houston A, Brint E (2015) Engagement of Fas on macrophages modulates poly I:C induced cytokine production with specific enhancement of IP-10. PLoS One 10:e0123635CrossRefPubMedPubMedCentral
12.
go back to reference Shrestha B, Diamond MS (2007) Fas ligand interactions contribute to CD8 T-cell-mediated control of West Nile virus infection in the central nervous system. J Virol 81:11749–11757CrossRefPubMedPubMedCentral Shrestha B, Diamond MS (2007) Fas ligand interactions contribute to CD8 T-cell-mediated control of West Nile virus infection in the central nervous system. J Virol 81:11749–11757CrossRefPubMedPubMedCentral
13.
go back to reference Johnson J, Chu CF, Milligan GN (2008) Effector CD4 T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol 82:9678–9688CrossRefPubMedPubMedCentral Johnson J, Chu CF, Milligan GN (2008) Effector CD4 T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol 82:9678–9688CrossRefPubMedPubMedCentral
14.
go back to reference Topham DJ, Tripp RA, Doherty PC (1997) CD8 T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159:5197–5200PubMed Topham DJ, Tripp RA, Doherty PC (1997) CD8 T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159:5197–5200PubMed
15.
go back to reference Parra B, Lin MT, Stohlman SA et al (2000) Contributions of Fas-Fas ligand interactions to the pathogenesis of mouse hepatitis virus in the central nervous system. J Virol 74:2447–2450CrossRefPubMedPubMedCentral Parra B, Lin MT, Stohlman SA et al (2000) Contributions of Fas-Fas ligand interactions to the pathogenesis of mouse hepatitis virus in the central nervous system. J Virol 74:2447–2450CrossRefPubMedPubMedCentral
16.
go back to reference Chaudhri G, Panchanathan V, Buller RM et al (2004) Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc Natl Acad Sci USA 101:9057–9062CrossRefPubMedPubMedCentral Chaudhri G, Panchanathan V, Buller RM et al (2004) Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc Natl Acad Sci USA 101:9057–9062CrossRefPubMedPubMedCentral
17.
go back to reference Trapani A, Jans DA, Jans PJ et al (1998) Efficient nuclear targeting of granzyme B and the nu- clear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J Biol Chem 273:27934–27938CrossRefPubMed Trapani A, Jans DA, Jans PJ et al (1998) Efficient nuclear targeting of granzyme B and the nu- clear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J Biol Chem 273:27934–27938CrossRefPubMed
18.
go back to reference Turner SJ, Silke J, Kenshole B, Ruby J (2000) Characterization of the ectromelia virus serpin, SPI-2. J Gen Virol 81:2425–2430CrossRefPubMed Turner SJ, Silke J, Kenshole B, Ruby J (2000) Characterization of the ectromelia virus serpin, SPI-2. J Gen Virol 81:2425–2430CrossRefPubMed
19.
go back to reference Krzyzowska M, Polanczyk M, Bas M et al (2005) Mousepox conjunctivitis: the role of Fas/FasL-mediated apoptosis of epithelial cells in virus dissemination. J Gen Virol 86:2007–2018CrossRefPubMed Krzyzowska M, Polanczyk M, Bas M et al (2005) Mousepox conjunctivitis: the role of Fas/FasL-mediated apoptosis of epithelial cells in virus dissemination. J Gen Virol 86:2007–2018CrossRefPubMed
20.
go back to reference Krzyzowska M, Cymerys J, Winnicka A, Niemiałtowski M (2006) Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res 115:141–149CrossRefPubMed Krzyzowska M, Cymerys J, Winnicka A, Niemiałtowski M (2006) Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res 115:141–149CrossRefPubMed
21.
22.
go back to reference Krzyzowska M, Orłowski P, Bąska P, Bodera P, Zdanowski R, Stankiewicz W (2014) Role of Fas/FasL signaling in regulation of anti-viral response during HSV-2 vaginal infection in mice. Immunobiology 219:932–943CrossRefPubMed Krzyzowska M, Orłowski P, Bąska P, Bodera P, Zdanowski R, Stankiewicz W (2014) Role of Fas/FasL signaling in regulation of anti-viral response during HSV-2 vaginal infection in mice. Immunobiology 219:932–943CrossRefPubMed
23.
go back to reference Gunalp A (1965) Growth and cytopathic effect of rubella virus in a line of green monkey kidney cells. Proc Soc Exp Biol Med 118:185–190CrossRef Gunalp A (1965) Growth and cytopathic effect of rubella virus in a line of green monkey kidney cells. Proc Soc Exp Biol Med 118:185–190CrossRef
24.
go back to reference Krzyzowska M, Schollenberger A, Skierski J, Niemialtowski M (2002) Apoptosis during ectromelia orthopoxvirus infection is DEVDase dependent: in vitro and in vivo studies. Microbes Infect 4:599–611CrossRefPubMed Krzyzowska M, Schollenberger A, Skierski J, Niemialtowski M (2002) Apoptosis during ectromelia orthopoxvirus infection is DEVDase dependent: in vitro and in vivo studies. Microbes Infect 4:599–611CrossRefPubMed
25.
go back to reference Amoah S, Holbrook BC, Yammani RD, Alexander-Miller MA (2013) High viral burden restricts short-lived effector cell number at late times postinfection through increased natural regulatory T cell expansion. J Immunol 190:5020–5029CrossRefPubMedPubMedCentral Amoah S, Holbrook BC, Yammani RD, Alexander-Miller MA (2013) High viral burden restricts short-lived effector cell number at late times postinfection through increased natural regulatory T cell expansion. J Immunol 190:5020–5029CrossRefPubMedPubMedCentral
27.
go back to reference Müllbacher A, Wallich R, Moyer RW, Simon MM (1999) Poxvirus-encoded serpins do not prevent cytolytic T cell-mediated recovery from primary infections. J Immunol 162:7315–7321PubMed Müllbacher A, Wallich R, Moyer RW, Simon MM (1999) Poxvirus-encoded serpins do not prevent cytolytic T cell-mediated recovery from primary infections. J Immunol 162:7315–7321PubMed
28.
go back to reference Brownstein DG, Gras L (1995) Chromosome mapping of Rmp-4, a gonad-dependent gene encoding host resistance to mousepox. J Virol 69:6958–6964PubMedPubMedCentral Brownstein DG, Gras L (1995) Chromosome mapping of Rmp-4, a gonad-dependent gene encoding host resistance to mousepox. J Virol 69:6958–6964PubMedPubMedCentral
29.
go back to reference Biron A, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220CrossRefPubMed Biron A, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220CrossRefPubMed
30.
go back to reference Parker K, Parker S, Yokoyama WM, Corbett JA, Buller RM (2007) Induction of natural killer cell responses by ectromelia virus controls infection. J Virol 81:4070–4079CrossRefPubMedPubMedCentral Parker K, Parker S, Yokoyama WM, Corbett JA, Buller RM (2007) Induction of natural killer cell responses by ectromelia virus controls infection. J Virol 81:4070–4079CrossRefPubMedPubMedCentral
32.
go back to reference Meyer H, Damon K, Esposito JJ (2004) Orthopoxvirus diagnostics. Methods Mol Biol 269:119–133PubMed Meyer H, Damon K, Esposito JJ (2004) Orthopoxvirus diagnostics. Methods Mol Biol 269:119–133PubMed
33.
go back to reference Karupiah G, Buller RM, Rooijen Van et al (1996) Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol 70:8301–8309PubMedPubMedCentral Karupiah G, Buller RM, Rooijen Van et al (1996) Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol 70:8301–8309PubMedPubMedCentral
34.
go back to reference Fang M, Siciliano NA, Hersperger AR et al (2012) Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci USA 109:9983–9988CrossRefPubMedPubMedCentral Fang M, Siciliano NA, Hersperger AR et al (2012) Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci USA 109:9983–9988CrossRefPubMedPubMedCentral
35.
go back to reference Seedhom MO, Keisha S, Mathurin KS, Kim SK, Welsh RM (2012) Increased protection from Vaccinia Virus infection in mice genetically prone to lymphoproliferative disorders. J Virol 86:6010–6022CrossRefPubMedPubMedCentral Seedhom MO, Keisha S, Mathurin KS, Kim SK, Welsh RM (2012) Increased protection from Vaccinia Virus infection in mice genetically prone to lymphoproliferative disorders. J Virol 86:6010–6022CrossRefPubMedPubMedCentral
36.
go back to reference Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564CrossRefPubMed Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564CrossRefPubMed
38.
go back to reference Haeryfar SM, DiPaolo RJ, Tscharke DC, Bennink JR, Yewdell JW (2005) Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities. J Immunol 174:3344–3351CrossRefPubMed Haeryfar SM, DiPaolo RJ, Tscharke DC, Bennink JR, Yewdell JW (2005) Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities. J Immunol 174:3344–3351CrossRefPubMed
39.
go back to reference Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y (2004) Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 104:3249–3256CrossRefPubMed Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y (2004) Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 104:3249–3256CrossRefPubMed
40.
go back to reference Nan XP, Zhang Y, Yu HT et al (2012) Inhibition of viral replication down-regulates CD4(+)CD25(high) regulatory T cells and programmed death-ligand 1 in chronic hepatitis B. Viral Immunol 25:21–28PubMedPubMedCentral Nan XP, Zhang Y, Yu HT et al (2012) Inhibition of viral replication down-regulates CD4(+)CD25(high) regulatory T cells and programmed death-ligand 1 in chronic hepatitis B. Viral Immunol 25:21–28PubMedPubMedCentral
42.
go back to reference Pletinckx K, Lutz MB (2014) Dendritic cells generated with Flt3L and exposed o apoptotic cells lack induction of T cell anergy and Foxp3+ regulatory T cell conversion in vitro. Immunobiology 219:230–240CrossRefPubMed Pletinckx K, Lutz MB (2014) Dendritic cells generated with Flt3L and exposed o apoptotic cells lack induction of T cell anergy and Foxp3+ regulatory T cell conversion in vitro. Immunobiology 219:230–240CrossRefPubMed
43.
go back to reference Engelmayer J, Larsson M, Subklewe M et al (1999) Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768PubMed Engelmayer J, Larsson M, Subklewe M et al (1999) Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768PubMed
44.
go back to reference Chatzigeorgiou A, Lyberi M, Chatzilymperis G et al (2009) CD40/CD40L signaling and its implication in health and disease. Biofactors 35:474–483CrossRefPubMed Chatzigeorgiou A, Lyberi M, Chatzilymperis G et al (2009) CD40/CD40L signaling and its implication in health and disease. Biofactors 35:474–483CrossRefPubMed
46.
go back to reference Kamphorst AO, Ahmed R (2013) Manipulating the PD-1 pathway to improve immunity. Curr Opin Immunol 25:381–388CrossRefPubMed Kamphorst AO, Ahmed R (2013) Manipulating the PD-1 pathway to improve immunity. Curr Opin Immunol 25:381–388CrossRefPubMed
47.
go back to reference Wang X, Zhang Z, Zhang S et al (2008) B7–H1 up-regulation impairs myeloid DC and correlates with disease progression in chronic HIV-1 infection. Eur J Immunol 38:3226–3236CrossRefPubMed Wang X, Zhang Z, Zhang S et al (2008) B7–H1 up-regulation impairs myeloid DC and correlates with disease progression in chronic HIV-1 infection. Eur J Immunol 38:3226–3236CrossRefPubMed
48.
go back to reference Shen T, Chen X, Chen Y et al (2010) Increased PD-L1 expression and PD-L1/CD86 ratio on dendritic cells were associated with impaired dendritic cells function in HCV infection. J Med Virol 82:1152–1159CrossRefPubMed Shen T, Chen X, Chen Y et al (2010) Increased PD-L1 expression and PD-L1/CD86 ratio on dendritic cells were associated with impaired dendritic cells function in HCV infection. J Med Virol 82:1152–1159CrossRefPubMed
49.
go back to reference Chentoufi AA, Dervillez X, Dasgupta G et al (2012) The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells. Viral Immunol 25:204–215PubMedPubMedCentral Chentoufi AA, Dervillez X, Dasgupta G et al (2012) The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells. Viral Immunol 25:204–215PubMedPubMedCentral
50.
go back to reference Fritzsching B, Oberle N, Eberhardt N et al (2005) In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol. 175:32–36CrossRefPubMed Fritzsching B, Oberle N, Eberhardt N et al (2005) In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol. 175:32–36CrossRefPubMed
Metadata
Title
A lack of Fas/FasL signalling leads to disturbances in the antiviral response during ectromelia virus infection
Authors
K. Bień
Z. Sobańska
J. Sokołowska
P. Bąska
Z. Nowak
A. Winnicka
M. Krzyzowska
Publication date
01-04-2016
Publisher
Springer Vienna
Published in
Archives of Virology / Issue 4/2016
Print ISSN: 0304-8608
Electronic ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-015-2746-y

Other articles of this Issue 4/2016

Archives of Virology 4/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.