Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2016

Open Access 01-12-2016 | Review

3D culture models of Alzheimer’s disease: a road map to a “cure-in-a-dish”

Authors: Se Hoon Choi, Young Hye Kim, Luisa Quinti, Rudolph E. Tanzi, Doo Yeon Kim

Published in: Molecular Neurodegeneration | Issue 1/2016

Login to get access

Abstract

Alzheimer’s disease (AD) transgenic mice have been used as a standard AD model for basic mechanistic studies and drug discovery. These mouse models showed symbolic AD pathologies including β-amyloid (Aβ) plaques, gliosis and memory deficits but failed to fully recapitulate AD pathogenic cascades including robust phospho tau (p-tau) accumulation, clear neurofibrillary tangles (NFTs) and neurodegeneration, solely driven by familial AD (FAD) mutation(s). Recent advances in human stem cell and three-dimensional (3D) culture technologies made it possible to generate novel 3D neural cell culture models that recapitulate AD pathologies including robust Aβ deposition and Aβ-driven NFT-like tau pathology. These new 3D human cell culture models of AD hold a promise for a novel platform that can be used for mechanism studies in human brain-like environment and high-throughput drug screening (HTS). In this review, we will summarize the current progress in recapitulating AD pathogenic cascades in human neural cell culture models using AD patient-derived induced pluripotent stem cells (iPSCs) or genetically modified human stem cell lines. We will also explain how new 3D culture technologies were applied to accelerate Aβ and p-tau pathologies in human neural cell cultures, as compared the standard two-dimensional (2D) culture conditions. Finally, we will discuss a potential impact of the human 3D human neural cell culture models on the AD drug-development process. These revolutionary 3D culture models of AD will contribute to accelerate the discovery of novel AD drugs.
Literature
1.
go back to reference Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.PubMedCrossRef Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.PubMedCrossRef
2.
go back to reference Tanzi RE. A brief history of Alzheimer’s disease gene discovery. J Alzheimers Dis. 2013;33 Suppl 1:S5–13.PubMed Tanzi RE. A brief history of Alzheimer’s disease gene discovery. J Alzheimers Dis. 2013;33 Suppl 1:S5–13.PubMed
3.
go back to reference Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008;9:768–78.PubMedCrossRef Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008;9:768–78.PubMedCrossRef
4.
go back to reference Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11:332–84.CrossRef Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11:332–84.CrossRef
5.
go back to reference Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure?. J Neurochem. 2016;139(Suppl 2):237–52.PubMedCrossRef Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure?. J Neurochem. 2016;139(Suppl 2):237–52.PubMedCrossRef
6.
go back to reference Cutler N, Sramek J. Review of the next generation of Alzheimer’s disease therapeutics: challenges for drug development. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:27–57.PubMedCrossRef Cutler N, Sramek J. Review of the next generation of Alzheimer’s disease therapeutics: challenges for drug development. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:27–57.PubMedCrossRef
7.
go back to reference Selkoe D. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.PubMed Selkoe D. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.PubMed
8.
go back to reference Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med EMBO Press. 2016;8:595–608.CrossRef Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med EMBO Press. 2016;8:595–608.CrossRef
9.
go back to reference Götz J, Ittner LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci. 2008;9:532–44.PubMedCrossRef Götz J, Ittner LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci. 2008;9:532–44.PubMedCrossRef
10.
go back to reference Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res NIH Public Access. 2010;7:656–64.CrossRef Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res NIH Public Access. 2010;7:656–64.CrossRef
11.
go back to reference Trojanowski JQ, Lee VM-Y. The role of tau in Alzheimer’s disease. Med Clin North Am. 2002;86:615–27.PubMedCrossRef Trojanowski JQ, Lee VM-Y. The role of tau in Alzheimer’s disease. Med Clin North Am. 2002;86:615–27.PubMedCrossRef
12.
go back to reference Lee VMY, Lee VM-Y, Brunden KR, Brunden KR, Hutton M, Hutton M, et al. Developing therapeutic approaches to tau, selected kinases, and related neuronal protein targets. Cold Spring Harb Perspect Med. 2011;1:a006437–7.PubMedPubMedCentralCrossRef Lee VMY, Lee VM-Y, Brunden KR, Brunden KR, Hutton M, Hutton M, et al. Developing therapeutic approaches to tau, selected kinases, and related neuronal protein targets. Cold Spring Harb Perspect Med. 2011;1:a006437–7.PubMedPubMedCentralCrossRef
13.
go back to reference Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8:663–72.PubMedCrossRef Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8:663–72.PubMedCrossRef
14.
15.
go back to reference Armstrong RA. A critical analysis of the “amyloid cascade hypothesis”. Folia Neuropathol. 2014;52(3):211–25.PubMedCrossRef Armstrong RA. A critical analysis of the “amyloid cascade hypothesis”. Folia Neuropathol. 2014;52(3):211–25.PubMedCrossRef
16.
go back to reference Duff K, Rao MV. Progress in the modeling of neurodegenerative diseases in transgenic mice. Curr Opin Neurol. 2001;14:441–7.PubMedCrossRef Duff K, Rao MV. Progress in the modeling of neurodegenerative diseases in transgenic mice. Curr Opin Neurol. 2001;14:441–7.PubMedCrossRef
17.
18.
go back to reference Choi SH, Kim YH, D'Avanzo C, Aronson J, Tanzi RE, Kim DY. Recapitulating amyloid β and tau pathology in human neural cell culture models: clinical implications. US Neurology. 2015;11:102–5.PubMedPubMedCentralCrossRef Choi SH, Kim YH, D'Avanzo C, Aronson J, Tanzi RE, Kim DY. Recapitulating amyloid β and tau pathology in human neural cell culture models: clinical implications. US Neurology. 2015;11:102–5.PubMedPubMedCentralCrossRef
19.
go back to reference Hardy J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.PubMedCrossRef Hardy J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.PubMedCrossRef
21.
go back to reference Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15:349–57.PubMedCrossRef Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15:349–57.PubMedCrossRef
22.
go back to reference Karran E, Mercken M, Strooper BD, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10:698–712.PubMedCrossRef Karran E, Mercken M, Strooper BD, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10:698–712.PubMedCrossRef
23.
24.
go back to reference Henley DB, Sundell KL, Sethuraman G, Dowsett SA, May PC. Safety profile of semagacestat, a gamma-secretase inhibitor: IDENTITY trial findings. Curr Med Res Opin. 2014;30:2021–32.PubMedCrossRef Henley DB, Sundell KL, Sethuraman G, Dowsett SA, May PC. Safety profile of semagacestat, a gamma-secretase inhibitor: IDENTITY trial findings. Curr Med Res Opin. 2014;30:2021–32.PubMedCrossRef
25.
go back to reference Moore S, Evans LDB, Andersson T, Portelius E, Smith J, Dias TB, et al. APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep. 2015;11:689–96.PubMedPubMedCentralCrossRef Moore S, Evans LDB, Andersson T, Portelius E, Smith J, Dias TB, et al. APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep. 2015;11:689–96.PubMedPubMedCentralCrossRef
26.
go back to reference Sproul AA, Sproul AA, Jacob S, Jacob S, Pre D, Pre D, et al. Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS ONE. 2014;9:e84547. Borchelt DR.PubMedPubMedCentralCrossRef Sproul AA, Sproul AA, Jacob S, Jacob S, Pre D, Pre D, et al. Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS ONE. 2014;9:e84547. Borchelt DR.PubMedPubMedCentralCrossRef
27.
go back to reference Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J, et al. The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 2013;5:974–85.PubMedCrossRef Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J, et al. The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 2013;5:974–85.PubMedCrossRef
28.
go back to reference Koch P, Tamboli IY, Mertens J, Wunderlich P, Ladewig J, Stüber K, et al. Presenilin-1 L166P mutant human pluripotent stem cell–derived neurons exhibit partial loss of γ-secretase activity in endogenous amyloid-β generation. Am J Pathol. 2012;180:2404–16.PubMedCrossRef Koch P, Tamboli IY, Mertens J, Wunderlich P, Ladewig J, Stüber K, et al. Presenilin-1 L166P mutant human pluripotent stem cell–derived neurons exhibit partial loss of γ-secretase activity in endogenous amyloid-β generation. Am J Pathol. 2012;180:2404–16.PubMedCrossRef
29.
go back to reference Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LNP, et al. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet. 2014;23:3523–36.PubMedPubMedCentralCrossRef Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LNP, et al. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet. 2014;23:3523–36.PubMedPubMedCentralCrossRef
30.
go back to reference Hu W, Hu W, Qiu B, Qiu B, Guan W, Guan W, et al. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell. 2015;17:204–12.PubMedCrossRef Hu W, Hu W, Qiu B, Qiu B, Guan W, Guan W, et al. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell. 2015;17:204–12.PubMedCrossRef
31.
32.
go back to reference Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014;515:274–8.PubMedPubMedCentralCrossRef Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014;515:274–8.PubMedPubMedCentralCrossRef
33.
go back to reference Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–90.PubMedCrossRef Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–90.PubMedCrossRef
34.
go back to reference Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.PubMedCrossRef Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.PubMedCrossRef
35.
go back to reference Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21. 2003rd ed.PubMedCrossRef Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21. 2003rd ed.PubMedCrossRef
36.
go back to reference Ando K, Leroy K, Héraud C, Yilmaz Z, Authelet M, Suain V, et al. Accelerated human mutant tau aggregation by knocking out murine tau in a transgenic mouse model. Am J Pathol. 2011;178:803–16.PubMedPubMedCentralCrossRef Ando K, Leroy K, Héraud C, Yilmaz Z, Authelet M, Suain V, et al. Accelerated human mutant tau aggregation by knocking out murine tau in a transgenic mouse model. Am J Pathol. 2011;178:803–16.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener. 2014;9:3. BioMed Central Ltd.PubMedPubMedCentralCrossRef Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener. 2014;9:3. BioMed Central Ltd.PubMedPubMedCentralCrossRef
39.
go back to reference Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular aβ and differential drug responsiveness. Cell Stem Cell. 2013;12:487–96.PubMedCrossRef Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular aβ and differential drug responsiveness. Cell Stem Cell. 2013;12:487–96.PubMedCrossRef
40.
go back to reference Israel MA, Israel MA, Yuan SH, Yuan SH, Bardy C, Bardy C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216–20.PubMedPubMedCentral Israel MA, Israel MA, Yuan SH, Yuan SH, Bardy C, Bardy C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216–20.PubMedPubMedCentral
41.
go back to reference Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, et al. Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011;20:4530–9.PubMedCrossRef Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, et al. Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet. 2011;20:4530–9.PubMedCrossRef
42.
go back to reference Li T, Pires C, Nielsen TT, Waldemar G, Hjermind LE, Nielsen JE, et al. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer’s disease patient carrying an A79V mutation in PSEN1. Stem Cell Res. 2016;16:229–32.PubMedCrossRef Li T, Pires C, Nielsen TT, Waldemar G, Hjermind LE, Nielsen JE, et al. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer’s disease patient carrying an A79V mutation in PSEN1. Stem Cell Res. 2016;16:229–32.PubMedCrossRef
43.
go back to reference Ochalek A, Nemes C, Varga E, Táncos Z, Kobolák J, Dinnyés A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer’s disease. Stem Cell Res. 2016;17:72–4.PubMedCrossRef Ochalek A, Nemes C, Varga E, Táncos Z, Kobolák J, Dinnyés A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer’s disease. Stem Cell Res. 2016;17:72–4.PubMedCrossRef
44.
go back to reference Chandrasekaran A, Varga E, Nemes C, Táncos Z, Kobolák J, Dinnyés A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. 2016;17:78–80.PubMedCrossRef Chandrasekaran A, Varga E, Nemes C, Táncos Z, Kobolák J, Dinnyés A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. 2016;17:78–80.PubMedCrossRef
45.
go back to reference Táncos Z, Varga E, Kovács E, Dinnyés A, Kobolák J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. 2016;17:81–3.PubMedCrossRef Táncos Z, Varga E, Kovács E, Dinnyés A, Kobolák J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. 2016;17:81–3.PubMedCrossRef
46.
go back to reference Táncos Z, Varga E, Kovács E, Dinnyés A, Kobolák J. Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. 2016;17:75–7.PubMedCrossRef Táncos Z, Varga E, Kovács E, Dinnyés A, Kobolák J. Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Res. 2016;17:75–7.PubMedCrossRef
47.
go back to reference Nemes C, Varga E, Táncos Z, Bock I, Francz B, Kobolák J, et al. Establishment of PSEN1 mutant induced pluripotent stem cell (iPSC) line from an Alzheimer’s disease (AD) female patient. Stem Cell Res. 2016;17:69–71.PubMedCrossRef Nemes C, Varga E, Táncos Z, Bock I, Francz B, Kobolák J, et al. Establishment of PSEN1 mutant induced pluripotent stem cell (iPSC) line from an Alzheimer’s disease (AD) female patient. Stem Cell Res. 2016;17:69–71.PubMedCrossRef
48.
go back to reference Liu Q, Waltz S, Woodruff G, Ouyang J, Israel MA, Herrera C, et al. Effect of potent γ-secretase modulator in human neurons derived from multiple presenilin 1–induced pluripotent stem cell mutant carriers. NIH Public Access. 2014;71:1481–9. Liu Q, Waltz S, Woodruff G, Ouyang J, Israel MA, Herrera C, et al. Effect of potent γ-secretase modulator in human neurons derived from multiple presenilin 1–induced pluripotent stem cell mutant carriers. NIH Public Access. 2014;71:1481–9.
49.
go back to reference Lee H-K, Velazquez Sanchez C, Chen M, Morin PJ, Wells JM, Hanlon EB, et al. Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS ONE. 2016;11:e0163072. Yan R.PubMedPubMedCentralCrossRef Lee H-K, Velazquez Sanchez C, Chen M, Morin PJ, Wells JM, Hanlon EB, et al. Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS ONE. 2016;11:e0163072. Yan R.PubMedPubMedCentralCrossRef
50.
go back to reference Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84. BioMed Central Ltd.PubMedPubMedCentralCrossRef Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84. BioMed Central Ltd.PubMedPubMedCentralCrossRef
51.
go back to reference Lee H-K, Morin P, Xia W. Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs) from an early onset Alzheimer’s patient. Stem Cell Res. 2016;16:213–5.PubMedCrossRef Lee H-K, Morin P, Xia W. Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs) from an early onset Alzheimer’s patient. Stem Cell Res. 2016;16:213–5.PubMedCrossRef
52.
go back to reference Liao M-C, Muratore CR, Gierahn TM, Sullivan SE, Srikanth P, De Jager PL, et al. Single-cell detection of secreted Aβ and sAPPα from human IPSC-derived neurons and astrocytes. J Neurosci. 2016;36:1730–46.PubMedPubMedCentralCrossRef Liao M-C, Muratore CR, Gierahn TM, Sullivan SE, Srikanth P, De Jager PL, et al. Single-cell detection of secreted Aβ and sAPPα from human IPSC-derived neurons and astrocytes. J Neurosci. 2016;36:1730–46.PubMedPubMedCentralCrossRef
53.
go back to reference Raja WK, Mungenast AE, Lin Y-T, Ko T, Abdurrob F, Seo J, et al. Self-Organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS ONE. 2016;11:e0161969. Padmanabhan J.PubMedPubMedCentralCrossRef Raja WK, Mungenast AE, Lin Y-T, Ko T, Abdurrob F, Seo J, et al. Self-Organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS ONE. 2016;11:e0161969. Padmanabhan J.PubMedPubMedCentralCrossRef
54.
go back to reference De Strooper B. Loss-of-function presenilin mutations in Alzheimer disease. Talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 2007;8:141–6.PubMedPubMedCentralCrossRef De Strooper B. Loss-of-function presenilin mutations in Alzheimer disease. Talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 2007;8:141–6.PubMedPubMedCentralCrossRef
55.
go back to reference Shen J, Kelleher RJ. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A. 2007;104:403–9.PubMedCrossRef Shen J, Kelleher RJ. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A. 2007;104:403–9.PubMedCrossRef
56.
go back to reference Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–9.PubMedCrossRef Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–9.PubMedCrossRef
57.
go back to reference Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ. A human stem cell model of early alzheimer's disease pathology in down syndrome. Sci Transl Med. 2012;4:124ra29–9.PubMedPubMedCentral Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ. A human stem cell model of early alzheimer's disease pathology in down syndrome. Sci Transl Med. 2012;4:124ra29–9.PubMedPubMedCentral
58.
go back to reference Iovino M, Agathou S, González-Rueda A, Del Castillo Velasco-Herrera M, Borroni B, Alberici A, et al. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain. 2015;138:3345–59.PubMedPubMedCentralCrossRef Iovino M, Agathou S, González-Rueda A, Del Castillo Velasco-Herrera M, Borroni B, Alberici A, et al. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain. 2015;138:3345–59.PubMedPubMedCentralCrossRef
59.
go back to reference Ehrlich M, Hallmann A-L, Reinhardt P, Araúzo-Bravo MJ, Korr S, Röpke A, et al. Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein. Stem Cell Reports. 2015;5:83–96.PubMedPubMedCentralCrossRef Ehrlich M, Hallmann A-L, Reinhardt P, Araúzo-Bravo MJ, Korr S, Röpke A, et al. Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein. Stem Cell Reports. 2015;5:83–96.PubMedPubMedCentralCrossRef
60.
go back to reference Wren MC, Zhao J, Liu C-C, Murray ME, Atagi Y, Davis MD, et al. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Mol Neurodegener. 2015;10:46.PubMedPubMedCentralCrossRef Wren MC, Zhao J, Liu C-C, Murray ME, Atagi Y, Davis MD, et al. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Mol Neurodegener. 2015;10:46.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE. 2012;7:e29597. Pera M.PubMedPubMedCentralCrossRef Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE. 2012;7:e29597. Pera M.PubMedPubMedCentralCrossRef
65.
go back to reference Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol. 1999;158:328–37.PubMedCrossRef Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol. 1999;158:328–37.PubMedCrossRef
66.
go back to reference Sposito T, Preza E, Mahoney CJ, Setó-Salvia N, Ryan NS, Morris HR, et al. Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Hum Mol Genet. 2015;24:5260–9. Oxford University Press.PubMedPubMedCentralCrossRef Sposito T, Preza E, Mahoney CJ, Setó-Salvia N, Ryan NS, Morris HR, et al. Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Hum Mol Genet. 2015;24:5260–9. Oxford University Press.PubMedPubMedCentralCrossRef
67.
go back to reference D'Souza I, Schellenberg GD. Regulation of tau isoform expression and dementia. Biochim Biophys Acta. 2005;1739:104–15. D'Souza I, Schellenberg GD. Regulation of tau isoform expression and dementia. Biochim Biophys Acta. 2005;1739:104–15.
68.
go back to reference Gasparini L, Terni B, Spillantini MG. Frontotemporal dementia with tau pathology. Neurodegener Dis. 2007;4:236–53. Karger Publishers.PubMedCrossRef Gasparini L, Terni B, Spillantini MG. Frontotemporal dementia with tau pathology. Neurodegener Dis. 2007;4:236–53. Karger Publishers.PubMedCrossRef
69.
go back to reference Donato R, Miljan EA, Hines SJ, Aouabdi S, Pollock K, Patel S, et al. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci. 2007;8:36.PubMedPubMedCentralCrossRef Donato R, Miljan EA, Hines SJ, Aouabdi S, Pollock K, Patel S, et al. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci. 2007;8:36.PubMedPubMedCentralCrossRef
70.
go back to reference Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–90.PubMedCrossRef Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–90.PubMedCrossRef
71.
go back to reference Ortinau S, Ortinau S, Schmich J, Schmich J, Block S, Block S, et al. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells. BioMed Eng OnLine. 2010;9:70.PubMedPubMedCentralCrossRef Ortinau S, Ortinau S, Schmich J, Schmich J, Block S, Block S, et al. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells. BioMed Eng OnLine. 2010;9:70.PubMedPubMedCentralCrossRef
72.
go back to reference LaPlaca MC, Vernekar VN, Shoemaker JT, Cullen DK. Three-Dimensional Neuronal Cultures. In: Morgan JR, Berthiaume F, editors. Methods in bioengineering: 3D tissue engineering. methods in bioengineering: 3D tissue engineering. 2010. p. 187–204. LaPlaca MC, Vernekar VN, Shoemaker JT, Cullen DK. Three-Dimensional Neuronal Cultures. In: Morgan JR, Berthiaume F, editors. Methods in bioengineering: 3D tissue engineering. methods in bioengineering: 3D tissue engineering. 2010. p. 187–204.
73.
go back to reference Suga H, Suga H, Kadoshima T, Kadoshima T, Minaguchi M, Minaguchi M, et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011;480:57–62.PubMedCrossRef Suga H, Suga H, Kadoshima T, Kadoshima T, Minaguchi M, Minaguchi M, et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011;480:57–62.PubMedCrossRef
74.
go back to reference Li H, Li H, Wijekoon A, Wijekoon A, Leipzig ND, Leipzig ND. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. PLoS ONE. 2012;7:e48824. Gelain F.PubMedPubMedCentralCrossRef Li H, Li H, Wijekoon A, Wijekoon A, Leipzig ND, Leipzig ND. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. PLoS ONE. 2012;7:e48824. Gelain F.PubMedPubMedCentralCrossRef
75.
go back to reference Liedmann A, Liedmann A, Frech S, Frech S, Morgan PJ, Morgan PJ, et al. Differentiation of human neural progenitor cells in functionalized hydrogel matrices. BioResearch Open Access. 2012;1:16–24.PubMedPubMedCentralCrossRef Liedmann A, Liedmann A, Frech S, Frech S, Morgan PJ, Morgan PJ, et al. Differentiation of human neural progenitor cells in functionalized hydrogel matrices. BioResearch Open Access. 2012;1:16–24.PubMedPubMedCentralCrossRef
76.
go back to reference Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, et al. Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci U S A. 2014;111:13811–6.PubMedPubMedCentralCrossRef Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, et al. Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci U S A. 2014;111:13811–6.PubMedPubMedCentralCrossRef
77.
go back to reference Onorato M, Mulvihill P, Connolly J, Galloway P, Whitehouse P, Perry G. Alteration of neuritic cytoarchitecture in Alzheimer disease. Prog Clin Biol Res. 1989;317:781–9.PubMed Onorato M, Mulvihill P, Connolly J, Galloway P, Whitehouse P, Perry G. Alteration of neuritic cytoarchitecture in Alzheimer disease. Prog Clin Biol Res. 1989;317:781–9.PubMed
78.
go back to reference Sharoar MG, Shi Q, Ge Y, He W, Hu X, Perry G, et al. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer’s disease. Molecular Psychiatry. 2016;21:1263–71. Nature Publishing Group.PubMedCrossRef Sharoar MG, Shi Q, Ge Y, He W, Hu X, Perry G, et al. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer’s disease. Molecular Psychiatry. 2016;21:1263–71. Nature Publishing Group.PubMedCrossRef
79.
go back to reference Sadleir KR, Kandalepas PC, Buggia-Prévot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathologica. 2016;132:235–56. Springer Berlin Heidelberg.PubMedPubMedCentralCrossRef Sadleir KR, Kandalepas PC, Buggia-Prévot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathologica. 2016;132:235–56. Springer Berlin Heidelberg.PubMedPubMedCentralCrossRef
80.
go back to reference Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathologica. 2012;123:53–70. Springer-Verlag.PubMedCrossRef Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathologica. 2012;123:53–70. Springer-Verlag.PubMedCrossRef
81.
go back to reference Woodhouse A, Vickers JC, Adlard PA, Dickson TC. Dystrophic neurites in TgCRND8 and Tg2576 mice mimic human pathological brain aging. Neurobiol Aging. 2009;30:864–74.PubMedCrossRef Woodhouse A, Vickers JC, Adlard PA, Dickson TC. Dystrophic neurites in TgCRND8 and Tg2576 mice mimic human pathological brain aging. Neurobiol Aging. 2009;30:864–74.PubMedCrossRef
82.
go back to reference Bell KFS, de Kort GJL, Steggerda S, Shigemoto R, Ribeiro-da-Silva A, Cuello AC. Structural involvement of the glutamatergic presynaptic boutons in a transgenic mouse model expressing early onset amyloid pathology. Neurosci Lett. 2003;353:143–7.PubMedCrossRef Bell KFS, de Kort GJL, Steggerda S, Shigemoto R, Ribeiro-da-Silva A, Cuello AC. Structural involvement of the glutamatergic presynaptic boutons in a transgenic mouse model expressing early onset amyloid pathology. Neurosci Lett. 2003;353:143–7.PubMedCrossRef
83.
go back to reference Blanchard V, Moussaoui S, Czech C, Touchet N, Bonici B, Planche M, et al. Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp Neurol. 2003;184:247–63.PubMedCrossRef Blanchard V, Moussaoui S, Czech C, Touchet N, Bonici B, Planche M, et al. Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp Neurol. 2003;184:247–63.PubMedCrossRef
84.
go back to reference Uchida Y, Gomi F. The role of calsyntenin-3 in dystrophic neurite formation in Alzheimer’s disease brain. Geriatr Gerontol Int. 2016;16 Suppl 1:43–50.PubMedCrossRef Uchida Y, Gomi F. The role of calsyntenin-3 in dystrophic neurite formation in Alzheimer’s disease brain. Geriatr Gerontol Int. 2016;16 Suppl 1:43–50.PubMedCrossRef
85.
86.
go back to reference Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.PubMedCrossRef Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.PubMedCrossRef
87.
go back to reference Orgogozo J-M, Gilman S, Dartigues J-F, Laurent B, Puel M, Kirby LC, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology. 2003;61:46–54.PubMedCrossRef Orgogozo J-M, Gilman S, Dartigues J-F, Laurent B, Puel M, Kirby LC, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology. 2003;61:46–54.PubMedCrossRef
88.
go back to reference Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17:661–3.PubMedCrossRef Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17:661–3.PubMedCrossRef
89.
go back to reference Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.PubMedPubMedCentralCrossRef Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.PubMedPubMedCentralCrossRef
90.
go back to reference Chung W-S, Verghese PB, Chakraborty C, Joung J, Hyman BT, Ulrich JD, et al. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc Natl Acad Sci U S A. 2016;113:10186–91.PubMedPubMedCentralCrossRef Chung W-S, Verghese PB, Chakraborty C, Joung J, Hyman BT, Ulrich JD, et al. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc Natl Acad Sci U S A. 2016;113:10186–91.PubMedPubMedCentralCrossRef
91.
go back to reference Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296–302.PubMedPubMedCentralCrossRef Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296–302.PubMedPubMedCentralCrossRef
92.
go back to reference Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978–87.PubMedPubMedCentralCrossRef Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978–87.PubMedPubMedCentralCrossRef
94.
go back to reference Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy J-L. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials. 2014;35:1816–32.PubMedCrossRef Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy J-L. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials. 2014;35:1816–32.PubMedCrossRef
95.
go back to reference Moreno EL, Hachi S, Hemmer K, Trietsch SJ, Baumuratov AS, Hankemeier T, et al. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip. 2015;15:2419–28.PubMedCrossRef Moreno EL, Hachi S, Hemmer K, Trietsch SJ, Baumuratov AS, Hankemeier T, et al. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip. 2015;15:2419–28.PubMedCrossRef
96.
go back to reference Adriani G, Ma D, Pavesi A, Goh ELK, Kamm RD. Modeling the blood-brain barrier in a 3D triple co-culture microfluidic system. Conf Proc IEEE Eng Med Biol Soc IEEE. 2015;2015:338–41. Adriani G, Ma D, Pavesi A, Goh ELK, Kamm RD. Modeling the blood-brain barrier in a 3D triple co-culture microfluidic system. Conf Proc IEEE Eng Med Biol Soc IEEE. 2015;2015:338–41.
97.
go back to reference Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982;21:6188–93.PubMedCrossRef Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982;21:6188–93.PubMedCrossRef
98.
go back to reference Bozza A, Coates EE, Incitti T, Ferlin KM, Messina A, Menna E, et al. Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials. 2014;35:4636–45.PubMedCrossRef Bozza A, Coates EE, Incitti T, Ferlin KM, Messina A, Menna E, et al. Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials. 2014;35:4636–45.PubMedCrossRef
99.
go back to reference Pellett S, Schwartz MP, Tepp WH, Josephson R, Scherf JM, Pier CL, et al. Human induced pluripotent stem cell derived neuronal cells cultured on chemically-defined hydrogels for sensitive in vitro detection of botulinum neurotoxin. Sci Rep. 2015;5:14566. Nature Publishing Group.PubMedPubMedCentralCrossRef Pellett S, Schwartz MP, Tepp WH, Josephson R, Scherf JM, Pier CL, et al. Human induced pluripotent stem cell derived neuronal cells cultured on chemically-defined hydrogels for sensitive in vitro detection of botulinum neurotoxin. Sci Rep. 2015;5:14566. Nature Publishing Group.PubMedPubMedCentralCrossRef
100.
101.
go back to reference Krutty JD, Schmitt SK, Gopalan P, Murphy WL. Surface functionalization and dynamics of polymeric cell culture substrates. Curr Opin Biotechnol. 2016;40:164–9.PubMedCrossRef Krutty JD, Schmitt SK, Gopalan P, Murphy WL. Surface functionalization and dynamics of polymeric cell culture substrates. Curr Opin Biotechnol. 2016;40:164–9.PubMedCrossRef
102.
go back to reference Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14:61–86. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.PubMedCrossRef Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14:61–86. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.PubMedCrossRef
Metadata
Title
3D culture models of Alzheimer’s disease: a road map to a “cure-in-a-dish”
Authors
Se Hoon Choi
Young Hye Kim
Luisa Quinti
Rudolph E. Tanzi
Doo Yeon Kim
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2016
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-016-0139-7

Other articles of this Issue 1/2016

Molecular Neurodegeneration 1/2016 Go to the issue