Skip to main content
Top
Published in: BMC Immunology 1/2012

Open Access 01-12-2012 | Research article

Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat

Authors: Nils-Holger Zschemisch, Silke Glage, Dirk Wedekind, Edward J Weinstein, Xiaoxia Cui, Martina Dorsch, Hans-Jürgen Hedrich

Published in: BMC Immunology | Issue 1/2012

Login to get access

Abstract

Background

Engineered zinc-finger nucleases (ZFN) represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB) and initiated non-homologous end joining (NHEJ) after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(D)J recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain.

Results

After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαβ+ as well as CD8+/CD3+/TCRαβ+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat.

Conclusion

The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena.
Appendix
Available only for authorised users
Literature
1.
go back to reference Charreau B, Tesson L, Soulillou JP, Pourcel C, Anegon I: Transgensis in rats: technical aspects and models. Transgenic Res. 1996, 5: 223-234. 10.1007/BF01972876.PubMedCrossRef Charreau B, Tesson L, Soulillou JP, Pourcel C, Anegon I: Transgensis in rats: technical aspects and models. Transgenic Res. 1996, 5: 223-234. 10.1007/BF01972876.PubMedCrossRef
2.
go back to reference Jang CW, Behringer RR: Transposon-mediated transgensis in rats. CSH Protoc. 2007, 10.1101/pdb.prot4866. Jang CW, Behringer RR: Transposon-mediated transgensis in rats. CSH Protoc. 2007, 10.1101/pdb.prot4866.
3.
go back to reference Murphy D: Production of transgenic rodents by microinjection of cloned DNA into fertilized one-celled eggs. Methods Mol Biol. 2008, 461: 71-109. 10.1007/978-1-60327-483-8_7.PubMedCrossRef Murphy D: Production of transgenic rodents by microinjection of cloned DNA into fertilized one-celled eggs. Methods Mol Biol. 2008, 461: 71-109. 10.1007/978-1-60327-483-8_7.PubMedCrossRef
4.
5.
go back to reference Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I: Transgenic modifications of the rat genome. Transgenic Res. 2005, 14: 531-546. 10.1007/s11248-005-5077-z.PubMedCrossRef Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I: Transgenic modifications of the rat genome. Transgenic Res. 2005, 14: 531-546. 10.1007/s11248-005-5077-z.PubMedCrossRef
6.
go back to reference Ivics Z, Izsvak Z, Medrano G, Chapman KM, Hamra FK: Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nat Prot. 2011, 6: 1521-1535. 10.1038/nprot.2011.378.CrossRef Ivics Z, Izsvak Z, Medrano G, Chapman KM, Hamra FK: Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nat Prot. 2011, 6: 1521-1535. 10.1038/nprot.2011.378.CrossRef
7.
go back to reference Kitada K, Keng VW, Takeda J, Horie K: Generating mutant rats using the Sleeping Beauty transposon system. Methods. 2009, 49: 236-242. 10.1016/j.ymeth.2009.04.010.PubMedCrossRef Kitada K, Keng VW, Takeda J, Horie K: Generating mutant rats using the Sleeping Beauty transposon system. Methods. 2009, 49: 236-242. 10.1016/j.ymeth.2009.04.010.PubMedCrossRef
8.
go back to reference Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh C-L, Pera MF, Ying Q-L: Germline competent embryonic stem cells derived from rat blastocysts. Cell. 2008, 135: 1299-1310. 10.1016/j.cell.2008.12.006.PubMedPubMedCentralCrossRef Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh C-L, Pera MF, Ying Q-L: Germline competent embryonic stem cells derived from rat blastocysts. Cell. 2008, 135: 1299-1310. 10.1016/j.cell.2008.12.006.PubMedPubMedCentralCrossRef
9.
go back to reference Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying Q-L, Smith A: Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008, 135: 1287-1298. 10.1016/j.cell.2008.12.007.PubMedCrossRef Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying Q-L, Smith A: Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008, 135: 1287-1298. 10.1016/j.cell.2008.12.007.PubMedCrossRef
10.
go back to reference Meek S, Buehr M, Sunderlamd L, Thompson A, Mullins JJ, Smith AJ, Burdon T: Efficient gene targeting by homologous recombination in rat embryonic stem cells. PlosOne. 2010, 5: e14225-CrossRef Meek S, Buehr M, Sunderlamd L, Thompson A, Mullins JJ, Smith AJ, Burdon T: Efficient gene targeting by homologous recombination in rat embryonic stem cells. PlosOne. 2010, 5: e14225-CrossRef
11.
go back to reference Tong C, Li P, Wu NL, Yan Y, Ying Q-L: Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature. 2010, 467: 211-213. 10.1038/nature09368.PubMedPubMedCentralCrossRef Tong C, Li P, Wu NL, Yan Y, Ying Q-L: Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature. 2010, 467: 211-213. 10.1038/nature09368.PubMedPubMedCentralCrossRef
12.
go back to reference Huang G, Chang T, Kumbhani DS, Ashton C, Yan H, Ying Q-L: Beyond knockout rats. New insights into finer genome manipulation in rats. Cell Cycle. 2011, 10: 1059-1066. 10.4161/cc.10.7.15233.PubMedPubMedCentralCrossRef Huang G, Chang T, Kumbhani DS, Ashton C, Yan H, Ying Q-L: Beyond knockout rats. New insights into finer genome manipulation in rats. Cell Cycle. 2011, 10: 1059-1066. 10.4161/cc.10.7.15233.PubMedPubMedCentralCrossRef
13.
go back to reference Yamamoto S, Nakata M, Sasada R, Ooshima Y, Yano T, Shinozawa T, Tsukimi Y, Takeyama M, Matsumoto Y, Hashimoto T: Derivation of rat embryonic stem cells and generation of protease-activated recepror-2 knockout rats. Transgenic Res. 2011, epud anhead of print. Yamamoto S, Nakata M, Sasada R, Ooshima Y, Yano T, Shinozawa T, Tsukimi Y, Takeyama M, Matsumoto Y, Hashimoto T: Derivation of rat embryonic stem cells and generation of protease-activated recepror-2 knockout rats. Transgenic Res. 2011, epud anhead of print.
14.
go back to reference Urnov FD, Rebar FJ, Holmes MC, Zhang HS, Gregory PD: Genome editing with engenireed zinc finger nucleases. Nat Rev Genet. 2010, 11: 636-646. 10.1038/nrg2842.PubMedCrossRef Urnov FD, Rebar FJ, Holmes MC, Zhang HS, Gregory PD: Genome editing with engenireed zinc finger nucleases. Nat Rev Genet. 2010, 11: 636-646. 10.1038/nrg2842.PubMedCrossRef
15.
go back to reference Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B: Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011, 39: 6315-6325. 10.1093/nar/gkr188.PubMedPubMedCentralCrossRef Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B: Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011, 39: 6315-6325. 10.1093/nar/gkr188.PubMedPubMedCentralCrossRef
16.
go back to reference Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I: Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 2010, 19: 363-371. 10.1007/s11248-009-9323-7.PubMedCrossRef Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I: Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 2010, 19: 363-371. 10.1007/s11248-009-9323-7.PubMedCrossRef
17.
go back to reference Caroll D: Genome engineering with zinc-finger nucleases. Genetics. 2011, 188: 773-782. 10.1534/genetics.111.131433.CrossRef Caroll D: Genome engineering with zinc-finger nucleases. Genetics. 2011, 188: 773-782. 10.1534/genetics.111.131433.CrossRef
18.
go back to reference Connelly JP, Barker JC, Pruett-Miller S, Porteus MH: Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Therapy. 2010, 18: 1103-1110. 10.1038/mt.2010.57.CrossRef Connelly JP, Barker JC, Pruett-Miller S, Porteus MH: Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Therapy. 2010, 18: 1103-1110. 10.1038/mt.2010.57.CrossRef
19.
go back to reference Moehle EA, Rock JM, Lee Y-L, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC: Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA. 2007, 104: 3055-3060. 10.1073/pnas.0611478104.PubMedPubMedCentralCrossRef Moehle EA, Rock JM, Lee Y-L, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC: Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA. 2007, 104: 3055-3060. 10.1073/pnas.0611478104.PubMedPubMedCentralCrossRef
20.
go back to reference Santiago Y, Chan E, Liu P-Q, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN: Targeted gene knockout in mammalian cells using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. 2008, 105: 5809-5814. 10.1073/pnas.0800940105.PubMedPubMedCentralCrossRef Santiago Y, Chan E, Liu P-Q, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN: Targeted gene knockout in mammalian cells using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. 2008, 105: 5809-5814. 10.1073/pnas.0800940105.PubMedPubMedCentralCrossRef
21.
go back to reference Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X: Targeted genome modification in mice using zinc-finger nucleases. Genetics. 2010, 186: 451-459. 10.1534/genetics.110.117002.PubMedPubMedCentralCrossRef Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X: Targeted genome modification in mice using zinc-finger nucleases. Genetics. 2010, 186: 451-459. 10.1534/genetics.110.117002.PubMedPubMedCentralCrossRef
22.
go back to reference Ciu X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ: Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotech. 2011, 29: 64-67. 10.1038/nbt.1731.CrossRef Ciu X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ: Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotech. 2011, 29: 64-67. 10.1038/nbt.1731.CrossRef
23.
go back to reference Meyer M, Hrabe De Angelis M, Wurst W, Kühn R: Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA. 2010, 107: 15022-15026. 10.1073/pnas.1009424107.PubMedPubMedCentralCrossRef Meyer M, Hrabe De Angelis M, Wurst W, Kühn R: Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA. 2010, 107: 15022-15026. 10.1073/pnas.1009424107.PubMedPubMedCentralCrossRef
24.
go back to reference Woods IG, Schier AF: Targeted mutagenesis in zebrafish. Nat Biotech. 2008, 26: 650-651. 10.1038/nbt0608-650.CrossRef Woods IG, Schier AF: Targeted mutagenesis in zebrafish. Nat Biotech. 2008, 26: 650-651. 10.1038/nbt0608-650.CrossRef
25.
go back to reference Hauschild J, Petersen B, Santiago Y, Queisser A-L, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H: Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA. 2011, 108: 12013-12017. 10.1073/pnas.1106422108.PubMedPubMedCentralCrossRef Hauschild J, Petersen B, Santiago Y, Queisser A-L, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H: Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA. 2011, 108: 12013-12017. 10.1073/pnas.1106422108.PubMedPubMedCentralCrossRef
26.
go back to reference Chu X, Zhang Z, Yabut J, Horwitz S, Levorse J, LI XQ, Zhu L, Ledermann H, Ortiga R, Strauss J, Li X, Owens KA, Dragovic J, Vogt T, Evers R, Shin MK: Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol Pharmacol. 2012, 81: 220-227. 10.1124/mol.111.074179.PubMedCrossRef Chu X, Zhang Z, Yabut J, Horwitz S, Levorse J, LI XQ, Zhu L, Ledermann H, Ortiga R, Strauss J, Li X, Owens KA, Dragovic J, Vogt T, Evers R, Shin MK: Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol Pharmacol. 2012, 81: 220-227. 10.1124/mol.111.074179.PubMedCrossRef
27.
go back to reference Guerts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R: Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009, 325: 433-10.1126/science.1172447.CrossRef Guerts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R: Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009, 325: 433-10.1126/science.1172447.CrossRef
28.
go back to reference Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T: Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PlosONE. 2010, 5: e8870-CrossRef Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T: Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PlosONE. 2010, 5: e8870-CrossRef
29.
go back to reference Menoret S, Iscache A-L, Tesson L, Remy S, Usal C, Osborn MJ, Cost GJ, Brüggemann M, Buelow R, Anegon I: Characterization of immunoglobulin heavy chain knockout rats. Eur J Immunol. 2010, 40: 2932-2941. 10.1002/eji.201040939.PubMedCrossRef Menoret S, Iscache A-L, Tesson L, Remy S, Usal C, Osborn MJ, Cost GJ, Brüggemann M, Buelow R, Anegon I: Characterization of immunoglobulin heavy chain knockout rats. Eur J Immunol. 2010, 40: 2932-2941. 10.1002/eji.201040939.PubMedCrossRef
30.
go back to reference Moreno C, Hoffman M, Stodola TJ, Didier DN, Lazar J, Guerts AM, North PE, Jacob HJ, Greene AS: Creation and characterization of a Renin knockout rat. Hypertension. 2011, 57: 614-9. 10.1161/HYPERTENSIONAHA.110.163840.PubMedPubMedCentralCrossRef Moreno C, Hoffman M, Stodola TJ, Didier DN, Lazar J, Guerts AM, North PE, Jacob HJ, Greene AS: Creation and characterization of a Renin knockout rat. Hypertension. 2011, 57: 614-9. 10.1161/HYPERTENSIONAHA.110.163840.PubMedPubMedCentralCrossRef
31.
go back to reference Buckley RH: Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Ann Rev Immunol. 2003, 22: 625-655.CrossRef Buckley RH: Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Ann Rev Immunol. 2003, 22: 625-655.CrossRef
32.
go back to reference Niehues T, Perez-Becker R, Schuetz C: More than just SCID- the phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin Immunol. 2010, 135: 183-192. 10.1016/j.clim.2010.01.013.PubMedCrossRef Niehues T, Perez-Becker R, Schuetz C: More than just SCID- the phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin Immunol. 2010, 135: 183-192. 10.1016/j.clim.2010.01.013.PubMedCrossRef
33.
go back to reference Notarangelo LD, Villa A, Schwarz K: RAG and RAG defects. Curr Opin Immunol. 1999, 11: 435-442. 10.1016/S0952-7915(99)80073-9.PubMedCrossRef Notarangelo LD, Villa A, Schwarz K: RAG and RAG defects. Curr Opin Immunol. 1999, 11: 435-442. 10.1016/S0952-7915(99)80073-9.PubMedCrossRef
34.
go back to reference Santagata S, Villa A, Sobacchi C, Cortes P, Vezzoni P: The genetic and biochemical basis of Omenn syndrome. Immunol Rev. 2000, 178: 64-74. 10.1034/j.1600-065X.2000.17818.x.PubMedCrossRef Santagata S, Villa A, Sobacchi C, Cortes P, Vezzoni P: The genetic and biochemical basis of Omenn syndrome. Immunol Rev. 2000, 178: 64-74. 10.1034/j.1600-065X.2000.17818.x.PubMedCrossRef
35.
go back to reference Falk I, Potocnik AJ, Barthlott T, Levelt CN, Eichmann K: Immature T cells in peripheral lymphoid organs of the recombinase activating gene-1/-2- deficient mice. J Immunol. 1996, 156: 1362-1368.PubMed Falk I, Potocnik AJ, Barthlott T, Levelt CN, Eichmann K: Immature T cells in peripheral lymphoid organs of the recombinase activating gene-1/-2- deficient mice. J Immunol. 1996, 156: 1362-1368.PubMed
36.
go back to reference Grundy MA, Sentman CL: Immunodeficient mice have elevated numbers of NK cells in non-lymphoid tissues. Exp Cell Res. 2006, 312: 3920-3926. 10.1016/j.yexcr.2006.08.019.PubMedCrossRef Grundy MA, Sentman CL: Immunodeficient mice have elevated numbers of NK cells in non-lymphoid tissues. Exp Cell Res. 2006, 312: 3920-3926. 10.1016/j.yexcr.2006.08.019.PubMedCrossRef
37.
go back to reference Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992, 68: 869-877. 10.1016/0092-8674(92)90030-G.PubMedCrossRef Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992, 68: 869-877. 10.1016/0092-8674(92)90030-G.PubMedCrossRef
38.
go back to reference De P, Rodgers KK: Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunlogical Reviews. 2004, 200: 70-82. 10.1111/j.0105-2896.2004.00154.x.CrossRef De P, Rodgers KK: Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunlogical Reviews. 2004, 200: 70-82. 10.1111/j.0105-2896.2004.00154.x.CrossRef
39.
go back to reference Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT: Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 1998, 26: 4597-4602. 10.1093/nar/26.20.4597.PubMedPubMedCentralCrossRef Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT: Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 1998, 26: 4597-4602. 10.1093/nar/26.20.4597.PubMedPubMedCentralCrossRef
40.
go back to reference Kulinski J, Besack D, Oleykowski CA, Godwin AK, Yeung AT: CEL I enzymatic mutation detection assay. Biotechniques. 2000, 29 (44–6): 48- Kulinski J, Besack D, Oleykowski CA, Godwin AK, Yeung AT: CEL I enzymatic mutation detection assay. Biotechniques. 2000, 29 (44–6): 48-
41.
go back to reference Recillas-Targa F: Multiple strategies for gene transfer, expression, knockdown, and chromatin influence in mammalian cell lines and transgenic animals. Mol Biotechnol. 2006, 34: 337-354. 10.1385/MB:34:3:337.PubMedCrossRef Recillas-Targa F: Multiple strategies for gene transfer, expression, knockdown, and chromatin influence in mammalian cell lines and transgenic animals. Mol Biotechnol. 2006, 34: 337-354. 10.1385/MB:34:3:337.PubMedCrossRef
42.
go back to reference Filipiak WA, Saunders TL: Advances in transgenic rat production. Transgenic Res. 2006, 15: 673-686. 10.1007/s11248-006-9002-x.PubMedCrossRef Filipiak WA, Saunders TL: Advances in transgenic rat production. Transgenic Res. 2006, 15: 673-686. 10.1007/s11248-006-9002-x.PubMedCrossRef
43.
go back to reference Sempirini S, Troup TJ, Kotelevtseva N, King K, Davis JR, Mullins LJ, Chapman KE, Dunbar DR, Mullins JJ: Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acid Res. 2007, 35: 1402-1410. 10.1093/nar/gkl1108.CrossRef Sempirini S, Troup TJ, Kotelevtseva N, King K, Davis JR, Mullins LJ, Chapman KE, Dunbar DR, Mullins JJ: Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acid Res. 2007, 35: 1402-1410. 10.1093/nar/gkl1108.CrossRef
44.
go back to reference Schmidt EE, Taylor DS, Prigge JR, Barnett S, Carpecchi MR: Illegitimate Cre-dependent chromosome rearrangement in transgenic mouse spermatids. Proc Natl Acad Sci USA. 2000, 97: 13702-13707. 10.1073/pnas.240471297.PubMedPubMedCentralCrossRef Schmidt EE, Taylor DS, Prigge JR, Barnett S, Carpecchi MR: Illegitimate Cre-dependent chromosome rearrangement in transgenic mouse spermatids. Proc Natl Acad Sci USA. 2000, 97: 13702-13707. 10.1073/pnas.240471297.PubMedPubMedCentralCrossRef
46.
go back to reference Bas A, Hammarström SG, Hammarström ML: Extrathymic TCG gene rearrangement in human small intestine: identification of new splice forms of recombinant activating gene-1 mRNA with selective tissue expression. J Immunol. 2003, 171: 3359-3371.PubMedCrossRef Bas A, Hammarström SG, Hammarström ML: Extrathymic TCG gene rearrangement in human small intestine: identification of new splice forms of recombinant activating gene-1 mRNA with selective tissue expression. J Immunol. 2003, 171: 3359-3371.PubMedCrossRef
47.
go back to reference Collins C, Norris S, McEntee G, Traynor O, Bruno L, von Boehmer H, Hegarty J, Farrelly O: RAG1, RAG2 and pre-T cell receptor alpha chain expression by adult human hepatic T cells: evidence for extrathymic T cell maturation. Eur J Immunol. 1996, 26: 3114-3118. 10.1002/eji.1830261243.PubMedCrossRef Collins C, Norris S, McEntee G, Traynor O, Bruno L, von Boehmer H, Hegarty J, Farrelly O: RAG1, RAG2 and pre-T cell receptor alpha chain expression by adult human hepatic T cells: evidence for extrathymic T cell maturation. Eur J Immunol. 1996, 26: 3114-3118. 10.1002/eji.1830261243.PubMedCrossRef
48.
go back to reference Ramanathan S, Marandi L, Poussier P: Evidence for the extrathymic origin of intestinal TCRγδ+ T cells in normal rats and for an impairment of this differentiation pathway in BB rats. J Immunol. 2002, 168: 2182-2187.PubMedCrossRef Ramanathan S, Marandi L, Poussier P: Evidence for the extrathymic origin of intestinal TCRγδ+ T cells in normal rats and for an impairment of this differentiation pathway in BB rats. J Immunol. 2002, 168: 2182-2187.PubMedCrossRef
49.
go back to reference Santagata S, Gomez CA, Sobacchi C, Bozzi F, Abium M, Pasic S, Cortes P, Vezzoni P, Villa A: N-terminal RAG1 frameshift mutations in Omenn’s syndrome: Internal methionine usage leads to partial V(D)J recombination activity and reveals a fundamental role in vivo for the N-terminal domains. Proc Natl Acad Sci USA. 2000, 97: 14572-14577. 10.1073/pnas.97.26.14572.PubMedPubMedCentralCrossRef Santagata S, Gomez CA, Sobacchi C, Bozzi F, Abium M, Pasic S, Cortes P, Vezzoni P, Villa A: N-terminal RAG1 frameshift mutations in Omenn’s syndrome: Internal methionine usage leads to partial V(D)J recombination activity and reveals a fundamental role in vivo for the N-terminal domains. Proc Natl Acad Sci USA. 2000, 97: 14572-14577. 10.1073/pnas.97.26.14572.PubMedPubMedCentralCrossRef
50.
go back to reference Sobacchi C, Marella V, Rucci F, Vezzoni P, Villa A: RAG-dependent primary immunodeficiencies. Hum Mutat. 2006, 12: 1174-1184.CrossRef Sobacchi C, Marella V, Rucci F, Vezzoni P, Villa A: RAG-dependent primary immunodeficiencies. Hum Mutat. 2006, 12: 1174-1184.CrossRef
51.
go back to reference Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, Illgen-Wilcke B, FELASA (Federation of European Laboratory Animal Science Associations Working Group on Health Monitoring of Rodent and Rabbit Colonies): Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim. 2002, 6: 20-42.CrossRef Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, Illgen-Wilcke B, FELASA (Federation of European Laboratory Animal Science Associations Working Group on Health Monitoring of Rodent and Rabbit Colonies): Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim. 2002, 6: 20-42.CrossRef
52.
go back to reference Hamilton GC, Armstrong DT: The superovulation of synchronous adult rats using follicle-stimulation hormone delivered by continuous infusion. Biol Reprod. 1991, 44: 851-856. 10.1095/biolreprod44.5.851.PubMedCrossRef Hamilton GC, Armstrong DT: The superovulation of synchronous adult rats using follicle-stimulation hormone delivered by continuous infusion. Biol Reprod. 1991, 44: 851-856. 10.1095/biolreprod44.5.851.PubMedCrossRef
Metadata
Title
Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat
Authors
Nils-Holger Zschemisch
Silke Glage
Dirk Wedekind
Edward J Weinstein
Xiaoxia Cui
Martina Dorsch
Hans-Jürgen Hedrich
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2012
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-13-60

Other articles of this Issue 1/2012

BMC Immunology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine