Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Zika Virus | Research

Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells

Authors: Suelen Silva Gomes Dias, Tamires Cunha-Fernandes, Luciana Souza-Moreira, Vinicius Cardoso Soares, Giselle Barbosa Lima, Isaclaudia G. Azevedo-Quintanilha, Julia Santos, Filipe Pereira-Dutra, Caroline Freitas, Patricia A. Reis, Stevens Kastrup Rehen, Fernando A. Bozza, Thiago M. Lopes Souza, Cecilia J. G. de Almeida, Patricia T. Bozza

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Zika virus (ZIKV) infection is a global public health concern linked to adult neurological disorders and congenital diseases in newborns. Host lipid metabolism, including lipid droplet (LD) biogenesis, has been associated with viral replication and pathogenesis of different viruses. However, the mechanisms of LD formation and their roles in ZIKV infection in neural cells are still unclear. Here, we demonstrate that ZIKV regulates the expression of pathways associated with lipid metabolism, including the upregulation and activation of lipogenesis-associated transcription factors and decreased expression of lipolysis-associated proteins, leading to significant LD accumulation in human neuroblastoma SH-SY5Y cells and in neural stem cells (NSCs). Pharmacological inhibition of DGAT-1 decreased LD accumulation and ZIKV replication in vitro in human cells and in an in vivo mouse model of infection. In accordance with the role of LDs in the regulation of inflammation and innate immunity, we show that blocking LD formation has major roles in inflammatory cytokine production in the brain. Moreover, we observed that inhibition of DGAT-1 inhibited the weight loss and mortality induced by ZIKV infection in vivo. Our results reveal that LD biogenesis triggered by ZIKV infection is a crucial step for ZIKV replication and pathogenesis in neural cells. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, et al. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375(24):2321–34.PubMedPubMedCentralCrossRef Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, et al. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375(24):2321–34.PubMedPubMedCentralCrossRef
2.
go back to reference Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352(6287):816–8.PubMedCrossRef Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352(6287):816–8.PubMedCrossRef
3.
go back to reference Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, et al. Guillain-Barré syndrome outbreak associated with Zika virus infection in French polynesia: a case–control study. Lancet. 2016;387(10027):1531–9.PubMedPubMedCentralCrossRef Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, et al. Guillain-Barré syndrome outbreak associated with Zika virus infection in French polynesia: a case–control study. Lancet. 2016;387(10027):1531–9.PubMedPubMedCentralCrossRef
4.
go back to reference Krauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo TV, et al. Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: systematic review. PLoS Med. 2017;14(1): e1002203.PubMedPubMedCentralCrossRef Krauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo TV, et al. Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: systematic review. PLoS Med. 2017;14(1): e1002203.PubMedPubMedCentralCrossRef
5.
go back to reference El Costa H, Gouilly J, Mansuy JM, Chen Q, Levy C, Cartron G, et al. ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci Rep. 2016;6:35296.PubMedPubMedCentralCrossRef El Costa H, Gouilly J, Mansuy JM, Chen Q, Levy C, Cartron G, et al. ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci Rep. 2016;6:35296.PubMedPubMedCentralCrossRef
6.
go back to reference Reefhuis J, Gilboa SM, Johansson MA, Valencia D, Simeone RM, Hills SL, et al. Projecting month of birth for at-risk infants after Zika virus disease outbreaks. Emerg Infect Dis. 2016;22(5):828–32.PubMedPubMedCentralCrossRef Reefhuis J, Gilboa SM, Johansson MA, Valencia D, Simeone RM, Hills SL, et al. Projecting month of birth for at-risk infants after Zika virus disease outbreaks. Emerg Infect Dis. 2016;22(5):828–32.PubMedPubMedCentralCrossRef
7.
go back to reference Chibueze EC, Tirado V, Lopes KD, Balogun OO, Takemoto Y, Swa T, et al. Zika virus infection in pregnancy: a systematic review of disease course and complications. Reprod Health. 2017;14(1):28.PubMedPubMedCentralCrossRef Chibueze EC, Tirado V, Lopes KD, Balogun OO, Takemoto Y, Swa T, et al. Zika virus infection in pregnancy: a systematic review of disease course and complications. Reprod Health. 2017;14(1):28.PubMedPubMedCentralCrossRef
8.
go back to reference Herrero LJ, Zakhary A, Gahan ME, Nelson MA, Herring BL, Hapel AJ, et al. Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacol Ther. 2013;137(2):266–82.PubMedCrossRef Herrero LJ, Zakhary A, Gahan ME, Nelson MA, Herring BL, Hapel AJ, et al. Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacol Ther. 2013;137(2):266–82.PubMedCrossRef
9.
go back to reference Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika virus infection in human skin cells. J Virol. 2015;89(17):8880–96.PubMedPubMedCentralCrossRef Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika virus infection in human skin cells. J Virol. 2015;89(17):8880–96.PubMedPubMedCentralCrossRef
10.
go back to reference Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002;108(5):717–25.PubMedPubMedCentralCrossRef Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002;108(5):717–25.PubMedPubMedCentralCrossRef
11.
go back to reference Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88.PubMedCrossRef Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88.PubMedCrossRef
12.
go back to reference Herker E, Ott M. Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem. 2012;287(4):2280–7.PubMedCrossRef Herker E, Ott M. Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem. 2012;287(4):2280–7.PubMedCrossRef
13.
go back to reference Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A. Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe. 2009;5(4):318–28.PubMedCrossRef Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A. Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe. 2009;5(4):318–28.PubMedCrossRef
14.
go back to reference Samsa MM, Mondotte JA, Iglesias NG, Assunção-Miranda I, Barbosa-Lima G, Da Poian AT, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009;5(10): e1000632.PubMedPubMedCentralCrossRef Samsa MM, Mondotte JA, Iglesias NG, Assunção-Miranda I, Barbosa-Lima G, Da Poian AT, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009;5(10): e1000632.PubMedPubMedCentralCrossRef
15.
go back to reference Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab. 2010;21(1):33–40.PubMedCrossRef Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab. 2010;21(1):33–40.PubMedCrossRef
16.
17.
go back to reference Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1221–32.PubMedCrossRef Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1221–32.PubMedCrossRef
19.
go back to reference Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids. 2011;85(5):205–13.PubMedCrossRef Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids. 2011;85(5):205–13.PubMedCrossRef
21.
go back to reference D’Avila H, Toledo DA, Melo RC. Lipid bodies: inflammatory organelles implicated in host–Trypanosoma cruzi interplay during innate immune responses. Mediators Inflamm. 2012;2012: 478601.PubMedPubMedCentralCrossRef D’Avila H, Toledo DA, Melo RC. Lipid bodies: inflammatory organelles implicated in host–Trypanosoma cruzi interplay during innate immune responses. Mediators Inflamm. 2012;2012: 478601.PubMedPubMedCentralCrossRef
22.
go back to reference Mattos KA, Lara FA, Oliveira VG, Rodrigues LS, D’Avila H, Melo RC, et al. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol. 2011;13(2):259–73.PubMedCrossRef Mattos KA, Lara FA, Oliveira VG, Rodrigues LS, D’Avila H, Melo RC, et al. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol. 2011;13(2):259–73.PubMedCrossRef
23.
go back to reference Roingeard P, Melo RC. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol. 2017;19(1):e12688.CrossRef Roingeard P, Melo RC. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol. 2017;19(1):e12688.CrossRef
25.
go back to reference Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 2020;16(12): e1009127.PubMedPubMedCentralCrossRef Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 2020;16(12): e1009127.PubMedPubMedCentralCrossRef
26.
go back to reference Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol. 2021;220(7). Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol. 2021;220(7).
27.
go back to reference Maya-Monteiro CM, Corrêa-da-Silva F, Hofmann SS, Hesselink MKC, la Fleur SE, Yi CX. Lipid droplets accumulate in the hypothalamus of mice and humans with and without metabolic diseases. Neuroendocrinology. 2021;111(3):263–72.PubMedCrossRef Maya-Monteiro CM, Corrêa-da-Silva F, Hofmann SS, Hesselink MKC, la Fleur SE, Yi CX. Lipid droplets accumulate in the hypothalamus of mice and humans with and without metabolic diseases. Neuroendocrinology. 2021;111(3):263–72.PubMedCrossRef
28.
go back to reference Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160(1–2):177–90.PubMedPubMedCentralCrossRef Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160(1–2):177–90.PubMedPubMedCentralCrossRef
30.
go back to reference Negro F, Sanyal AJ. Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int. 2009;29(Suppl 2):26–37.PubMedCrossRef Negro F, Sanyal AJ. Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int. 2009;29(Suppl 2):26–37.PubMedCrossRef
31.
go back to reference Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host–pathogen interactions. Annu Rev Cell Dev Biol. 2012;28:411–37.PubMedCrossRef Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host–pathogen interactions. Annu Rev Cell Dev Biol. 2012;28:411–37.PubMedCrossRef
32.
go back to reference Villareal VA, Rodgers MA, Costello DA, Yang PL. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antiviral Res. 2015;124:110–21.PubMedPubMedCentralCrossRef Villareal VA, Rodgers MA, Costello DA, Yang PL. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antiviral Res. 2015;124:110–21.PubMedPubMedCentralCrossRef
33.
go back to reference Kalia M, Khasa R, Sharma M, Nain M, Vrati S. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol. 2013;87(1):148–62.PubMedPubMedCentralCrossRef Kalia M, Khasa R, Sharma M, Nain M, Vrati S. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol. 2013;87(1):148–62.PubMedPubMedCentralCrossRef
34.
go back to reference Wu S, Yang S, Ou M, Chen J, Huang J, Xiong D, et al. Transcriptome analysis reveals the role of cellular calcium disorder in varicella zoster virus-induced post-herpetic neuralgia. Front Mol Neurosci. 2021;14: 665931.PubMedPubMedCentralCrossRef Wu S, Yang S, Ou M, Chen J, Huang J, Xiong D, et al. Transcriptome analysis reveals the role of cellular calcium disorder in varicella zoster virus-induced post-herpetic neuralgia. Front Mol Neurosci. 2021;14: 665931.PubMedPubMedCentralCrossRef
35.
go back to reference Sharma A, Vasanthapuram R, Venkataswamy M, Desai A. Prohibitin 1/2 mediates Dengue-3 entry into human neuroblastoma (SH-SY5Y) and microglia (CHME-3) cells. J Biomed Sci. 2020;27(1):55.PubMedPubMedCentralCrossRef Sharma A, Vasanthapuram R, Venkataswamy M, Desai A. Prohibitin 1/2 mediates Dengue-3 entry into human neuroblastoma (SH-SY5Y) and microglia (CHME-3) cells. J Biomed Sci. 2020;27(1):55.PubMedPubMedCentralCrossRef
36.
go back to reference Dhanwani R, Khan M, Bhaskar AS, Singh R, Patro IK, Rao PV, et al. Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res. 2012;163(2):563–72.PubMedCrossRef Dhanwani R, Khan M, Bhaskar AS, Singh R, Patro IK, Rao PV, et al. Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res. 2012;163(2):563–72.PubMedCrossRef
37.
go back to reference Luplertlop N, Suwanmanee S, Muangkaew W, Ampawong S, Kitisin T, Poovorawan Y. The impact of Zika virus infection on human neuroblastoma (SH-SY5Y) cell line. J Vector Borne Dis. 2017;54(3):207–14.PubMedCrossRef Luplertlop N, Suwanmanee S, Muangkaew W, Ampawong S, Kitisin T, Poovorawan Y. The impact of Zika virus infection on human neuroblastoma (SH-SY5Y) cell line. J Vector Borne Dis. 2017;54(3):207–14.PubMedCrossRef
38.
go back to reference Sánchez-San Martín C, Li T, Bouquet J, Streithorst J, Yu G, Paranjpe A, et al. Differentiation enhances Zika virus infection of neuronal brain cells. Sci Rep. 2018;8(1):14543.PubMedPubMedCentralCrossRef Sánchez-San Martín C, Li T, Bouquet J, Streithorst J, Yu G, Paranjpe A, et al. Differentiation enhances Zika virus infection of neuronal brain cells. Sci Rep. 2018;8(1):14543.PubMedPubMedCentralCrossRef
39.
40.
go back to reference Boulant S, Targett-Adams P, McLauchlan J. Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol. 2007;88(Pt 8):2204–13.PubMedCrossRef Boulant S, Targett-Adams P, McLauchlan J. Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol. 2007;88(Pt 8):2204–13.PubMedCrossRef
41.
go back to reference Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med. 2010;16(11):1295–8.PubMedPubMedCentralCrossRef Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med. 2010;16(11):1295–8.PubMedPubMedCentralCrossRef
42.
go back to reference Gaunt ER, Cheung W, Richards JE, Lever A, Desselberger U. Inhibition of rotavirus replication by downregulation of fatty acid synthesis. J Gen Virol. 2013;94(Pt 6):1310–7.PubMedCrossRef Gaunt ER, Cheung W, Richards JE, Lever A, Desselberger U. Inhibition of rotavirus replication by downregulation of fatty acid synthesis. J Gen Virol. 2013;94(Pt 6):1310–7.PubMedCrossRef
44.
go back to reference Huang WC, Abraham R, Shim BS, Choe H, Page DT. Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice. Sci Rep. 2016;6:34793.PubMedPubMedCentralCrossRef Huang WC, Abraham R, Shim BS, Choe H, Page DT. Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice. Sci Rep. 2016;6:34793.PubMedPubMedCentralCrossRef
45.
go back to reference Carvalho FA, Carneiro FA, Martins IC, Assunção-Miranda I, Faustino AF, Pereira RM, et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol. 2012;86(4):2096–108.PubMedPubMedCentralCrossRef Carvalho FA, Carneiro FA, Martins IC, Assunção-Miranda I, Faustino AF, Pereira RM, et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol. 2012;86(4):2096–108.PubMedPubMedCentralCrossRef
46.
go back to reference Filipe A, McLauchlan J. Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med. 2015;21(1):34–42.PubMedCrossRef Filipe A, McLauchlan J. Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med. 2015;21(1):34–42.PubMedCrossRef
47.
go back to reference Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007;9(9):1089–97.PubMedCrossRef Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007;9(9):1089–97.PubMedCrossRef
48.
go back to reference Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic. 2008;9(3):338–52.PubMedCrossRef Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic. 2008;9(3):338–52.PubMedCrossRef
49.
go back to reference Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–91.PubMedPubMedCentralCrossRef Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–91.PubMedPubMedCentralCrossRef
50.
go back to reference Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest. 2006;116(3):571–80.PubMedPubMedCentralCrossRef Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest. 2006;116(3):571–80.PubMedPubMedCentralCrossRef
51.
go back to reference Souza-Moreira L, Soares VC, Dias SDSG, Bozza PT. Adipose-derived mesenchymal stromal cells modulate lipid metabolism and lipid droplet biogenesis via AKT/mTOR -PPARγ signalling in macrophages. Sci Rep. 2019;9(1):20304.PubMedPubMedCentralCrossRef Souza-Moreira L, Soares VC, Dias SDSG, Bozza PT. Adipose-derived mesenchymal stromal cells modulate lipid metabolism and lipid droplet biogenesis via AKT/mTOR -PPARγ signalling in macrophages. Sci Rep. 2019;9(1):20304.PubMedPubMedCentralCrossRef
52.
go back to reference Kim K, Kim KH, Ha E, Park JY, Sakamoto N, Cheong J. Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma. FEBS Lett. 2009;583(17):2720–6.PubMedCrossRef Kim K, Kim KH, Ha E, Park JY, Sakamoto N, Cheong J. Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma. FEBS Lett. 2009;583(17):2720–6.PubMedCrossRef
53.
go back to reference García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, et al. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest. 2012;92(8):1191–202.PubMedCrossRef García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, et al. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest. 2012;92(8):1191–202.PubMedCrossRef
54.
go back to reference Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.PubMedCrossRef Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.PubMedCrossRef
55.
go back to reference Kim KH, Hong SP, Kim K, Park MJ, Kim KJ, Cheong J. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun. 2007;355(4):883–8.PubMedCrossRef Kim KH, Hong SP, Kim K, Park MJ, Kim KJ, Cheong J. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun. 2007;355(4):883–8.PubMedCrossRef
56.
go back to reference Olmstead AD, Knecht W, Lazarov I, Dixit SB, Jean F. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog. 2012;8(1): e1002468.PubMedPubMedCentralCrossRef Olmstead AD, Knecht W, Lazarov I, Dixit SB, Jean F. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog. 2012;8(1): e1002468.PubMedPubMedCentralCrossRef
57.
go back to reference Lin YM, Sun HY, Chiu WT, Su HC, Chien YC, Chong LW, et al. Calcitriol inhibits HCV infection via blockade of activation of PPAR and interference with endoplasmic reticulum-associated degradation. Viruses. 2018;10(2):57.PubMedPubMedCentralCrossRef Lin YM, Sun HY, Chiu WT, Su HC, Chien YC, Chong LW, et al. Calcitriol inhibits HCV infection via blockade of activation of PPAR and interference with endoplasmic reticulum-associated degradation. Viruses. 2018;10(2):57.PubMedPubMedCentralCrossRef
58.
go back to reference Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA. 2002;99(24):15669–74.PubMedPubMedCentralCrossRef Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA. 2002;99(24):15669–74.PubMedPubMedCentralCrossRef
59.
go back to reference Park CY, Jun HJ, Wakita T, Cheong JH, Hwang SB. Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. J Biol Chem. 2009;284(14):9237–46.PubMedPubMedCentralCrossRef Park CY, Jun HJ, Wakita T, Cheong JH, Hwang SB. Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. J Biol Chem. 2009;284(14):9237–46.PubMedPubMedCentralCrossRef
60.
go back to reference Xiang Z, Qiao L, Zhou Y, Babiuk LA, Liu Q. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1. Biochem Biophys Res Commun. 2010;402(3):549–53.PubMedCrossRef Xiang Z, Qiao L, Zhou Y, Babiuk LA, Liu Q. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1. Biochem Biophys Res Commun. 2010;402(3):549–53.PubMedCrossRef
61.
go back to reference Meng Z, Liu Q, Sun F, Qiao L. Hepatitis C virus nonstructural protein 5A perturbs lipid metabolism by modulating AMPK/SREBP-1c signaling. Lipids Health Dis. 2019;18(1):191.PubMedPubMedCentralCrossRef Meng Z, Liu Q, Sun F, Qiao L. Hepatitis C virus nonstructural protein 5A perturbs lipid metabolism by modulating AMPK/SREBP-1c signaling. Lipids Health Dis. 2019;18(1):191.PubMedPubMedCentralCrossRef
62.
go back to reference Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology. 2008;48(5):1396–403.PubMedCrossRef Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology. 2008;48(5):1396–403.PubMedCrossRef
63.
go back to reference Branche E, Wang YT, Viramontes KM, Valls Cuevas JM, Xie J, Ana-Sosa-Batiz F, et al. SREBP2-dependent lipid gene transcription enhances the infection of human dendritic cells by Zika virus. Nat Commun. 2022;13(1):5341.PubMedPubMedCentralCrossRef Branche E, Wang YT, Viramontes KM, Valls Cuevas JM, Xie J, Ana-Sosa-Batiz F, et al. SREBP2-dependent lipid gene transcription enhances the infection of human dendritic cells by Zika virus. Nat Commun. 2022;13(1):5341.PubMedPubMedCentralCrossRef
64.
go back to reference Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48(12):2547–59.PubMedCrossRef Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48(12):2547–59.PubMedCrossRef
65.
go back to reference Fujimoto Y, Onoduka J, Homma KJ, Yamaguchi S, Mori M, Higashi Y, et al. Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase. Biol Pharm Bull. 2006;29(11):2174–80.PubMedCrossRef Fujimoto Y, Onoduka J, Homma KJ, Yamaguchi S, Mori M, Higashi Y, et al. Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase. Biol Pharm Bull. 2006;29(11):2174–80.PubMedCrossRef
66.
go back to reference Tsuda N, Kumadaki S, Higashi C, Ozawa M, Shinozaki M, Kato Y, et al. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice. PLoS ONE. 2014;9(11): e112027.PubMedPubMedCentralCrossRef Tsuda N, Kumadaki S, Higashi C, Ozawa M, Shinozaki M, Kato Y, et al. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice. PLoS ONE. 2014;9(11): e112027.PubMedPubMedCentralCrossRef
67.
go back to reference King AJ, Segreti JA, Larson KJ, Souers AJ, Kym PR, Reilly RM, et al. In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia. Eur J Pharmacol. 2010;637(1–3):155–61.PubMedCrossRef King AJ, Segreti JA, Larson KJ, Souers AJ, Kym PR, Reilly RM, et al. In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia. Eur J Pharmacol. 2010;637(1–3):155–61.PubMedCrossRef
68.
go back to reference Camus G, Herker E, Modi AA, Haas JT, Ramage HR, Farese RV, et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem. 2013;288(14):9915–23.PubMedPubMedCentralCrossRef Camus G, Herker E, Modi AA, Haas JT, Ramage HR, Farese RV, et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem. 2013;288(14):9915–23.PubMedPubMedCentralCrossRef
69.
go back to reference Raini SK, Takamatsu Y, Dumre SP, Urata S, Mizukami S, Moi ML, et al. The novel therapeutic target and inhibitory effects of PF-429242 against Zika virus infection. Antiviral Res. 2021;192: 105121.PubMedCrossRef Raini SK, Takamatsu Y, Dumre SP, Urata S, Mizukami S, Moi ML, et al. The novel therapeutic target and inhibitory effects of PF-429242 against Zika virus infection. Antiviral Res. 2021;192: 105121.PubMedCrossRef
Metadata
Title
Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells
Authors
Suelen Silva Gomes Dias
Tamires Cunha-Fernandes
Luciana Souza-Moreira
Vinicius Cardoso Soares
Giselle Barbosa Lima
Isaclaudia G. Azevedo-Quintanilha
Julia Santos
Filipe Pereira-Dutra
Caroline Freitas
Patricia A. Reis
Stevens Kastrup Rehen
Fernando A. Bozza
Thiago M. Lopes Souza
Cecilia J. G. de Almeida
Patricia T. Bozza
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Zika Virus
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02736-7

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue