Skip to main content
Top
Published in: BMC Medicine 1/2020

01-12-2020 | Zika Virus | Research article

Mapping the cryptic spread of the 2015–2016 global Zika virus epidemic

Authors: Haoyang Sun, Borame L. Dickens, Mark Jit, Alex R. Cook, L. Roman Carrasco

Published in: BMC Medicine | Issue 1/2020

Login to get access

Abstract

Background

Zika virus (ZIKV) emerged as a global epidemic in 2015–2016 from Latin America with its true geographical extent remaining unclear due to widely presumed underreporting. The identification of locations with potential and unknown spread of ZIKV is a key yet understudied component for outbreak preparedness. Here, we aim to identify locations at a high risk of cryptic ZIKV spread during 2015–2016 to further the understanding of the global ZIKV epidemiology, which is critical for the mitigation of the risk of future epidemics.

Methods

We developed an importation simulation model to estimate the weekly number of ZIKV infections imported in each susceptible spatial unit (i.e. location that did not report any autochthonous Zika cases during 2015–2016), integrating epidemiological, demographic, and travel data as model inputs. Thereafter, a global risk model was applied to estimate the weekly ZIKV transmissibility during 2015–2016 for each location. Finally, we assessed the risk of onward ZIKV spread following importation in each susceptible spatial unit to identify locations with a high potential for cryptic ZIKV spread during 2015–2016.

Results

We have found 24 susceptible spatial units that were likely to have experienced cryptic ZIKV spread during 2015–2016, of which 10 continue to have a high risk estimate within a highly conservative scenario, namely, Luanda in Angola, Banten in Indonesia, Maharashtra in India, Lagos in Nigeria, Taiwan and Guangdong in China, Dakar in Senegal, Maputo in Mozambique, Kinshasa in Congo DRC, and Pool in Congo. Notably, among the 24 susceptible spatial units identified, some have reported their first ZIKV outbreaks since 2017, thus adding to the credibility of our results (derived using 2015–2016 data only).

Conclusion

Our study has provided valuable insights into the potentially high-risk locations for cryptic ZIKV circulation during the 2015–2016 pandemic and has also laid a foundation for future studies that attempt to further narrow this key knowledge gap. Our modelling framework can be adapted to identify areas with likely unknown spread of other emerging vector-borne diseases, which has important implications for public health readiness especially in resource-limited settings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB. Phylogeny of the genus Flavivirus. J Virol. 1998;72(1):73–83.CrossRef Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB. Phylogeny of the genus Flavivirus. J Virol. 1998;72(1):73–83.CrossRef
2.
go back to reference Dick GWA, Kitchen SF, Haddow AJ. Zika virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46(5):509–20.CrossRef Dick GWA, Kitchen SF, Haddow AJ. Zika virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46(5):509–20.CrossRef
4.
go back to reference Ioos S, Mallet H-P, Leparc IG, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Med Mal Infect. 2014;44:302–7.CrossRef Ioos S, Mallet H-P, Leparc IG, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Med Mal Infect. 2014;44:302–7.CrossRef
5.
go back to reference Kindhauser MK, Allen T, Frank V, Santhana R, Dye C. Zika: the origin and spread of a mosquito-borne virus. Bull World Heal Organ. 2016;94(9):675–686C.CrossRef Kindhauser MK, Allen T, Frank V, Santhana R, Dye C. Zika: the origin and spread of a mosquito-borne virus. Bull World Heal Organ. 2016;94(9):675–686C.CrossRef
10.
go back to reference Ferguson NM, Cucunubá ZM, Dorigatti I, Gemma L. Nedjati-Gilani, Donnelly CA, Basáñez M-G, et al. Countering the Zika epidemic in Latin America. Science (80- ). 2016;353(6297):353–4. Ferguson NM, Cucunubá ZM, Dorigatti I, Gemma L. Nedjati-Gilani, Donnelly CA, Basáñez M-G, et al. Countering the Zika epidemic in Latin America. Science (80- ). 2016;353(6297):353–4.
11.
go back to reference Zhang Q, Sun K, Chinazzi M, Pastore A, Dean NE, Patricia D. Spread of Zika virus in the Americas. PNAS. 2017;114:E4334–43.CrossRef Zhang Q, Sun K, Chinazzi M, Pastore A, Dean NE, Patricia D. Spread of Zika virus in the Americas. PNAS. 2017;114:E4334–43.CrossRef
15.
go back to reference Messina JP, Kraemer MUG, Brady OJ, Pigott DM, Shearer FM, Weiss DJ, et al. Mapping global environmental suitability for Zika virus. Elife. 2016;2007:1–19. Messina JP, Kraemer MUG, Brady OJ, Pigott DM, Shearer FM, Weiss DJ, et al. Mapping global environmental suitability for Zika virus. Elife. 2016;2007:1–19.
16.
go back to reference Samy AM, Thomas SM, Abd A, Wahed E, Cohoon KP, Peterson AT. Mapping the global geographic potential of Zika virus spread. Mem Inst Oswaldo Cruz. 2016;111(September):559–60.CrossRef Samy AM, Thomas SM, Abd A, Wahed E, Cohoon KP, Peterson AT. Mapping the global geographic potential of Zika virus spread. Mem Inst Oswaldo Cruz. 2016;111(September):559–60.CrossRef
17.
go back to reference Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Brent S, et al. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study. Lancet Infect Dis. 2016;16(11):1237–45.CrossRef Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Brent S, et al. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study. Lancet Infect Dis. 2016;16(11):1237–45.CrossRef
26.
go back to reference Siraj AS, Rodriguez-Barraquer I, Barker CM, Tejedor-Garavito N, Harding D, Lorton C, et al. Spatiotemporal incidence of Zika and associated environmental drivers for the 2015–2016 epidemic in Colombia. Sci Data. 2018;5(1):180073. Available from: http://www.nature.com/articles/sdata201873. Siraj AS, Rodriguez-Barraquer I, Barker CM, Tejedor-Garavito N, Harding D, Lorton C, et al. Spatiotemporal incidence of Zika and associated environmental drivers for the 2015–2016 epidemic in Colombia. Sci Data. 2018;5(1):180073. Available from: http://​www.​nature.​com/​articles/​sdata201873.
35.
go back to reference Methodological Notes to the Tourism Statistics Database, 2019 Edition | Notes méthodologiques de la base de données des statistiques du tourisme, édition 2019 | Notas metodológicas de la base de datos de estadísticas de turismo, edición 2019. World Tourism Organization (UNWTO); 2019. Available from: https://doi.org/10.18111/9789284420476. Accessed 1 Oct 2019. Methodological Notes to the Tourism Statistics Database, 2019 Edition | Notes méthodologiques de la base de données des statistiques du tourisme, édition 2019 | Notas metodológicas de la base de datos de estadísticas de turismo, edición 2019. World Tourism Organization (UNWTO); 2019. Available from: https://​doi.​org/​10.​18111/​9789284420476. Accessed 1 Oct 2019.
36.
go back to reference Arino J, Khan K. Using mathematical modeling to integrate disease surveillance and global air transportation data. In: Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases. John Wiley & Sons, Inc.; 2013. p. 1–14. Arino J, Khan K. Using mathematical modeling to integrate disease surveillance and global air transportation data. In: Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases. John Wiley & Sons, Inc.; 2013. p. 1–14.
57.
64.
go back to reference Proesmans S, Katshongo F, Milambu J, Fungula B, Muhindo Mavoko H, Ahuka-Mundeke S, et al. Dengue and chikungunya among outpatients with acute undifferentiated fever in Kinshasa, Democratic Republic of Congo: A cross-sectional study. Blacksell SD, editor. PLoS Negl Trop Dis. 2019;13(9):e0007047. Available from: http://dx.plos.org/10.1371/journal.pntd.0007047. Proesmans S, Katshongo F, Milambu J, Fungula B, Muhindo Mavoko H, Ahuka-Mundeke S, et al. Dengue and chikungunya among outpatients with acute undifferentiated fever in Kinshasa, Democratic Republic of Congo: A cross-sectional study. Blacksell SD, editor. PLoS Negl Trop Dis. 2019;13(9):e0007047. Available from: http://​dx.​plos.​org/​10.​1371/​journal.​pntd.​0007047.
76.
go back to reference Alwafi O, McNabb S, Memish Z, Assiri A, Alzahrani S, Asiri S, et al. Dengue fever in Makkah, Kingdom of Saudi Arabia, 2008-2012. Am J Res Commun. 2013;1(11):123-39. Alwafi O, McNabb S, Memish Z, Assiri A, Alzahrani S, Asiri S, et al. Dengue fever in Makkah, Kingdom of Saudi Arabia, 2008-2012. Am J Res Commun. 2013;1(11):123-39.
77.
go back to reference Ahmed QA, Memish ZA. Zika in Singapore: implications for Saudi Arabia. East Mediterr Heal J. 2017;23(4):311-3. Ahmed QA, Memish ZA. Zika in Singapore: implications for Saudi Arabia. East Mediterr Heal J. 2017;23(4):311-3.
80.
go back to reference Lew R, Tsai W-Y, Wang W-K. Dengue outbreaks in Hawai’i After WWII – a review of public health response and scientific literature. HAWAI‘I J Med PUBLIC Heal. 2018;77(12):315–318. Lew R, Tsai W-Y, Wang W-K. Dengue outbreaks in Hawai’i After WWII – a review of public health response and scientific literature. HAWAI‘I J Med PUBLIC Heal. 2018;77(12):315–318.
Metadata
Title
Mapping the cryptic spread of the 2015–2016 global Zika virus epidemic
Authors
Haoyang Sun
Borame L. Dickens
Mark Jit
Alex R. Cook
L. Roman Carrasco
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Zika Virus
Published in
BMC Medicine / Issue 1/2020
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-020-01845-x

Other articles of this Issue 1/2020

BMC Medicine 1/2020 Go to the issue