Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Research

ZASC1 knockout mice exhibit an early bone marrow-specific defect in murine leukemia virus replication

Authors: Shannon Seidel, James Bruce, Mathias Leblanc, Kuo-Fen Lee, Hung Fan, Paul Ahlquist, John AT Young

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Background

ZASC1 is a zinc finger-containing transcription factor that was previously shown to bind to specific DNA binding sites in the Moloney murine leukemia virus (Mo-MuLV) promoter and is required for efficient viral mRNA transcription (J. Virol. 84:7473-7483, 2010).

Methods

To determine whether this cellular factor influences Mo-MuLV replication and viral disease pathogenesis in vivo, we generated a ZASC1 knockout mouse model and completed both early infection and long term disease pathogenesis studies.

Results

Mice lacking ZASC1 were born at the expected Mendelian ratio and showed no obvious physical or behavioral defects. Analysis of bone marrow samples revealed a specific increase in a common myeloid progenitor cell population in ZASC1-deficient mice, a result that is of considerable interest because osteoclasts derived from the myeloid lineage are among the first bone marrow cells infected by Mo-MuLV (J. Virol. 73: 1617-1623, 1999). Indeed, Mo-MuLV infection of neonatal mice revealed that ZASC1 is required for efficient early virus replication in the bone marrow, but not in the thymus or spleen. However, the absence of ZASC1 did not influence the timing of subsequent tumor progression or the types of tumors resulting from virus infection.

Conclusions

These studies have revealed that ZASC1 is important for myeloid cell differentiation in the bone marrow compartment and that this cellular factor is required for efficient Mo-MuLV replication in this tissue at an early time point post-infection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sun W, O'Connell M, Speck NA: Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers. J Virol 1993,67(4):1976-1986.PubMedPubMedCentral Sun W, O'Connell M, Speck NA: Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers. J Virol 1993,67(4):1976-1986.PubMedPubMedCentral
2.
go back to reference Sun W, Graves BJ, Speck NA: Transactivation of the Moloney murine leukemia virus and T-cell receptor beta-chain enhancers by cbf and ets requires intact binding sites for both proteins. J Virol 1995,69(8):4941-4949.PubMedPubMedCentral Sun W, Graves BJ, Speck NA: Transactivation of the Moloney murine leukemia virus and T-cell receptor beta-chain enhancers by cbf and ets requires intact binding sites for both proteins. J Virol 1995,69(8):4941-4949.PubMedPubMedCentral
3.
go back to reference Manley NR: Two factors that bind to highly conserved sequences in mammalian type C retroviral enhancers. J Virol 1993,67(4):1967-1975.PubMedPubMedCentral Manley NR: Two factors that bind to highly conserved sequences in mammalian type C retroviral enhancers. J Virol 1993,67(4):1967-1975.PubMedPubMedCentral
4.
go back to reference Chao SH: Identification of homeodomain proteins, PBX1 and PREP1, involved in the transcription of murine leukemia virus. Mol Cell Biol 2003,23(3):831-841. 10.1128/MCB.23.3.831-841.2003PubMedPubMedCentralCrossRef Chao SH: Identification of homeodomain proteins, PBX1 and PREP1, involved in the transcription of murine leukemia virus. Mol Cell Biol 2003,23(3):831-841. 10.1128/MCB.23.3.831-841.2003PubMedPubMedCentralCrossRef
5.
go back to reference Lewis AF: Core-binding factor influences the disease specificity of Moloney murine leukemia virus. J Virol 1999,73(7):5535-5547.PubMedPubMedCentral Lewis AF: Core-binding factor influences the disease specificity of Moloney murine leukemia virus. J Virol 1999,73(7):5535-5547.PubMedPubMedCentral
6.
go back to reference Li Y: Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol 1987,61(3):693-700.PubMedPubMedCentral Li Y: Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol 1987,61(3):693-700.PubMedPubMedCentral
7.
go back to reference Speck NA: Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity. Genes Dev 1990,4(2):233-242. 10.1101/gad.4.2.233PubMedCrossRef Speck NA: Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity. Genes Dev 1990,4(2):233-242. 10.1101/gad.4.2.233PubMedCrossRef
8.
9.
go back to reference Imoto I: Identification of ZASC1 encoding a Kruppel-like zinc finger protein as a novel target for 3q26 amplification in esophageal squamous cell carcinomas. Cancer Res 2003,63(18):5691-5696.PubMed Imoto I: Identification of ZASC1 encoding a Kruppel-like zinc finger protein as a novel target for 3q26 amplification in esophageal squamous cell carcinomas. Cancer Res 2003,63(18):5691-5696.PubMed
10.
go back to reference Bogaerts S: Nuclear translocation of alphaN-catenin by the novel zinc finger transcriptional repressor ZASC1. Exp Cell Res 2005,311(1):1-13. 10.1016/j.yexcr.2005.06.018PubMedCrossRef Bogaerts S: Nuclear translocation of alphaN-catenin by the novel zinc finger transcriptional repressor ZASC1. Exp Cell Res 2005,311(1):1-13. 10.1016/j.yexcr.2005.06.018PubMedCrossRef
11.
go back to reference Jung SY: Proteomic analysis of steady-state nuclear hormone receptor coactivator complexes. Mol Endocrinol 2005,19(10):2451-2465. 10.1210/me.2004-0476PubMedCrossRef Jung SY: Proteomic analysis of steady-state nuclear hormone receptor coactivator complexes. Mol Endocrinol 2005,19(10):2451-2465. 10.1210/me.2004-0476PubMedCrossRef
12.
go back to reference Okimoto MA, Fan H: Identification of directly infected cells in the bone marrow of neonatal moloney murine leukemia virus-infected mice by use of a moloney murine leukemia virus-based vector. J Virol 1999,73(2):1617-1623.PubMedPubMedCentral Okimoto MA, Fan H: Identification of directly infected cells in the bone marrow of neonatal moloney murine leukemia virus-infected mice by use of a moloney murine leukemia virus-based vector. J Virol 1999,73(2):1617-1623.PubMedPubMedCentral
13.
go back to reference Welinder E: The transcription factors E2A and HEB act in concert to induce the expression of FOXO1 in the common lymphoid progenitor. PNAS 2011,108(42):17402-17407. 10.1073/pnas.1111766108PubMedPubMedCentralCrossRef Welinder E: The transcription factors E2A and HEB act in concert to induce the expression of FOXO1 in the common lymphoid progenitor. PNAS 2011,108(42):17402-17407. 10.1073/pnas.1111766108PubMedPubMedCentralCrossRef
14.
go back to reference Akashi K: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000,404(6774):193-197. 10.1038/35004599PubMedCrossRef Akashi K: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000,404(6774):193-197. 10.1038/35004599PubMedCrossRef
15.
go back to reference Low A: Enhanced replication and pathogenesis of Moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. Virology 2009,385(2):455-463. 10.1016/j.virol.2008.11.051PubMedPubMedCentralCrossRef Low A: Enhanced replication and pathogenesis of Moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. Virology 2009,385(2):455-463. 10.1016/j.virol.2008.11.051PubMedPubMedCentralCrossRef
16.
go back to reference Belli B, Fan H: The leukemogenic potential of an enhancer variant of Moloney murine leukemia virus varies with the route of inoculation. J Virol 1994,68(11):6883-6889.PubMedPubMedCentral Belli B, Fan H: The leukemogenic potential of an enhancer variant of Moloney murine leukemia virus varies with the route of inoculation. J Virol 1994,68(11):6883-6889.PubMedPubMedCentral
17.
go back to reference Wada T: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006,12(1):17-25. 10.1016/j.molmed.2005.11.007PubMedCrossRef Wada T: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006,12(1):17-25. 10.1016/j.molmed.2005.11.007PubMedCrossRef
18.
go back to reference Chan W: A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 2007,35(8):e64. 10.1093/nar/gkm163PubMedPubMedCentralCrossRef Chan W: A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 2007,35(8):e64. 10.1093/nar/gkm163PubMedPubMedCentralCrossRef
19.
go back to reference Lander JK, Chesebro B, Fan H: Appearance of mink cell focus-inducing recombinants during in vivo infection by moloney murine leukemia virus (M-MuLV) or the Mo+PyF101 M-MuLV enhancer variant: implications for sites of generation and roles in leukemogenesis. J Virol 1999,73(7):5671-5680.PubMedPubMedCentral Lander JK, Chesebro B, Fan H: Appearance of mink cell focus-inducing recombinants during in vivo infection by moloney murine leukemia virus (M-MuLV) or the Mo+PyF101 M-MuLV enhancer variant: implications for sites of generation and roles in leukemogenesis. J Virol 1999,73(7):5671-5680.PubMedPubMedCentral
Metadata
Title
ZASC1 knockout mice exhibit an early bone marrow-specific defect in murine leukemia virus replication
Authors
Shannon Seidel
James Bruce
Mathias Leblanc
Kuo-Fen Lee
Hung Fan
Paul Ahlquist
John AT Young
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-130

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.