Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2018

Open Access 01-12-2018 | NON-THEMATIC REVIEW

WNT5A as a therapeutic target in breast cancer

Authors: Chandra Prakash Prasad, Mansi Manchanda, Purusottam Mohapatra, Tommy Andersson

Published in: Cancer and Metastasis Reviews | Issue 4/2018

Login to get access

Abstract

Despite the clinical development of novel adjuvant and neoadjuvant chemotherapeutic drugs, metastatic breast cancer is one of the leading causes of cancer-related death among women. The present review focuses on the relevance, mechanisms, and therapeutic potential of targeting WNT5A as a future anti-metastatic treatment strategy for breast cancer patients by restoring WNT5A signaling as an innovative therapeutic option. WNT5A is an auto- and paracrine β-catenin-independent ligand that has been shown to induce tumor suppression as well as oncogenic signaling, depending upon cancer type. In breast cancer patients, WNT5A protein expression has been observed to be significantly reduced in between 45 and 75% of the cases and associated with early relapse and reduced disease-free survival. WNT5A triggers various downstream signaling pathways in breast cancer that primarily affect tumor cell migration and invasion. The accumulated in vitro results reveal that treatment of WNT5A-negative breast cancer cells with recombinant WNT5A caused different tumor-suppressive responses and in particular it impaired migration and invasion. The anti-migratory/invasive and anti-metastatic effects of reconstituting WNT5A signaling by the small WNT5A mimicking peptide Foxy5 form the basis for two successful clinical phase 1-studies aiming at determining safety and pharmacokinetics as well as defining dose-level for a subsequent phase 2-study. We conclude that re-installation of WNT5A signaling is an attractive and promising anti-metastatic therapeutic approach for future treatment of WNT5A-negative breast cancer patients.
Literature
2.
go back to reference Kumawat, K., & Gosens, R. (2016). WNT-5A: signaling and functions in health and disease. Cellular and Molecular Life Sciences, 73(3), 567–587.PubMedCrossRef Kumawat, K., & Gosens, R. (2016). WNT-5A: signaling and functions in health and disease. Cellular and Molecular Life Sciences, 73(3), 567–587.PubMedCrossRef
3.
go back to reference Clark, C. C., Cohen, I., Eichstetter, I., Cannizzaro, L. A., McPherson, J. D., Wasmuth, J. J., & Iozzo, R. V. (1993). Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21. Genomics, 18(2), 249–260.PubMedCrossRef Clark, C. C., Cohen, I., Eichstetter, I., Cannizzaro, L. A., McPherson, J. D., Wasmuth, J. J., & Iozzo, R. V. (1993). Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21. Genomics, 18(2), 249–260.PubMedCrossRef
4.
go back to reference Willert, K., Brown, J. D., Danenberg, E., Duncan, A. W., Weissman, I. L., Reya, T., Yates, J. R., & Nusse, R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938), 448–452.PubMedCrossRef Willert, K., Brown, J. D., Danenberg, E., Duncan, A. W., Weissman, I. L., Reya, T., Yates, J. R., & Nusse, R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938), 448–452.PubMedCrossRef
6.
go back to reference Port, F., & Basler, K. (2010). Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic, 11(10), 1265–1271.PubMedCrossRef Port, F., & Basler, K. (2010). Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic, 11(10), 1265–1271.PubMedCrossRef
7.
go back to reference Wong, G. T., Gavin, B. J., & McMahon, A. P. (1994). Differential transformation of mammary epithelial cells by Wnt genes. Molecular and Cellular Biology, 14(9), 6278–6286.PubMedPubMedCentralCrossRef Wong, G. T., Gavin, B. J., & McMahon, A. P. (1994). Differential transformation of mammary epithelial cells by Wnt genes. Molecular and Cellular Biology, 14(9), 6278–6286.PubMedPubMedCentralCrossRef
8.
go back to reference Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., & Kitajewski, J. (1997). Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth & Differentiation, 8(12), 1349–1358. Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., & Kitajewski, J. (1997). Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth & Differentiation, 8(12), 1349–1358.
9.
go back to reference Jiang, W., Crossman, D. K., Mitchell, E. H., Sohn, P., Crowley, M. R., & Serra, R. (2013). WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells. PLoS One, 8(3), e58329.PubMedPubMedCentralCrossRef Jiang, W., Crossman, D. K., Mitchell, E. H., Sohn, P., Crowley, M. R., & Serra, R. (2013). WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells. PLoS One, 8(3), e58329.PubMedPubMedCentralCrossRef
10.
go back to reference MacDonald, B. T., & He, X. (2012). Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harbor Perspectives in Biology, 4(12), a007880.PubMedPubMedCentralCrossRef MacDonald, B. T., & He, X. (2012). Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harbor Perspectives in Biology, 4(12), a007880.PubMedPubMedCentralCrossRef
11.
go back to reference Kühl, M., Sheldahl, L. C., Park, M., Miller, J. R., & Moon, R. T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends in Genetics, 16(7), 279–283.PubMedCrossRef Kühl, M., Sheldahl, L. C., Park, M., Miller, J. R., & Moon, R. T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends in Genetics, 16(7), 279–283.PubMedCrossRef
12.
go back to reference Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., Shibuya, H., Moon, R. T., Ninomiya-Tsuji, J., & Matsumoto, K. (2003). The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Molecular and Cellular Biology, 23(1), 131–139.PubMedPubMedCentralCrossRef Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., Shibuya, H., Moon, R. T., Ninomiya-Tsuji, J., & Matsumoto, K. (2003). The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Molecular and Cellular Biology, 23(1), 131–139.PubMedPubMedCentralCrossRef
13.
go back to reference Oishi, I., Suzuki, H., Onishi, N., Takada, R., Kani, S., Ohkawara, B., Koshida, I., Suzuki, K., Yamada, G., Schwabe, G. C., Mundlos, S., Shibuya, H., Takada, S., & Minami, Y. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to Cells, 8(7), 645–654.PubMedCrossRef Oishi, I., Suzuki, H., Onishi, N., Takada, R., Kani, S., Ohkawara, B., Koshida, I., Suzuki, K., Yamada, G., Schwabe, G. C., Mundlos, S., Shibuya, H., Takada, S., & Minami, Y. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to Cells, 8(7), 645–654.PubMedCrossRef
14.
go back to reference Yamaguchi, T. P., Bradley, A., McMahon, A. P., & Jones, S. (1999). A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development, 126(6), 1211–1223.PubMed Yamaguchi, T. P., Bradley, A., McMahon, A. P., & Jones, S. (1999). A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development, 126(6), 1211–1223.PubMed
15.
go back to reference Roarty, K., & Serra, R. (2007). Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development, 134(21), 3929–3939.PubMedCrossRef Roarty, K., & Serra, R. (2007). Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development, 134(21), 3929–3939.PubMedCrossRef
16.
go back to reference Danielson, K. G., Pillarisetti, J., Cohen, I. R., Sholehvar, B., Huebner, K., Ng, L. J., Nicholls, J. M., Cheah, K. S. E., & Iozzo, R. V. (1995). Characterization of the complete genomic structure of the human WNT-5A gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. The Journal of Biological Chemistry, 270(52), 31225–31234.PubMedCrossRef Danielson, K. G., Pillarisetti, J., Cohen, I. R., Sholehvar, B., Huebner, K., Ng, L. J., Nicholls, J. M., Cheah, K. S. E., & Iozzo, R. V. (1995). Characterization of the complete genomic structure of the human WNT-5A gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. The Journal of Biological Chemistry, 270(52), 31225–31234.PubMedCrossRef
17.
go back to reference Leandersson, K., Riesbeck, K., & Andersson, T. (2006). Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Research, 34(14), 3988–3999.PubMedPubMedCentralCrossRef Leandersson, K., Riesbeck, K., & Andersson, T. (2006). Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Research, 34(14), 3988–3999.PubMedPubMedCentralCrossRef
19.
go back to reference Dejmek, J., Leandersson, K., Manjer, J., Bjartell, A., Emdin, S. O., Vogel, W. F., et al. (2005). Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clinical Cancer Research, 11(2), 520–528.PubMed Dejmek, J., Leandersson, K., Manjer, J., Bjartell, A., Emdin, S. O., Vogel, W. F., et al. (2005). Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clinical Cancer Research, 11(2), 520–528.PubMed
20.
go back to reference Sheehy, N. T., Cordes, K. R., White, M. P., Ivey, K. N., & Srivastava, D. (2010). The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development, 137(24), 4307–4316.PubMedPubMedCentralCrossRef Sheehy, N. T., Cordes, K. R., White, M. P., Ivey, K. N., & Srivastava, D. (2010). The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development, 137(24), 4307–4316.PubMedPubMedCentralCrossRef
21.
go back to reference Li, P., Cao, Y., Li, Y., Zhou, L., Liu, X., & Geng, M. (2014). Expression of Wnt-5a and β-catenin in primary hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 7(6), 3190–3195.PubMedPubMedCentral Li, P., Cao, Y., Li, Y., Zhou, L., Liu, X., & Geng, M. (2014). Expression of Wnt-5a and β-catenin in primary hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 7(6), 3190–3195.PubMedPubMedCentral
22.
go back to reference Jönsson, M., Dejmek, J., Bendahl, P.-O., & Andersson, T. (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Research, 62(2), 409–416.PubMed Jönsson, M., Dejmek, J., Bendahl, P.-O., & Andersson, T. (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Research, 62(2), 409–416.PubMed
23.
go back to reference Sand-Dejmek, J., Ehrnström, R., Berglund, P., Andersson, T., & Ryden, L. (2013). The prognostic significance of Wnt-5a expression in primary breast cancer is extended to premenopausal women. PLoS One, 8(8), e70890.PubMedPubMedCentralCrossRef Sand-Dejmek, J., Ehrnström, R., Berglund, P., Andersson, T., & Ryden, L. (2013). The prognostic significance of Wnt-5a expression in primary breast cancer is extended to premenopausal women. PLoS One, 8(8), e70890.PubMedPubMedCentralCrossRef
24.
go back to reference Borcherding, N., Kusner, D., Kolb, R., Xie, Q., Li, W., Yuan, F., Velez, G., Askeland, R., Weigel, R. J., & Zhang, W. (2015). Paracrine WNT5A signaling inhibits expansion of tumor-initiating cells. Cancer Research, 75(10), 1972–1982.PubMedPubMedCentralCrossRef Borcherding, N., Kusner, D., Kolb, R., Xie, Q., Li, W., Yuan, F., Velez, G., Askeland, R., Weigel, R. J., & Zhang, W. (2015). Paracrine WNT5A signaling inhibits expansion of tumor-initiating cells. Cancer Research, 75(10), 1972–1982.PubMedPubMedCentralCrossRef
25.
go back to reference Zhong, Z., Shan, M., Wang, J., Liu, T., Shi, Q., & Pang, D. (2016). Decreased WNT5A expression is a poor prognostic factor in triple-negative breast cancer. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 22, 1–7.CrossRef Zhong, Z., Shan, M., Wang, J., Liu, T., Shi, Q., & Pang, D. (2016). Decreased WNT5A expression is a poor prognostic factor in triple-negative breast cancer. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 22, 1–7.CrossRef
26.
go back to reference Huguet, E. L., Smith, K., Bicknell, R., & Harris, A. L. (1995). Regulation of Wnt5a mRNA expression in human mammary epithelial cells by cell shape, confluence, and hepatocyte growth factor. The Journal of Biological Chemistry, 270(21), 12851–12856.PubMedCrossRef Huguet, E. L., Smith, K., Bicknell, R., & Harris, A. L. (1995). Regulation of Wnt5a mRNA expression in human mammary epithelial cells by cell shape, confluence, and hepatocyte growth factor. The Journal of Biological Chemistry, 270(21), 12851–12856.PubMedCrossRef
27.
go back to reference Jonsson, M., & Andersson, T. (2001). Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. Journal of Cell Science, 114(11), 2043–2053.PubMed Jonsson, M., & Andersson, T. (2001). Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. Journal of Cell Science, 114(11), 2043–2053.PubMed
28.
go back to reference Dejmek, J., Dib, K., Jonsson, M., & Andersson, T. (2003). Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. International Journal of Cancer, 103(3), 344–351.PubMedCrossRef Dejmek, J., Dib, K., Jonsson, M., & Andersson, T. (2003). Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. International Journal of Cancer, 103(3), 344–351.PubMedCrossRef
29.
go back to reference Jauliac, S., Lopez-Rodriguez, C., Shaw, L. M., Brown, L. F., Rao, A., & Toker, A. (2002). The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 4(7), 540–544.PubMedCrossRef Jauliac, S., Lopez-Rodriguez, C., Shaw, L. M., Brown, L. F., Rao, A., & Toker, A. (2002). The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 4(7), 540–544.PubMedCrossRef
30.
go back to reference Yiu, G. K., Kaunisto, A., Chin, Y. R., & Toker, A. (2011). NFAT promotes carcinoma invasive migration through glypican-6. Biochemical Journal, 440(1), 157–166.PubMedCrossRef Yiu, G. K., Kaunisto, A., Chin, Y. R., & Toker, A. (2011). NFAT promotes carcinoma invasive migration through glypican-6. Biochemical Journal, 440(1), 157–166.PubMedCrossRef
31.
go back to reference Dejmek, J., Säfholm, A., Kamp Nielsen, C., Andersson, T., & Leandersson, K. (2006). Wnt-5a/Ca2+−induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Molecular and Cellular Biology, 26(16), 6024–6036.PubMedPubMedCentralCrossRef Dejmek, J., Säfholm, A., Kamp Nielsen, C., Andersson, T., & Leandersson, K. (2006). Wnt-5a/Ca2+−induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Molecular and Cellular Biology, 26(16), 6024–6036.PubMedPubMedCentralCrossRef
32.
go back to reference Kessenbrock, K., Smith, P., Steenbeek, S. C., Pervolarakis, N., Kumar, R., Minami, Y., Goga, A., Hinck, L., & Werb, Z. (2017). Diverse regulation of mammary epithelial growth and branching morphogenesis through noncanonical Wnt signaling. Proceedings of the National Academy of Sciences, 114(12), 3121–3126.CrossRef Kessenbrock, K., Smith, P., Steenbeek, S. C., Pervolarakis, N., Kumar, R., Minami, Y., Goga, A., Hinck, L., & Werb, Z. (2017). Diverse regulation of mammary epithelial growth and branching morphogenesis through noncanonical Wnt signaling. Proceedings of the National Academy of Sciences, 114(12), 3121–3126.CrossRef
33.
go back to reference Roarty, K., Baxley, S. E., Crowley, M. R., Frost, A. R., & Serra, R. (2009). Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype. Breast Cancer Research, 11(2), R19.PubMedCrossRefPubMedCentral Roarty, K., Baxley, S. E., Crowley, M. R., Frost, A. R., & Serra, R. (2009). Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype. Breast Cancer Research, 11(2), R19.PubMedCrossRefPubMedCentral
34.
go back to reference Jang, G. B., Kim, J. Y., Cho, S. D., Park, K. S., Jung, J. Y., Lee, H. Y., Hong, I. S., & Nam, J. S. (2015). Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Science Reports, 5, 12465.CrossRef Jang, G. B., Kim, J. Y., Cho, S. D., Park, K. S., Jung, J. Y., Lee, H. Y., Hong, I. S., & Nam, J. S. (2015). Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Science Reports, 5, 12465.CrossRef
35.
go back to reference Yu, Q. C., Verheyen, E. M., & Zeng, Y. A. (2016). Mammary development and breast cancer: a Wnt perspective. Cancers (Basel), 8(7), 65.CrossRef Yu, Q. C., Verheyen, E. M., & Zeng, Y. A. (2016). Mammary development and breast cancer: a Wnt perspective. Cancers (Basel), 8(7), 65.CrossRef
36.
go back to reference Medrek, C., Landberg, G., Andersson, T., & Leandersson, K. (2009). Wnt-5a-CKIα signaling promotes β-catenin/E-cadherin complex formation and intercellular adhesion in human breast epithelial cells. The Journal of Biological Chemistry, 284(16), 10968–10979.PubMedPubMedCentralCrossRef Medrek, C., Landberg, G., Andersson, T., & Leandersson, K. (2009). Wnt-5a-CKIα signaling promotes β-catenin/E-cadherin complex formation and intercellular adhesion in human breast epithelial cells. The Journal of Biological Chemistry, 284(16), 10968–10979.PubMedPubMedCentralCrossRef
37.
go back to reference Hansen, C., Howlin, J., Tengholm, A., Dyachok, O., Vogel, W. F., Nairn, A. C., Greengard, P., & Andersson, T. (2009). Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. The Journal of Biological Chemistry, 284(40), 27533–27543.PubMedPubMedCentralCrossRef Hansen, C., Howlin, J., Tengholm, A., Dyachok, O., Vogel, W. F., Nairn, A. C., Greengard, P., & Andersson, T. (2009). Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. The Journal of Biological Chemistry, 284(40), 27533–27543.PubMedPubMedCentralCrossRef
38.
go back to reference Prasad, C. P., Chaurasiya, S. K., Axelsson, L., & Andersson, T. (2013). WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells. Molecular Oncology, 7(5), 870–883.PubMedPubMedCentralCrossRef Prasad, C. P., Chaurasiya, S. K., Axelsson, L., & Andersson, T. (2013). WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells. Molecular Oncology, 7(5), 870–883.PubMedPubMedCentralCrossRef
39.
go back to reference Louderbough, J. M., & Schroeder, J. A. (2011). Understanding the dual nature of CD44 in breast cancer progression. Molecular Cancer Research, 9(12), 1573–1586.PubMedCrossRef Louderbough, J. M., & Schroeder, J. A. (2011). Understanding the dual nature of CD44 in breast cancer progression. Molecular Cancer Research, 9(12), 1573–1586.PubMedCrossRef
40.
go back to reference Xu, H., Wu, K., Tian, Y., Liu, Q., Han, N., Yuan, X., Zhang, L., Wu, G. S., & Wu, K. (2016). CD44 correlates with clinicopathological characteristics and is upregulated by EGFR in breast cancer. International Journal of Oncology, 49(4), 1343–1350.PubMedPubMedCentralCrossRef Xu, H., Wu, K., Tian, Y., Liu, Q., Han, N., Yuan, X., Zhang, L., Wu, G. S., & Wu, K. (2016). CD44 correlates with clinicopathological characteristics and is upregulated by EGFR in breast cancer. International Journal of Oncology, 49(4), 1343–1350.PubMedPubMedCentralCrossRef
41.
go back to reference Prasad, C. P., Chaurasiya, S. K., Guilmain, W., & Andersson, T. (2016). WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. Journal of Experimental & Clinical Cancer Research, 35(1), 144.CrossRef Prasad, C. P., Chaurasiya, S. K., Guilmain, W., & Andersson, T. (2016). WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. Journal of Experimental & Clinical Cancer Research, 35(1), 144.CrossRef
42.
go back to reference Dass, R. A., Sarshad, A. A., Carson, B. B., Feenstra, J. M., Kaur, A., Obrdlik, A., et al. (2016). Wnt5a signals through DVL1 to repress ribosomal DNA transcription by RNA polymerase I. PLoS Genetics, 12(8), e1006217.PubMedPubMedCentralCrossRef Dass, R. A., Sarshad, A. A., Carson, B. B., Feenstra, J. M., Kaur, A., Obrdlik, A., et al. (2016). Wnt5a signals through DVL1 to repress ribosomal DNA transcription by RNA polymerase I. PLoS Genetics, 12(8), e1006217.PubMedPubMedCentralCrossRef
43.
go back to reference Laezza, C., d'Alessandro, A., Malfitano, A. M., & Bifulco, M. (2013). Anandamide inhibits the Wnt/beta-catenin signalling pathway in human breast cancer MDA MB 231 cells. European Journal of Cancer, 49(8), 2066–2067.PubMedCrossRef Laezza, C., d'Alessandro, A., Malfitano, A. M., & Bifulco, M. (2013). Anandamide inhibits the Wnt/beta-catenin signalling pathway in human breast cancer MDA MB 231 cells. European Journal of Cancer, 49(8), 2066–2067.PubMedCrossRef
44.
go back to reference Xu, J., Prosperi, J. R., Choudhury, N., Olopade, O. I., & Goss, K. H. (2015). β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One, 10(2), e0117097.PubMedPubMedCentralCrossRef Xu, J., Prosperi, J. R., Choudhury, N., Olopade, O. I., & Goss, K. H. (2015). β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One, 10(2), e0117097.PubMedPubMedCentralCrossRef
45.
go back to reference Shao, Y., Zheng, Q., Wang, W., Xin, N., Song, X., & Zhao, C. (2016). Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget, 7(41), 67674–67684.PubMedPubMedCentralCrossRef Shao, Y., Zheng, Q., Wang, W., Xin, N., Song, X., & Zhao, C. (2016). Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget, 7(41), 67674–67684.PubMedPubMedCentralCrossRef
46.
go back to reference Pukrop, T., Klemm, F., Hagemann, T., Gradl, D., Schulz, M., Siemes, S., Trumper, L., & Binder, C. (2006). Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proceedings of the National Academy of Sciences, 103(14), 5454–5459.CrossRef Pukrop, T., Klemm, F., Hagemann, T., Gradl, D., Schulz, M., Siemes, S., Trumper, L., & Binder, C. (2006). Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proceedings of the National Academy of Sciences, 103(14), 5454–5459.CrossRef
47.
go back to reference Nitzki, F., Zibat, A., König, S., Wijgerde, M., Rosenberger, A., Brembeck, F. H., Carstens, P. O., Frommhold, A., Uhmann, A., Klingler, S., Reifenberger, J., Pukrop, T., Aberger, F., Schulz-Schaeffer, W., & Hahn, H. (2010). Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Research, 70(7), 2739–2748.PubMedCrossRef Nitzki, F., Zibat, A., König, S., Wijgerde, M., Rosenberger, A., Brembeck, F. H., Carstens, P. O., Frommhold, A., Uhmann, A., Klingler, S., Reifenberger, J., Pukrop, T., Aberger, F., Schulz-Schaeffer, W., & Hahn, H. (2010). Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Research, 70(7), 2739–2748.PubMedCrossRef
48.
go back to reference Zhu, Y., Tian, Y., Du, J., Hu, Z., Yang, L., Liu, J., et al. (2012). Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PLoS One, 7(5), e37823.PubMedPubMedCentralCrossRef Zhu, Y., Tian, Y., Du, J., Hu, Z., Yang, L., Liu, J., et al. (2012). Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PLoS One, 7(5), e37823.PubMedPubMedCentralCrossRef
49.
go back to reference Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.PubMedCrossRef Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.PubMedCrossRef
50.
go back to reference Sherwood, V. (2015). WNT signaling: an emerging mediator of cancer cell metabolism? Molecular Cell Biology, 35(1), 2–10.CrossRef Sherwood, V. (2015). WNT signaling: an emerging mediator of cancer cell metabolism? Molecular Cell Biology, 35(1), 2–10.CrossRef
51.
go back to reference Monga, S. P. (2011). Role of Wnt/beta-catenin signaling in liver metabolism and cancer. The International Journal of Biochemistry & Cell Biology, 43(7), 1021–1029.CrossRef Monga, S. P. (2011). Role of Wnt/beta-catenin signaling in liver metabolism and cancer. The International Journal of Biochemistry & Cell Biology, 43(7), 1021–1029.CrossRef
52.
go back to reference Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G., & Kang, H. S. (2012). Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Research, 72(14), 3607–3617.PubMedCrossRef Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G., & Kang, H. S. (2012). Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Research, 72(14), 3607–3617.PubMedCrossRef
53.
go back to reference Prasad, C. P., Sodergren, K., & Andersson, T. (2017). Reduced production and uptake of lactate are essential for the ability of WNT5A signaling to inhibit breast cancer cell migration and invasion. Oncotarget, 8(42), 71471–71488.PubMedPubMedCentralCrossRef Prasad, C. P., Sodergren, K., & Andersson, T. (2017). Reduced production and uptake of lactate are essential for the ability of WNT5A signaling to inhibit breast cancer cell migration and invasion. Oncotarget, 8(42), 71471–71488.PubMedPubMedCentralCrossRef
54.
go back to reference Sherwood, V., Chaurasiya, S. K., Ekström, E. J., Guilmain, W., Liu, Q., Koeck, T., et al. (2014). WNT5A-mediated β-catenin-independent signalling is a novel regulator of cancer cell metabolism. Carcinogenesis, 35(4), 784–794.PubMedCrossRef Sherwood, V., Chaurasiya, S. K., Ekström, E. J., Guilmain, W., Liu, Q., Koeck, T., et al. (2014). WNT5A-mediated β-catenin-independent signalling is a novel regulator of cancer cell metabolism. Carcinogenesis, 35(4), 784–794.PubMedCrossRef
55.
go back to reference Safholm, A., Leandersson, K., Dejmek, J., Nielsen, C. K., Villoutreix, B. O., & Andersson, T. (2006). A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. Journal of Biological Chemistry, 281(5), 2740–2749.PubMedCrossRef Safholm, A., Leandersson, K., Dejmek, J., Nielsen, C. K., Villoutreix, B. O., & Andersson, T. (2006). A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. Journal of Biological Chemistry, 281(5), 2740–2749.PubMedCrossRef
56.
go back to reference Safholm, A., Tuomela, J., Rosenkvist, J., Dejmek, J., Harkonen, P., & Andersson, T. (2008). The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clinical Cancer Research, 14(20), 6556–6563.PubMedCrossRef Safholm, A., Tuomela, J., Rosenkvist, J., Dejmek, J., Harkonen, P., & Andersson, T. (2008). The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clinical Cancer Research, 14(20), 6556–6563.PubMedCrossRef
57.
go back to reference Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., & Massagué, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 518–524.PubMedPubMedCentralCrossRef Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., & Massagué, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 518–524.PubMedPubMedCentralCrossRef
58.
go back to reference Canesin, G., Evans-Axelsson, S., Hellsten, R., Krzyzanowska, A., Prasad, C. P., Bjartell, A., & Andersson, T. (2017). Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS One, 12(9), e0184418.PubMedPubMedCentralCrossRef Canesin, G., Evans-Axelsson, S., Hellsten, R., Krzyzanowska, A., Prasad, C. P., Bjartell, A., & Andersson, T. (2017). Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS One, 12(9), e0184418.PubMedPubMedCentralCrossRef
Metadata
Title
WNT5A as a therapeutic target in breast cancer
Authors
Chandra Prakash Prasad
Mansi Manchanda
Purusottam Mohapatra
Tommy Andersson
Publication date
01-12-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9760-y

Other articles of this Issue 4/2018

Cancer and Metastasis Reviews 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine