Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2014

01-11-2014 | Preclinical Study

Wild-type p53 inhibits pro-invasive properties of TGF-β3 in breast cancer, in part through regulation of EPHB2, a new TGF-β target gene

Authors: Suzanne Lam, Eliza Wiercinska, Amina F. A. S. Teunisse, Kirsten Lodder, Peter ten Dijke, Aart G. Jochemsen

Published in: Breast Cancer Research and Treatment | Issue 1/2014

Login to get access

Abstract

The p53 tumor suppressor protein is primarily known for its important role in tumor suppression. In addition, p53 affects tumor cell migration, invasion, and epithelial-mesenchymal transition (EMT); processes also regulated by the transforming growth factor-β (TGF-β) signaling pathway. Here, we investigated the role of p53 in breast tumor cell invasion, migration, and EMT and examined the interplay of p53 with TGF-β3 in these processes. MCF-10A1 and MCF-10CA1a breast cancer cells were treated with Nutlin-3 and TGF-β3, and the effects on tumor cell migration and invasion were studied in transwell and 3D spheroid invasion assays. The effects of Nutlin-3 and TGF-β3 on EMT were examined in NMuMG cells. To identify genes involved in TGF-β-induced invasion that are modulated by p53, a Human Tumor Metastasis-specific RT-PCR array was performed. Verification of EPHB2 regulation by TGF-β3 and p53 was performed on breast cancer tumor cell lines. We demonstrate that p53 inhibits basal and TGF-β3-induced invasion, migration, and EMT in normal breast epithelial and breast cancer cells. Pharmacological activation of p53 inhibited induction of several TGF-β3 targets involved in TGF-β3-induced tumor cell invasion, i.e., matrix metallo proteinase (MMP)2, MMP9, and integrin β 3 . The ephrin-type B receptor 2 (EPHB2) gene was identified as a new TGF-β target important for TGF-β3-mediated invasion and migration, whose transcriptional activation by TGF-β3 is also inhibited by p53. The results show an intricate interplay between p53 and TGF-β3 whereby p53 inhibits the TGF-β3-induced expression of genes, e.g., EPHB2, to impede tumor cell invasion and migration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923PubMedCrossRef Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923PubMedCrossRef
2.
go back to reference de Oca Montes, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206CrossRef de Oca Montes, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206CrossRef
3.
go back to reference Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208PubMedCrossRef Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208PubMedCrossRef
4.
go back to reference Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, Lozano G (2001) Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95PubMedCrossRef Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, Lozano G (2001) Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95PubMedCrossRef
5.
go back to reference Migliorini D, Lazzerini DE, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG, Marine JC (2002) Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 22:5527–5538PubMedCrossRefPubMedCentral Migliorini D, Lazzerini DE, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG, Marine JC (2002) Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 22:5527–5538PubMedCrossRefPubMedCentral
6.
go back to reference Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP et al (2002) Mdmx is a negative regulator of p53 activity in vivo. Cancer Res 62:3221–3225PubMed Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP et al (2002) Mdmx is a negative regulator of p53 activity in vivo. Cancer Res 62:3221–3225PubMed
7.
go back to reference Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299PubMedCrossRef Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299PubMedCrossRef
8.
10.
go back to reference Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M (2003) HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 100:12009–12014PubMedCrossRefPubMedCentral Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M (2003) HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 100:12009–12014PubMedCrossRefPubMedCentral
11.
go back to reference Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G (2006) Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13:927–934PubMedCrossRef Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G (2006) Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13:927–934PubMedCrossRef
12.
go back to reference Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven, van Oordt et al (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15:5349–5357PubMedPubMedCentral Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven, van Oordt et al (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15:5349–5357PubMedPubMedCentral
13.
go back to reference Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83PubMedCrossRef Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83PubMedCrossRef
14.
go back to reference Landers JE, Haines DS, Strauss JF III, George DL (1994) Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9:2745–2750PubMed Landers JE, Haines DS, Strauss JF III, George DL (1994) Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9:2745–2750PubMed
15.
go back to reference Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H (1994) The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 84:3158–3165PubMed Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H (1994) The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 84:3158–3165PubMed
17.
go back to reference Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096PubMed Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096PubMed
18.
go back to reference Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG (2001) Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 61:1839–1842PubMed Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG (2001) Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 61:1839–1842PubMed
19.
go back to reference Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835–5843PubMedCrossRefPubMedCentral Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835–5843PubMedCrossRefPubMedCentral
20.
go back to reference Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66PubMedCrossRef Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66PubMedCrossRef
21.
go back to reference Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19:5826–5830PubMedCrossRef Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19:5826–5830PubMedCrossRef
22.
24.
go back to reference Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, Nixon C, Karim SA et al (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32:1252–1265PubMedCrossRefPubMedCentral Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, Nixon C, Karim SA et al (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32:1252–1265PubMedCrossRefPubMedCentral
25.
go back to reference Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA et al (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341PubMedCrossRef Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA et al (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341PubMedCrossRef
26.
go back to reference Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98PubMedCrossRef Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98PubMedCrossRef
27.
go back to reference Hwang CI, Matoso A, Corney DC, Flesken-Nikitin A, Korner S, Wang W, Boccaccio C, Thorgeirsson SS et al (2011) Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci USA 108:14240–14245PubMedCrossRefPubMedCentral Hwang CI, Matoso A, Corney DC, Flesken-Nikitin A, Korner S, Wang W, Boccaccio C, Thorgeirsson SS et al (2011) Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci USA 108:14240–14245PubMedCrossRefPubMedCentral
28.
go back to reference Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW et al (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704PubMedCrossRef Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW et al (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704PubMedCrossRef
29.
go back to reference Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875–883PubMedCrossRefPubMedCentral Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875–883PubMedCrossRefPubMedCentral
31.
go back to reference Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11:S44–S51PubMed Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11:S44–S51PubMed
32.
go back to reference Ghellal A, Li C, Hayes M, Byrne G, Bundred N, Kumar S (2000) Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res 20:4413–4418PubMed Ghellal A, Li C, Hayes M, Byrne G, Bundred N, Kumar S (2000) Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res 20:4413–4418PubMed
33.
go back to reference Sheen-Chen SM, Chen HS, Sheen CW, Eng HL, Chen WJ (2001) Serum levels of transforming growth factor beta1 in patients with breast cancer. Arch Surg 136:937–940PubMedCrossRef Sheen-Chen SM, Chen HS, Sheen CW, Eng HL, Chen WJ (2001) Serum levels of transforming growth factor beta1 in patients with breast cancer. Arch Surg 136:937–940PubMedCrossRef
34.
go back to reference Ivanovic V, Todorovic-Rakovic N, Demajo M, Neskovic-Konstantinovic Z, Subota V, Ivanisevic-Milovanovic O, Nikolic-Vukosavljevic D (2003) Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 39:454–461PubMedCrossRef Ivanovic V, Todorovic-Rakovic N, Demajo M, Neskovic-Konstantinovic Z, Subota V, Ivanisevic-Milovanovic O, Nikolic-Vukosavljevic D (2003) Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 39:454–461PubMedCrossRef
35.
go back to reference Desruisseau S, Palmari J, Giusti C, Romain S, Martin PM, Berthois Y (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94:239–246PubMedCrossRefPubMedCentral Desruisseau S, Palmari J, Giusti C, Romain S, Martin PM, Berthois Y (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94:239–246PubMedCrossRefPubMedCentral
36.
go back to reference ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273PubMedCrossRef ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273PubMedCrossRef
37.
go back to reference Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714PubMedCrossRef Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714PubMedCrossRef
38.
go back to reference Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314PubMedCrossRef Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314PubMedCrossRef
39.
go back to reference Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weisz L, Stambolsky P, Henis YI, Rotter V (2007) Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol 27:8228–8242PubMedCrossRefPubMedCentral Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weisz L, Stambolsky P, Henis YI, Rotter V (2007) Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol 27:8228–8242PubMedCrossRefPubMedCentral
40.
go back to reference Gomis RR, Alarcon C, Nadal C, Van PC, Massague J (2006) C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10:203–214PubMedCrossRef Gomis RR, Alarcon C, Nadal C, Van PC, Massague J (2006) C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10:203–214PubMedCrossRef
41.
go back to reference Wakefield LM, Piek E, Bottinger EP (2001) TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 6:67–82PubMedCrossRef Wakefield LM, Piek E, Bottinger EP (2001) TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 6:67–82PubMedCrossRef
42.
go back to reference Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2:125–132PubMedCrossRefPubMedCentral Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2:125–132PubMedCrossRefPubMedCentral
43.
go back to reference ten Dijke P, Goumans MJ, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16PubMedCrossRef ten Dijke P, Goumans MJ, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16PubMedCrossRef
44.
go back to reference Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209PubMedCrossRef Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209PubMedCrossRef
45.
go back to reference Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, Roncari L, Narimatsu M et al (2009) A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci USA 106:14028–14033PubMedCrossRefPubMedCentral Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, Roncari L, Narimatsu M et al (2009) A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci USA 106:14028–14033PubMedCrossRefPubMedCentral
46.
go back to reference Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172PubMedCrossRef Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172PubMedCrossRef
47.
go back to reference Termen S, Tan EJ, Heldin CH, Moustakas A (2013) p53 regulates epithelial-mesenchymal transition induced by transforming growth factor beta. J Cell Physiol 228:801–813PubMedCrossRef Termen S, Tan EJ, Heldin CH, Moustakas A (2013) p53 regulates epithelial-mesenchymal transition induced by transforming growth factor beta. J Cell Physiol 228:801–813PubMedCrossRef
48.
go back to reference Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD (2010) TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Investig 120:290–302PubMedCrossRefPubMedCentral Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD (2010) TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Investig 120:290–302PubMedCrossRefPubMedCentral
49.
go back to reference Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM (2012) Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology 55:121–131PubMedCrossRefPubMedCentral Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM (2012) Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology 55:121–131PubMedCrossRefPubMedCentral
50.
go back to reference Lam S, Lodder K, Teunisse AF, Rabelink MJ, Schutte M, Jochemsen AG (2010) Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 29:2415–2426PubMedCrossRef Lam S, Lodder K, Teunisse AF, Rabelink MJ, Schutte M, Jochemsen AG (2010) Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 29:2415–2426PubMedCrossRef
51.
go back to reference Uil TG, de Vrij J, Vellinga J, Rabelink MJ, Cramer SJ, Chan OY, Pugnali M, Magnusson M et al (2009) A lentiviral vector-based adenovirus fiber-pseudotyping approach for expedited functional assessment of candidate retargeted fibers. J Gene Med 11:990–1004PubMedCrossRef Uil TG, de Vrij J, Vellinga J, Rabelink MJ, Cramer SJ, Chan OY, Pugnali M, Magnusson M et al (2009) A lentiviral vector-based adenovirus fiber-pseudotyping approach for expedited functional assessment of candidate retargeted fibers. J Gene Med 11:990–1004PubMedCrossRef
52.
go back to reference Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA, Hoeben RC (2004) Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther 9:209–217PubMedCrossRef Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA, Hoeben RC (2004) Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther 9:209–217PubMedCrossRef
53.
go back to reference Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, ten Dijke P (2011) The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 128:657–666PubMedCrossRef Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, ten Dijke P (2011) The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 128:657–666PubMedCrossRef
54.
go back to reference Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19:5826–5830PubMedCrossRef Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19:5826–5830PubMedCrossRef
55.
go back to reference Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848PubMedCrossRef Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848PubMedCrossRef
56.
go back to reference López-Díaz FJ, Gascard P, Balakrishnan SK, Zhao J, Del Rincon SV, Spruck C, Tlsty TD, Emerson BM (2013) Coordinate transcriptional and translational repression of p53 by TGF-beta1 impairs the stress response. Mol Cell 50:552–564PubMedCrossRefPubMedCentral López-Díaz FJ, Gascard P, Balakrishnan SK, Zhao J, Del Rincon SV, Spruck C, Tlsty TD, Emerson BM (2013) Coordinate transcriptional and translational repression of p53 by TGF-beta1 impairs the stress response. Mol Cell 50:552–564PubMedCrossRefPubMedCentral
57.
go back to reference Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2:a000893PubMedPubMedCentral Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2:a000893PubMedPubMedCentral
58.
go back to reference Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843PubMedCrossRef Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843PubMedCrossRef
59.
go back to reference Zhang S, Ekman M, Thakur N, Bu S, Davoodpour P, Grimsby S, Tagami S, Heldin CH, Landstrom M (2006) TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner. Cell Cycle 5:2787–2795PubMedCrossRef Zhang S, Ekman M, Thakur N, Bu S, Davoodpour P, Grimsby S, Tagami S, Heldin CH, Landstrom M (2006) TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner. Cell Cycle 5:2787–2795PubMedCrossRef
60.
go back to reference Wang SE, Narasanna A, Whitell CW, Wu FY, Friedman DB, Arteaga CL (2007) Convergence of p53 and transforming growth factor beta (TGFbeta) signaling on activating expression of the tumor suppressor gene maspin in mammary epithelial cells. J Biol Chem 282:5661–5669PubMedCrossRefPubMedCentral Wang SE, Narasanna A, Whitell CW, Wu FY, Friedman DB, Arteaga CL (2007) Convergence of p53 and transforming growth factor beta (TGFbeta) signaling on activating expression of the tumor suppressor gene maspin in mammary epithelial cells. J Biol Chem 282:5661–5669PubMedCrossRefPubMedCentral
61.
go back to reference Yam CH, Siu WY, Arooz T, Chiu CH, Lau A, Wang XQ, Poon RY (1999) MDM2 and MDMX inhibit the transcriptional activity of ectopically expressed SMAD proteins. Cancer Res 59:5075–5078PubMed Yam CH, Siu WY, Arooz T, Chiu CH, Lau A, Wang XQ, Poon RY (1999) MDM2 and MDMX inhibit the transcriptional activity of ectopically expressed SMAD proteins. Cancer Res 59:5075–5078PubMed
62.
go back to reference Kadakia M, Brown TL, McGorry MM, Berberich SJ (2002) MdmX inhibits Smad transactivation. Oncogene 21:8776–8785PubMedCrossRef Kadakia M, Brown TL, McGorry MM, Berberich SJ (2002) MdmX inhibits Smad transactivation. Oncogene 21:8776–8785PubMedCrossRef
63.
go back to reference Wang SD, Rath P, Lal B, Richard JP, Li Y, Goodwin CR, Laterra J, Xia S (2012) EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 31:5132–5143PubMedCrossRefPubMedCentral Wang SD, Rath P, Lal B, Richard JP, Li Y, Goodwin CR, Laterra J, Xia S (2012) EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 31:5132–5143PubMedCrossRefPubMedCentral
64.
go back to reference Herath NI, Doecke J, Spanevello MD, Leggett BA, Boyd AW (2009) Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. Br J Cancer 100:1095–1102PubMedCrossRefPubMedCentral Herath NI, Doecke J, Spanevello MD, Leggett BA, Boyd AW (2009) Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. Br J Cancer 100:1095–1102PubMedCrossRefPubMedCentral
65.
go back to reference Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C, Boyd AW (2012) Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer 48:753–762PubMedCrossRef Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C, Boyd AW (2012) Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer 48:753–762PubMedCrossRef
66.
go back to reference Hafner C, Becker B, Landthaler M, Vogt T (2006) Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of EphA1 in nonmelanoma skin cancer. Mod Pathol 19:1369–1377PubMedCrossRef Hafner C, Becker B, Landthaler M, Vogt T (2006) Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of EphA1 in nonmelanoma skin cancer. Mod Pathol 19:1369–1377PubMedCrossRef
67.
go back to reference Hafner C, Bataille F, Meyer S, Becker B, Roesch A, Landthaler M, Vogt T (2003) Loss of EphB6 expression in metastatic melanoma. Int J Oncol 23:1553–1559PubMed Hafner C, Bataille F, Meyer S, Becker B, Roesch A, Landthaler M, Vogt T (2003) Loss of EphB6 expression in metastatic melanoma. Int J Oncol 23:1553–1559PubMed
68.
go back to reference Sikkema AH, den Dunnen WF, Hulleman E, van Vuurden DG, Garcia-Manero G, Yang H, Scherpen FJ, Kampen KR et al (2012) EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol 14:1125–1135PubMedCrossRefPubMedCentral Sikkema AH, den Dunnen WF, Hulleman E, van Vuurden DG, Garcia-Manero G, Yang H, Scherpen FJ, Kampen KR et al (2012) EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol 14:1125–1135PubMedCrossRefPubMedCentral
70.
go back to reference Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM (2004) Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 10:26–33PubMedCrossRef Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM (2004) Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 10:26–33PubMedCrossRef
71.
go back to reference Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, Thomas RD et al (2014) Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res 320:233–246PubMedCrossRef Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, Thomas RD et al (2014) Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res 320:233–246PubMedCrossRef
72.
go back to reference Wu Q, Suo Z, Kristensen GB, Baekelandt M, Nesland JM (2006) The prognostic impact of EphB2/B4 expression on patients with advanced ovarian carcinoma. Gynecol Oncol 102:15–21PubMedCrossRef Wu Q, Suo Z, Kristensen GB, Baekelandt M, Nesland JM (2006) The prognostic impact of EphB2/B4 expression on patients with advanced ovarian carcinoma. Gynecol Oncol 102:15–21PubMedCrossRef
73.
go back to reference Gao Q, Liu W, Cai J, Li M, Gao Y, Lin W, Li Z (2014) EphB2 promotes cervical cancer progression by inducing epithelial-mesenchymal transition. Hum Pathol 45:372–381PubMedCrossRef Gao Q, Liu W, Cai J, Li M, Gao Y, Lin W, Li Z (2014) EphB2 promotes cervical cancer progression by inducing epithelial-mesenchymal transition. Hum Pathol 45:372–381PubMedCrossRef
Metadata
Title
Wild-type p53 inhibits pro-invasive properties of TGF-β3 in breast cancer, in part through regulation of EPHB2, a new TGF-β target gene
Authors
Suzanne Lam
Eliza Wiercinska
Amina F. A. S. Teunisse
Kirsten Lodder
Peter ten Dijke
Aart G. Jochemsen
Publication date
01-11-2014
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2014
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-014-3147-8

Other articles of this Issue 1/2014

Breast Cancer Research and Treatment 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine