Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Research

White matter microstructural damage in early treated phenylketonuric patients

Authors: María Julieta González, Mónica Rebollo Polo, Pablo Ripollés, Rosa Gassió, Aída Ormazabal, Cristina Sierra, Roser Colomé Roura, Rafael Artuch, Jaume Campistol

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

Despite dietary intervention, individuals with early treated phenylketonuria (ETPKU) could present neurocognitive deficits and white matter (WM) abnormalities. The aim of the present study was to evaluate the microstructural integrity of WM pathways across the whole brain in a cohort of paediatric ETPKU patients compared with healthy controls (HCs), by collecting DTI-MRI (diffusion tensor magnetic resonance imaging) data and diffusion values (mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA)).

Methods

DTI-MRI data and diffusion values (MD, RD, FA) from WM tracts across the whole brain were analized using Tract Based Spatial Statistics (TBSS), in 15 paediatrics TPKU patients (median age: 12 years) and compared with 11 HCs. Areas showing abnormal values in the patient group were correlated (Pearson) with age, lifetime Phe values, last year median and mean Phe, concurrent Phe values in plasma, urine neurotransmitters status biomarkers, and with a processing speed task.

Results

ETPKU showed bilaterally decreased MD values compared with HCs in the body and splenium of the corpus callosum, superior longitudinal fasciculus, corona radiata and in the posterior limb of the internal capsule. RD values followed a similar pattern, although decreased RD values in PKU patients were also found in the anterior limb of the internal capsule and in the cerebral peduncle. Decreased MD and RD values within the aforementioned regions had significant negative correlations with age, last year median and mean Phe and concurrent Phe values. No correlations were found with monoamines in urine or processing speed task.

Conclusions

ETPKU patients showed MD and RD values significantly decreased across the whole brain when compared with HCs, and this damage was associated with high Phe values and the age of patients. Despite this microstructural damage, no affectation in processing speed was observed in patients with good metabolic control. DTI-MRI sequences could be used as a technique to quantify WM damage that is difficult to be detect in T1 or T2-weighted images, but also to quantify damage of WM through the follow up of patients with poor metabolic control in prospective studies.
Literature
1.
go back to reference Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376(9750):1417–27.CrossRef Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376(9750):1417–27.CrossRef
2.
go back to reference Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.CrossRef Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.CrossRef
3.
go back to reference Hüppi PS, Dubois J. Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med. 2006;11(6):489–97.CrossRef Hüppi PS, Dubois J. Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med. 2006;11(6):489–97.CrossRef
4.
go back to reference Yoshida S, Oishi K, Faria AV, Mori S. Diffusion tensor imaging of normal brain development. Pediatr Radiol. 2013;43(1):15–27.CrossRef Yoshida S, Oishi K, Faria AV, Mori S. Diffusion tensor imaging of normal brain development. Pediatr Radiol. 2013;43(1):15–27.CrossRef
5.
go back to reference Sen PN, Basser PJ. A model for diffusion in white matter in the brain. Biophys J. 2005;89(5):2927–38.CrossRef Sen PN, Basser PJ. A model for diffusion in white matter in the brain. Biophys J. 2005;89(5):2927–38.CrossRef
6.
go back to reference Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011;1(6):423–46.CrossRef Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011;1(6):423–46.CrossRef
7.
go back to reference Vermathen P, Robert-Tissot L, Pietz J, Lutz T, Boesch C, Kreis R. Characterization of white matter alterations in phenylketonuria by magnetic resonance relaxometry and diffusion tensor imaging. Magn Reson Med. 2007;58(6):1145–56.CrossRef Vermathen P, Robert-Tissot L, Pietz J, Lutz T, Boesch C, Kreis R. Characterization of white matter alterations in phenylketonuria by magnetic resonance relaxometry and diffusion tensor imaging. Magn Reson Med. 2007;58(6):1145–56.CrossRef
8.
go back to reference White DA, Connor LT, Nardos B, Shimony JS, Archer R, Snyder AZ, et al. Age-related decline in the microstructural integrity of white matter in children with early- and continuously-treated PKU: a DTI study of the corpus callosum. Mol Genet Metab. 2010;99(Suppl 1):41–6.CrossRef White DA, Connor LT, Nardos B, Shimony JS, Archer R, Snyder AZ, et al. Age-related decline in the microstructural integrity of white matter in children with early- and continuously-treated PKU: a DTI study of the corpus callosum. Mol Genet Metab. 2010;99(Suppl 1):41–6.CrossRef
9.
go back to reference White DA, Antenor-Dorsey JA, Grange DK, Hershey T, Rutlin J, Shimony JS, et al. White matter integrity and executive abilities following treatment with tetrahydrobiopterin (BH4) in individuals with phenylketonuria. Mol Genet Metab. 2013;110(3):213–7.CrossRef White DA, Antenor-Dorsey JA, Grange DK, Hershey T, Rutlin J, Shimony JS, et al. White matter integrity and executive abilities following treatment with tetrahydrobiopterin (BH4) in individuals with phenylketonuria. Mol Genet Metab. 2013;110(3):213–7.CrossRef
10.
go back to reference Antenor-Dorsey JA, Hershey T, Rutlin J, Shimony JS, McKinstry RC, Grange DK, et al. White matter integrity and executive abilities in individuals with phenylketonuria. Mol Genet Metab. 2013;109(2):125–31.CrossRef Antenor-Dorsey JA, Hershey T, Rutlin J, Shimony JS, McKinstry RC, Grange DK, et al. White matter integrity and executive abilities in individuals with phenylketonuria. Mol Genet Metab. 2013;109(2):125–31.CrossRef
11.
go back to reference Peng H, Peck D, White DA, Christ SE. Tract-based evaluation of white matter damage in individuals with early-treated phenylketonuria. J Inherit Metab Dis. 2014;37(2):237–43.CrossRef Peng H, Peck D, White DA, Christ SE. Tract-based evaluation of white matter damage in individuals with early-treated phenylketonuria. J Inherit Metab Dis. 2014;37(2):237–43.CrossRef
12.
go back to reference Wesonga E, Shimony JS, Rutlin J, Grange DK, White DA. Relationship between age and white matter integrity in children with phenylketonuria. Mol Genet Metab Rep. 2016;8(7):45–9.CrossRef Wesonga E, Shimony JS, Rutlin J, Grange DK, White DA. Relationship between age and white matter integrity in children with phenylketonuria. Mol Genet Metab Rep. 2016;8(7):45–9.CrossRef
13.
go back to reference Hood A, Antenor-Dorsey JA, Rutlin J, Hershey T, Shimony JS, McKinstry RC, et al. Prolonged exposure to high and variable phenylalanine levels over the lifetime predicts brain white matter integrity in children with phenylketonuria. Mol Genet Metab. 2015;114(1):19–24.CrossRef Hood A, Antenor-Dorsey JA, Rutlin J, Hershey T, Shimony JS, McKinstry RC, et al. Prolonged exposure to high and variable phenylalanine levels over the lifetime predicts brain white matter integrity in children with phenylketonuria. Mol Genet Metab. 2015;114(1):19–24.CrossRef
14.
go back to reference Hood A, Rutlin J, Shimony JS, Grange DK, White DA. Brain white matter integrity mediates the relationship between phenylalanine control and executive abilities in children with phenylketonuria. JIMD Rep. 2016;33:41–7.CrossRef Hood A, Rutlin J, Shimony JS, Grange DK, White DA. Brain white matter integrity mediates the relationship between phenylalanine control and executive abilities in children with phenylketonuria. JIMD Rep. 2016;33:41–7.CrossRef
15.
go back to reference Ding XQ, Fiehler J, Kohlschütter B, Wittkugel O, Grzyska U, Zeumer H, et al. MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J Magn Reson Imaging. 2008;27(5):998–1004.CrossRef Ding XQ, Fiehler J, Kohlschütter B, Wittkugel O, Grzyska U, Zeumer H, et al. MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J Magn Reson Imaging. 2008;27(5):998–1004.CrossRef
16.
go back to reference Leuzzi V, Tosetti M, Montanaro D, Carducci C, Artiola C, Carducci C, et al. The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla MRI and magnetic resonance spectroscopy (1H MRS) study. J Inherit Metab Dis. 2007;30(2):209–16.CrossRef Leuzzi V, Tosetti M, Montanaro D, Carducci C, Artiola C, Carducci C, et al. The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla MRI and magnetic resonance spectroscopy (1H MRS) study. J Inherit Metab Dis. 2007;30(2):209–16.CrossRef
17.
go back to reference Dyer CA. Pathophysiology of phenylketonuria. Ment Retard Dev Disabil Res Rev. 1999;5:104–12.CrossRef Dyer CA. Pathophysiology of phenylketonuria. Ment Retard Dev Disabil Res Rev. 1999;5:104–12.CrossRef
18.
go back to reference Janos AL, Grange DK, Steiner RD, White DA. Processing speed and executive abilities in children with phenylketonuria. Neuropsychology. 2012;26(6):735–43.CrossRef Janos AL, Grange DK, Steiner RD, White DA. Processing speed and executive abilities in children with phenylketonuria. Neuropsychology. 2012;26(6):735–43.CrossRef
19.
go back to reference Pardridge WM. Blood-brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert Opin Ther Targets. 2015;19(8):1059–72.CrossRef Pardridge WM. Blood-brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert Opin Ther Targets. 2015;19(8):1059–72.CrossRef
20.
go back to reference Güttler F, Lou H. Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis. 1986;9(Suppl 2):169–77.CrossRef Güttler F, Lou H. Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis. 1986;9(Suppl 2):169–77.CrossRef
21.
go back to reference Ribas GS, Sitta A, Wajner M, Vargas CR. Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol. 2011;31(5):653–62.CrossRef Ribas GS, Sitta A, Wajner M, Vargas CR. Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol. 2011;31(5):653–62.CrossRef
22.
go back to reference González MJ, Gassió R, Artuch R, Campistol J. Impaired neurotransmission in early-treated pnhenylketonuria patients. Semin Pediatr Neurol. 2016;23(4):332–40.CrossRef González MJ, Gassió R, Artuch R, Campistol J. Impaired neurotransmission in early-treated pnhenylketonuria patients. Semin Pediatr Neurol. 2016;23(4):332–40.CrossRef
23.
go back to reference Van Spronsen FJ, Hoeksma M, Reijngoud DJ. Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis. 2009;32:46–51.CrossRef Van Spronsen FJ, Hoeksma M, Reijngoud DJ. Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis. 2009;32:46–51.CrossRef
24.
go back to reference De Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ. Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab. 2010;99(Suppl 1):86–9.CrossRef De Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ. Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab. 2010;99(Suppl 1):86–9.CrossRef
25.
go back to reference Grace AA, Gerfen CR, Aston-Jones G. Catecholamines in the central nervous system: overview. Adv Pharmacol. 1998;42:655–70.CrossRef Grace AA, Gerfen CR, Aston-Jones G. Catecholamines in the central nervous system: overview. Adv Pharmacol. 1998;42:655–70.CrossRef
26.
go back to reference Vilaseca MA, Campistol J, Cambra FJ, Lambruschini N. Index of dietary control of PKU patients. Quím Clin. 1995;14:271. Vilaseca MA, Campistol J, Cambra FJ, Lambruschini N. Index of dietary control of PKU patients. Quím Clin. 1995;14:271.
27.
go back to reference Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62(2):782–90.CrossRef Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62(2):782–90.CrossRef
28.
go back to reference Leemans A, Jones DK. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med. 2009;61(6):1336–49.CrossRef Leemans A, Jones DK. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med. 2009;61(6):1336–49.CrossRef
29.
go back to reference Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–55.CrossRef Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–55.CrossRef
30.
go back to reference Wang R, Wedeen VJ. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital. Development of TrackVis is funded by MGHGCRC and NIMH Grant 5R01MH064044. http://trackvis.org/dtk/ Wang R, Wedeen VJ. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital. Development of TrackVis is funded by MGHGCRC and NIMH Grant 5R01MH064044. http://​trackvis.​org/​dtk/​
31.
go back to reference Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.CrossRef Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.CrossRef
33.
go back to reference Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44(1):83–98.CrossRef Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44(1):83–98.CrossRef
34.
go back to reference Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25.CrossRef Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25.CrossRef
36.
go back to reference Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage. 2008;39(1):336–47.CrossRef Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage. 2008;39(1):336–47.CrossRef
37.
go back to reference Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, et al. Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage. 2011;55(4):1454–60.CrossRef Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, et al. Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage. 2011;55(4):1454–60.CrossRef
38.
go back to reference Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361–70.CrossRef Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361–70.CrossRef
39.
go back to reference Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 2012;15(4):528–36.CrossRef Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 2012;15(4):528–36.CrossRef
40.
go back to reference Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.CrossRef Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.CrossRef
41.
go back to reference Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–203.CrossRef Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–203.CrossRef
42.
go back to reference Van Spronsen FJ, van Wegberg AM, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017;5(9):743–56.CrossRef Van Spronsen FJ, van Wegberg AM, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017;5(9):743–56.CrossRef
43.
go back to reference Wechsler D. Wechsler intelligence scale for children. 4th ed. (WISC-IV). Madrid: TEA Ediciones; 2007. Wechsler D. Wechsler intelligence scale for children. 4th ed. (WISC-IV). Madrid: TEA Ediciones; 2007.
44.
go back to reference Wechsler D. Wechsler intelligence scale for adults. 3rd ed. Madrid: TEA Ediciones; 1999. Wechsler D. Wechsler intelligence scale for adults. 3rd ed. Madrid: TEA Ediciones; 1999.
45.
go back to reference Rey A. Rey-Osterrieth complex figure test. Madrid: TEA Ediciones; 2003. Rey A. Rey-Osterrieth complex figure test. Madrid: TEA Ediciones; 2003.
46.
go back to reference Strauss E, Sherman EMS, Spreen O. Trail Making Test. In: Strauss E, Sherman EMS, Spreen O, editors. A compendium of neuropsychological tests. Administration, norms, and commentary. New York: Oxford University Press; 2006. p. 655–77. Strauss E, Sherman EMS, Spreen O. Trail Making Test. In: Strauss E, Sherman EMS, Spreen O, editors. A compendium of neuropsychological tests. Administration, norms, and commentary. New York: Oxford University Press; 2006. p. 655–77.
47.
go back to reference Korkman M, Kirk U, Kemp S. NEPSY-II. Madrid: Pearson Clinical; 2014. Korkman M, Kirk U, Kemp S. NEPSY-II. Madrid: Pearson Clinical; 2014.
49.
go back to reference Culbertson W, Zillmer E. Tower of London- Drexel University TOLDX. Multi health systems: Canada; 2005. Culbertson W, Zillmer E. Tower of London- Drexel University TOLDX. Multi health systems: Canada; 2005.
50.
go back to reference Kono K, Okano Y, Nakayama K, Hase Y, Minamikawa S, Ozawa N, et al. Diffusion-weighted MR imaging in patients with phenylketonuria: relationship between serum phenylalanine levels and ADC values in cerebral white matter. Radiology. 2005;236(2):630–6.CrossRef Kono K, Okano Y, Nakayama K, Hase Y, Minamikawa S, Ozawa N, et al. Diffusion-weighted MR imaging in patients with phenylketonuria: relationship between serum phenylalanine levels and ADC values in cerebral white matter. Radiology. 2005;236(2):630–6.CrossRef
51.
go back to reference Scarabino T, Popolizio T, Tosetti M, Montanaro D, Giannatempo GM, Terlizzi R, et al. Phenylketonuria: white-matter changes assessed by 3.0-T magnetic resonance imaging (MR), MR spectroscopy and MR diffusion. Radiol Med. 2009;114(3):461–74.CrossRef Scarabino T, Popolizio T, Tosetti M, Montanaro D, Giannatempo GM, Terlizzi R, et al. Phenylketonuria: white-matter changes assessed by 3.0-T magnetic resonance imaging (MR), MR spectroscopy and MR diffusion. Radiol Med. 2009;114(3):461–74.CrossRef
52.
go back to reference Villasana D, Butler IJ, Williams JC, Roongta SM. Neurological deterioration in adult phenylketonuria. J Inherit Metab Dis. 1989;12(4):451–7.CrossRef Villasana D, Butler IJ, Williams JC, Roongta SM. Neurological deterioration in adult phenylketonuria. J Inherit Metab Dis. 1989;12(4):451–7.CrossRef
53.
go back to reference Thompson AJ, Smith I, Brenton D, Youl BD, Rylance G, Davidson DC, et al. Neurological deterioration in young adults with phenylketonuria. Lancet. 1990;336(8715):602–5.CrossRef Thompson AJ, Smith I, Brenton D, Youl BD, Rylance G, Davidson DC, et al. Neurological deterioration in young adults with phenylketonuria. Lancet. 1990;336(8715):602–5.CrossRef
54.
go back to reference Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP. Brain MRI Changes in phenylketonuria. Associations with dietary status. Brain. 1993;116(4):811–21.CrossRef Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP. Brain MRI Changes in phenylketonuria. Associations with dietary status. Brain. 1993;116(4):811–21.CrossRef
55.
go back to reference Bick U, Fahrendorf G, Ludolph AC, Vassallo P, Weglage J, Ullrich K. Disturbed myelination in patients with treated hyperphenylalaninaemia: evaluation with magnetic resonance imaging. Eur J Pediatr. 1991;150(3):185–9.CrossRef Bick U, Fahrendorf G, Ludolph AC, Vassallo P, Weglage J, Ullrich K. Disturbed myelination in patients with treated hyperphenylalaninaemia: evaluation with magnetic resonance imaging. Eur J Pediatr. 1991;150(3):185–9.CrossRef
56.
go back to reference Bick U, Ullrich K, Stöber U, Möller H, Schuierer G, Ludolph A, et al. White matter abnormalities in patients with treated hyperphenylalaninaemia: magnetic resonance relaxometry and proton spectroscopy findings. Eur J Pediatr. 1993;152(12):1012–20.CrossRef Bick U, Ullrich K, Stöber U, Möller H, Schuierer G, Ludolph A, et al. White matter abnormalities in patients with treated hyperphenylalaninaemia: magnetic resonance relaxometry and proton spectroscopy findings. Eur J Pediatr. 1993;152(12):1012–20.CrossRef
57.
go back to reference Cleary M, Walter J, Wraith J, Jenkins J, Alani S, Tyler K, et al. Magnetic resonance imaging of the brain in phenylketonuria. Lancet. 1994;344:87–90.CrossRef Cleary M, Walter J, Wraith J, Jenkins J, Alani S, Tyler K, et al. Magnetic resonance imaging of the brain in phenylketonuria. Lancet. 1994;344:87–90.CrossRef
58.
go back to reference Phillips M, McGraw P, Lowe MJ, Mathews VP, Hainline BE. Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. Am J Neuroradiol. 2001;8:1583–6. Phillips M, McGraw P, Lowe MJ, Mathews VP, Hainline BE. Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. Am J Neuroradiol. 2001;8:1583–6.
59.
go back to reference Anderson PJ, Wood SJ, Francis DE, Coleman L, Warwick L, Casanelia S, et al. Neuropsychological functioning in children with early-treated phenylketonuria: impact of white matter abnormalities. Dev Med Child Neurol. 2004;46(4):230–8.CrossRef Anderson PJ, Wood SJ, Francis DE, Coleman L, Warwick L, Casanelia S, et al. Neuropsychological functioning in children with early-treated phenylketonuria: impact of white matter abnormalities. Dev Med Child Neurol. 2004;46(4):230–8.CrossRef
60.
go back to reference Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8(7–8):333–44.CrossRef Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8(7–8):333–44.CrossRef
61.
go back to reference Song SK, Yoshino J, Le TQ, Lin SJ, Sun S, Cross AH, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26(1):132–40.CrossRef Song SK, Yoshino J, Le TQ, Lin SJ, Sun S, Cross AH, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26(1):132–40.CrossRef
62.
go back to reference Scantlebury N, Cunningham T, Dockstader C, Laughlin S, Gaetz W, Rockel C, et al. Relations between white matter maturation and reaction time in childhood. J Int Neuropsychol Soc. 2014;20(1):99–112.CrossRef Scantlebury N, Cunningham T, Dockstader C, Laughlin S, Gaetz W, Rockel C, et al. Relations between white matter maturation and reaction time in childhood. J Int Neuropsychol Soc. 2014;20(1):99–112.CrossRef
63.
go back to reference Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R, et al. Cerebral white matter integrity mediates adult age differences in cognitive performance. J Cogn Neurosci. 2009;21(2):289–302.CrossRef Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R, et al. Cerebral white matter integrity mediates adult age differences in cognitive performance. J Cogn Neurosci. 2009;21(2):289–302.CrossRef
64.
go back to reference Benitez A, Jensen JH, Falangola MF, Nietert PJ, Helpern JA. Modeling white matter tract integrity in aging with diffusional kurtosis imaging. Neurobiol Aging. 2018;70:265–75.CrossRef Benitez A, Jensen JH, Falangola MF, Nietert PJ, Helpern JA. Modeling white matter tract integrity in aging with diffusional kurtosis imaging. Neurobiol Aging. 2018;70:265–75.CrossRef
65.
go back to reference Crawford JR, Howell DC. Regression equations in clinical neuropsychology: an evaluation of statistical methods for comparing predicted and obtained scores. J Clin Exp Neuropsychol. 1998;20(5):755–62.CrossRef Crawford JR, Howell DC. Regression equations in clinical neuropsychology: an evaluation of statistical methods for comparing predicted and obtained scores. J Clin Exp Neuropsychol. 1998;20(5):755–62.CrossRef
66.
go back to reference Crawford JR, Garthwaite PH. Single-case research in neuropsychology: a comparison of five forms of t-test for comparing a case to controls. Cortex. 2012;48:1009–16.CrossRef Crawford JR, Garthwaite PH. Single-case research in neuropsychology: a comparison of five forms of t-test for comparing a case to controls. Cortex. 2012;48:1009–16.CrossRef
67.
go back to reference Tuomiranta LM, Camara E, Froudist WS, Ripolles P, Saunavaara JP, Parkkola R, et al. Hidden word learning capacity through orthography in aphasia. Cortex. 2014;50:174–91.CrossRef Tuomiranta LM, Camara E, Froudist WS, Ripolles P, Saunavaara JP, Parkkola R, et al. Hidden word learning capacity through orthography in aphasia. Cortex. 2014;50:174–91.CrossRef
68.
go back to reference Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A. Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol. 2007;32(2):645–68.CrossRef Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A. Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol. 2007;32(2):645–68.CrossRef
Metadata
Title
White matter microstructural damage in early treated phenylketonuric patients
Authors
María Julieta González
Mónica Rebollo Polo
Pablo Ripollés
Rosa Gassió
Aída Ormazabal
Cristina Sierra
Roser Colomé Roura
Rafael Artuch
Jaume Campistol
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0912-5

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue