Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 1/2009

01-02-2009 | BH4 and PKU

Brain dysfunction in phenylketonuria: Is phenylalanine toxicity the only possible cause?

Authors: F. J. van Spronsen, Marieke Hoeksma, Dirk-Jan Reijngoud

Published in: Journal of Inherited Metabolic Disease | Issue 1/2009

Login to get access

Summary

In phenylketonuria, mental retardation is prevented by a diet that severely restricts natural protein and is supplemented with a phenylalanine-free amino acid mixture. The result is an almost normal outcome, although some neuropsychological disturbances remain. The pathology underlying cognitive dysfunction in phenylketonuria is unknown, although it is clear that the high plasma concentrations of phenylalanine influence the blood–brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into brain and restrict the entry of other large neutral amino acids. In the literature, emphasis has been on high brain phenylalanine as the pathological substrate that causes mental retardation. Phenylalanine was found to interfere with different cerebral enzyme systems. However, apart from the neurotoxicity of phenylalanine, a deficiency of the other large neutral amino acids in brain may also be an important factor affecting cognitive function in phenylketonuria. Cerebral protein synthesis was found to be disturbed in a mouse model of phenylketonuria and could be caused by shortage of large neutral amino acids instead of high levels of phenylalanine. Therefore, in this review we emphasize the possibility of a different idea about the pathogenesis of mental dysfunction in phenylketonuria patients and the aim of treatment strategies. The aim of treatment in phenylketonuria might be to normalize cerebral concentrations of all large neutral amino acids rather than prevent high cerebral phenylalanine concentrations alone. In-depth studies are necessary to investigate the role of large neutral amino acid deficiencies in brain.
Literature
go back to reference Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A (2007) Are neuropsychological impairments in children with earl-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol 32: 645–668.PubMedCrossRef Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A (2007) Are neuropsychological impairments in children with earl-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol 32: 645–668.PubMedCrossRef
go back to reference Antoshechkin AG, Chentsova TV, Tatur VY, Naritsin DB, Railian GP (1991) Content of phenylalanine, tyrosine and their metabolites in CSF in phenylketonuria. J Inherit Metab Dis 14: 749–754. doi:10.1007/BF01799945.PubMedCrossRef Antoshechkin AG, Chentsova TV, Tatur VY, Naritsin DB, Railian GP (1991) Content of phenylalanine, tyrosine and their metabolites in CSF in phenylketonuria. J Inherit Metab Dis 14: 749–754. doi:10.​1007/​BF01799945.PubMedCrossRef
go back to reference Bonafé L, Blau N, Burlina AP, et al (2001) Treatable neurotransmitter deficiency in mild phenylketonuria. Neurology 57: 908–911.PubMed Bonafé L, Blau N, Burlina AP, et al (2001) Treatable neurotransmitter deficiency in mild phenylketonuria. Neurology 57: 908–911.PubMed
go back to reference Burlina AB, Bonafé L, Ferrari V, et al (2000) Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. J Inherit Metab Dis 2000; 23: 313–316. doi:10.1023/A:1005694122277.PubMedCrossRef Burlina AB, Bonafé L, Ferrari V, et al (2000) Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. J Inherit Metab Dis 2000; 23: 313–316. doi:10.​1023/​A:​1005694122277.PubMedCrossRef
go back to reference Butler IJ, O’Flynn ME, Seifert WE, Jr, Howell RR (1981) Neurotransmitter defects and treatment of disorders of hyperphenylalaninemia. J Pediatr 98: 729–733.PubMedCrossRef Butler IJ, O’Flynn ME, Seifert WE, Jr, Howell RR (1981) Neurotransmitter defects and treatment of disorders of hyperphenylalaninemia. J Pediatr 98: 729–733.PubMedCrossRef
go back to reference Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB (1994) An animal model of early-treated PKU. J Neurosci 14: 3072–3082.PubMed Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB (1994) An animal model of early-treated PKU. J Neurosci 14: 3072–3082.PubMed
go back to reference Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137 (Supplement 1): 1539S–1547S.PubMedCrossRef Fernstrom JD, Fernstrom MH (2007) Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 137 (Supplement 1): 1539S–1547S.PubMedCrossRef
go back to reference Guttler F, Lou H (1986) Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis 9 (Supplement 2): 169–177. doi:10.1007/BF01799701.PubMedCrossRef Guttler F, Lou H (1986) Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis 9 (Supplement 2): 169–177. doi:10.​1007/​BF01799701.PubMedCrossRef
go back to reference Huijbregts SCJ, de Sonneville LMJ, van Spronsen FJ, Licht R, Sergeant JA (2002) The neuropsychological profile of early and continuously treated phenylketonuria: orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neurosci Biobehav Rev 26: 697–712. doi:10.1016/S0149-7634(02)00040-4.PubMedCrossRef Huijbregts SCJ, de Sonneville LMJ, van Spronsen FJ, Licht R, Sergeant JA (2002) The neuropsychological profile of early and continuously treated phenylketonuria: orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neurosci Biobehav Rev 26: 697–712. doi:10.​1016/​S0149-7634(02)00040-4.PubMedCrossRef
go back to reference Lykkelund C, Nielsen JB, Lou HC, et al (1988) Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 148: 238–245. doi:10.1007/BF00441411.PubMedCrossRef Lykkelund C, Nielsen JB, Lou HC, et al (1988) Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 148: 238–245. doi:10.​1007/​BF00441411.PubMedCrossRef
go back to reference Nishihira T, Takagi T, Mori S (1993) Amino acid imbalance and intracellular protein synthesis. Nutrition 9: 37–42.PubMed Nishihira T, Takagi T, Mori S (1993) Amino acid imbalance and intracellular protein synthesis. Nutrition 9: 37–42.PubMed
go back to reference Pietz J, Kreis R, Rupp A, et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103: 1169–1178. doi:10.1172/JCI5017.PubMedCrossRef Pietz J, Kreis R, Rupp A, et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103: 1169–1178. doi:10.​1172/​JCI5017.PubMedCrossRef
go back to reference Pratt OEA (1980) New approach to the treatment of phenylketonuria. J Ment Defic Res 24: 203–217.PubMed Pratt OEA (1980) New approach to the treatment of phenylketonuria. J Ment Defic Res 24: 203–217.PubMed
go back to reference Schmidt E, Burgard P, Rupp A (1996) Effects of concurrent phenylalanine levels on sustained attention and calculation speed in patients treated early for phenylketonuria. Eur J Pediatr 155(Supplement 1): S82–S86. doi:10.1007/PL00014258.PubMedCrossRef Schmidt E, Burgard P, Rupp A (1996) Effects of concurrent phenylalanine levels on sustained attention and calculation speed in patients treated early for phenylketonuria. Eur J Pediatr 155(Supplement 1): S82–S86. doi:10.​1007/​PL00014258.PubMedCrossRef
go back to reference Scriver CR (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, SlyWS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of InheritedDisease, 8th edn. New York: McGraw-Hill, 1667–1724. Scriver CR (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, SlyWS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of InheritedDisease, 8th edn. New York: McGraw-Hill, 1667–1724.
go back to reference Shiman R, Akino M, Kaufman S (1971) Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem 246: 1330–1340.PubMed Shiman R, Akino M, Kaufman S (1971) Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem 246: 1330–1340.PubMed
go back to reference Ullrich K, Weglage J, Oberwittler C, et al (1994) Effect of l-dopa on pattern visual evoked potentials (P-100) and neuropsychological tests in untreated adult patients with phenylketonuria. J Inherit Metab Dis 17: 349–352. doi:10.1007/BF00711827.PubMedCrossRef Ullrich K, Weglage J, Oberwittler C, et al (1994) Effect of l-dopa on pattern visual evoked potentials (P-100) and neuropsychological tests in untreated adult patients with phenylketonuria. J Inherit Metab Dis 17: 349–352. doi:10.​1007/​BF00711827.PubMedCrossRef
go back to reference van Spronsen FJ, van RM, Bekhof J, Koch R, Smit PG (2001) Phenylketonuria: tyrosine supplementation in phenylalanine-restricted diets. Am J Clin Nutr 73: 153–157.PubMed van Spronsen FJ, van RM, Bekhof J, Koch R, Smit PG (2001) Phenylketonuria: tyrosine supplementation in phenylalanine-restricted diets. Am J Clin Nutr 73: 153–157.PubMed
go back to reference Weglage J, Pietsch M, Funders B, Koch HG, Ullrich K (1996) Deficits in selective and sustained attention processes in early treated children with phenylketonuria—result of impaired frontal lobe functions? Eur J Pediatr 155: 200–204. doi:10.1007/BF01953938.PubMedCrossRef Weglage J, Pietsch M, Funders B, Koch HG, Ullrich K (1996) Deficits in selective and sustained attention processes in early treated children with phenylketonuria—result of impaired frontal lobe functions? Eur J Pediatr 155: 200–204. doi:10.​1007/​BF01953938.PubMedCrossRef
go back to reference Weglage J, Wiedermann D, Moller H, Ullrich K (1998) Pathogenesis of different clinical outcomes in spite of identical genotypes and comparable blood phenylalanine concentrations in phenylketonurics. J Inherit Metab Dis 21: 181–182. doi:10.1023/A:1005328717095.PubMedCrossRef Weglage J, Wiedermann D, Moller H, Ullrich K (1998) Pathogenesis of different clinical outcomes in spite of identical genotypes and comparable blood phenylalanine concentrations in phenylketonurics. J Inherit Metab Dis 21: 181–182. doi:10.​1023/​A:​1005328717095.PubMedCrossRef
go back to reference Weglage J, Wiedermann D, Denecke J, et al (2001) Individual blood–brain barrier phenylalanine transport determines clinical outcome in phenylketonuria. Ann Neurol 50: 463–467. doi:10.1002/ana.1226.PubMedCrossRef Weglage J, Wiedermann D, Denecke J, et al (2001) Individual blood–brain barrier phenylalanine transport determines clinical outcome in phenylketonuria. Ann Neurol 50: 463–467. doi:10.​1002/​ana.​1226.PubMedCrossRef
go back to reference Welsh MC, Pennington BF, Ozonoff S, Rouse B, McCabe ER (1990) Neuropsychology of early-treated phenylketonuria: specific executive function deficits. Child Dev 61: 1697–1713. doi:10.2307/1130832.PubMedCrossRef Welsh MC, Pennington BF, Ozonoff S, Rouse B, McCabe ER (1990) Neuropsychology of early-treated phenylketonuria: specific executive function deficits. Child Dev 61: 1697–1713. doi:10.​2307/​1130832.PubMedCrossRef
go back to reference White DA, Nortz MJ, Mandernach T, Huntington K, Steiner RD (2001) Deficits in memory strategy use related to prefrontal dysfunction during early development: evidence from children with phenylketonuria. Neuropsychology 15: 221–229. doi:10.1037/0894-4105.15.2.221.PubMedCrossRef White DA, Nortz MJ, Mandernach T, Huntington K, Steiner RD (2001) Deficits in memory strategy use related to prefrontal dysfunction during early development: evidence from children with phenylketonuria. Neuropsychology 15: 221–229. doi:10.​1037/​0894-4105.​15.​2.​221.PubMedCrossRef
go back to reference White DA, Nortz MJ, Mandernach T, Huntington K, Steiner RD (2002) Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. J Int Neuropsychol Soc 8(1): 1–11. doi:10.1017/S1355617702811018.PubMedCrossRef White DA, Nortz MJ, Mandernach T, Huntington K, Steiner RD (2002) Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. J Int Neuropsychol Soc 8(1): 1–11. doi:10.​1017/​S135561770281101​8.PubMedCrossRef
go back to reference Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A (1999) Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. J Neurosci 19: 6175–6182. Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A (1999) Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. J Neurosci 19: 6175–6182.
Metadata
Title
Brain dysfunction in phenylketonuria: Is phenylalanine toxicity the only possible cause?
Authors
F. J. van Spronsen
Marieke Hoeksma
Dirk-Jan Reijngoud
Publication date
01-02-2009
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 1/2009
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-008-0946-2

Other articles of this Issue 1/2009

Journal of Inherited Metabolic Disease 1/2009 Go to the issue