Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Where have all the mosquito nets gone? Spatial modelling reveals mosquito net distributions across Tanzania do not target optimal Anopheles mosquito habitats

Authors: Emily S. Acheson, Andrew A. Plowright, Jeremy T. Kerr

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Malaria remains the deadliest vector-borne disease despite long-term, costly control efforts. The United Republic of Tanzania has implemented countrywide anti-malarial interventions over more than a decade, including national insecticide-treated net (ITN) rollouts and subsequent monitoring. While previous analyses have compared spatial variation in malaria endemicity with ITN distributions, no study has yet compared Anopheles habitat suitability to determine proper allocation of ITNs. This study assesses where mosquitoes were most likely to thrive before implementation of large-scale ITN interventions in Tanzania and determine if ITN distributions successfully targeted those areas.

Methods

Using Maxent, a species distribution model was constructed relating anopheline mosquito occurrences for 1999–2003 to high resolution environmental observations. A 2011–2012 layer of mosquito net ownership was created using georeferenced data across Tanzania from the Demographic and Health Surveys. The baseline mosquito habitat suitability was compared to subsequent ITN ownership using (1) the average ITN numbers per house and (2) the proportion of households with ≥1 net to test whether national ITN ownership targets have been met and have tracked malaria risk.

Results

Elevation, land cover, and human population distribution outperformed variants of temperature and Normalized Difference Vegetation Index (NDVI) in anopheline distribution models. The spatial distribution of ITN ownership across Tanzania was near-random spatially (Moran’s I = 0.07). Householders reported owning 2.488 ITNs on average and 93.41 % of households had ≥1 ITN. Mosquito habitat suitability was statistically unrelated to reported ITN ownership and very weakly to the proportion of households with ≥1 ITN (R2 = 0.051). Proportional ITN ownership/household varied relative to mosquito habitat suitability (Levene’s test F = 3.0037). Quantile regression was used to assess trends in ITN ownership among households with the highest and lowest 10 % of ITN ownership. ITN ownership declined significantly toward areas with the highest vector habitat suitability among households with lowest ITN ownership (t = −3.38). In areas with lowest habitat suitability, ITN ownership was consistently higher.

Conclusions

Insecticide-treated net ownership is critical for malaria control. While Tanzania-wide efforts to distribute ITNs has reduced malaria impacts, gaps and variance in ITN ownership are unexpectedly large in areas where malaria risk is highest. Supplemental ITN distributions targeting prime Anopheles habitats are likely to have disproportionate human health benefits.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO (2014) World Malaria Report 2014. World Health Organization, Geneva WHO (2014) World Malaria Report 2014. World Health Organization, Geneva
2.
go back to reference Kelly-Hope LA, Hemingway J, McKenzie FE (2009) Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J 8:268PubMedCentralCrossRefPubMed Kelly-Hope LA, Hemingway J, McKenzie FE (2009) Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J 8:268PubMedCentralCrossRefPubMed
3.
go back to reference Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC (2006) Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J 5:78PubMedCentralCrossRefPubMed Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC (2006) Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J 5:78PubMedCentralCrossRefPubMed
4.
go back to reference Kulkarni MA, Desrochers RE, Kerr JT (2010) High resolution niche models of malaria vectors in northern Tanzania: a new capacity to predict malaria risk? PLoS One 5:e9396PubMedCentralCrossRefPubMed Kulkarni MA, Desrochers RE, Kerr JT (2010) High resolution niche models of malaria vectors in northern Tanzania: a new capacity to predict malaria risk? PLoS One 5:e9396PubMedCentralCrossRefPubMed
5.
go back to reference Fuller DO, Ahumada ML, Quinones ML, Herrera S, Beier JC (2012) Near-present and future distribution of Anopheles albimanus in Mesoamerica and the Caribbean Basin modeled with climate and topographic data. Int J Health Geogr 11:13PubMedCentralCrossRefPubMed Fuller DO, Ahumada ML, Quinones ML, Herrera S, Beier JC (2012) Near-present and future distribution of Anopheles albimanus in Mesoamerica and the Caribbean Basin modeled with climate and topographic data. Int J Health Geogr 11:13PubMedCentralCrossRefPubMed
6.
go back to reference Fuller DO, Parenti MS, Hassan AN, Beier JC (2012) Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar J 11:264PubMedCentralCrossRefPubMed Fuller DO, Parenti MS, Hassan AN, Beier JC (2012) Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar J 11:264PubMedCentralCrossRefPubMed
7.
go back to reference Tonnang HEZ, Kangalawe RYM, Yanda PZ (2010) Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar J 9:111PubMedCentralCrossRefPubMed Tonnang HEZ, Kangalawe RYM, Yanda PZ (2010) Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar J 9:111PubMedCentralCrossRefPubMed
9.
go back to reference Eisele TP, Larsen DA, Walker N, Cibulskis RE, Yukich JO, Zikusooka CM et al (2012) Estimates of child deaths prevented from malaria prevention scale-up in Africa 2001–2010. Malar J 11:93PubMedCentralCrossRefPubMed Eisele TP, Larsen DA, Walker N, Cibulskis RE, Yukich JO, Zikusooka CM et al (2012) Estimates of child deaths prevented from malaria prevention scale-up in Africa 2001–2010. Malar J 11:93PubMedCentralCrossRefPubMed
10.
go back to reference West PA, Protopopoff N, Rowland MW, Kirby MJ, Oxborough RM, Mosha FW et al (2012) Evaluation of a national universal coverage campaign of long-lasting insecticidal nets in a rural district in north-west Tanzania. Malar J 11:273PubMedCentralCrossRefPubMed West PA, Protopopoff N, Rowland MW, Kirby MJ, Oxborough RM, Mosha FW et al (2012) Evaluation of a national universal coverage campaign of long-lasting insecticidal nets in a rural district in north-west Tanzania. Malar J 11:273PubMedCentralCrossRefPubMed
11.
go back to reference Marchant T, Schellenberg D, Nathan R, Armstrong-Schellenberg J, Mponda H, Jones C et al (2010) Assessment of a national voucher scheme to deliver insecticide-treated mosquito nets to pregnant women. CMAJ 182:152–156PubMedCentralCrossRefPubMed Marchant T, Schellenberg D, Nathan R, Armstrong-Schellenberg J, Mponda H, Jones C et al (2010) Assessment of a national voucher scheme to deliver insecticide-treated mosquito nets to pregnant women. CMAJ 182:152–156PubMedCentralCrossRefPubMed
12.
go back to reference Bonner K, Mwita A, McElroy PD, Omari S, Mzava A, Lengeler C et al (2011) Design, implementation and evaluation of a national campaign to distribute nine million free LLINs to children under 5 years of age in Tanzania. Malar J 10:12CrossRef Bonner K, Mwita A, McElroy PD, Omari S, Mzava A, Lengeler C et al (2011) Design, implementation and evaluation of a national campaign to distribute nine million free LLINs to children under 5 years of age in Tanzania. Malar J 10:12CrossRef
15.
go back to reference Ngonghala CN, Del Valle SY, Zhao RJ, Mohammed-Awel J (2014) Quantifying the impact of decay in bed-net efficacy on malaria transmission. J Theor Biol 363:247–261PubMedCentralCrossRefPubMed Ngonghala CN, Del Valle SY, Zhao RJ, Mohammed-Awel J (2014) Quantifying the impact of decay in bed-net efficacy on malaria transmission. J Theor Biol 363:247–261PubMedCentralCrossRefPubMed
16.
go back to reference Larsen DA, Hutchinson P, Bennett A, Yukich J, Anglewicz P, Keating J et al (2014) Community coverage with insecticide-treated mosquito nets and observed associations with all-cause child mortality and malaria parasite infections. Am J Trop Med Hyg 91:950–958CrossRefPubMed Larsen DA, Hutchinson P, Bennett A, Yukich J, Anglewicz P, Keating J et al (2014) Community coverage with insecticide-treated mosquito nets and observed associations with all-cause child mortality and malaria parasite infections. Am J Trop Med Hyg 91:950–958CrossRefPubMed
17.
go back to reference Burgert CR, Bradley SEK, Arnold F, Eckert E (2014) Improving estimates of insecticide-treated mosquito net coverage from household surveys: using geographic coordinates to account for endemicity. Malar J 13:254PubMedCentralCrossRefPubMed Burgert CR, Bradley SEK, Arnold F, Eckert E (2014) Improving estimates of insecticide-treated mosquito net coverage from household surveys: using geographic coordinates to account for endemicity. Malar J 13:254PubMedCentralCrossRefPubMed
18.
go back to reference Futami K, Dida GO, Sonye GO, Lutiali PA, Mwania MS, Wagalla S et al (2014) Impacts of insecticide treated bed nets on Anopheles gambiae s.l. populations in Mbita district and Suba district, Western Kenya. Parasit Vectors 7:63PubMedCentralCrossRefPubMed Futami K, Dida GO, Sonye GO, Lutiali PA, Mwania MS, Wagalla S et al (2014) Impacts of insecticide treated bed nets on Anopheles gambiae s.l. populations in Mbita district and Suba district, Western Kenya. Parasit Vectors 7:63PubMedCentralCrossRefPubMed
19.
go back to reference Bayoh MN, Walker ED, Kosgei J, Ombok M, Olang GB, Githeko AK et al (2014) Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit Vectors 7:13CrossRef Bayoh MN, Walker ED, Kosgei J, Ombok M, Olang GB, Githeko AK et al (2014) Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit Vectors 7:13CrossRef
20.
go back to reference McCann RS, Ochomo E, Bayoh MN, Vulule JM, Hamel MJ, Gimnig JE et al (2014) Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in western Kenya after long-term implementation of insecticide-treated bed nets. Am J Trop Med Hyg 90:597–604PubMedCentralCrossRefPubMed McCann RS, Ochomo E, Bayoh MN, Vulule JM, Hamel MJ, Gimnig JE et al (2014) Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in western Kenya after long-term implementation of insecticide-treated bed nets. Am J Trop Med Hyg 90:597–604PubMedCentralCrossRefPubMed
21.
go back to reference NBS (2013) Tanzania in Figures 2012. National Bureau of Statistics, Tanzania NBS (2013) Tanzania in Figures 2012. National Bureau of Statistics, Tanzania
23.
go back to reference Mboera LEG, Mayala BK, Kweka EJ, Mazigo HD (2011) Impact of climate change on human health and health systems in Tanzania: a review. Tanzan J Health Res 13:1–23 Mboera LEG, Mayala BK, Kweka EJ, Mazigo HD (2011) Impact of climate change on human health and health systems in Tanzania: a review. Tanzan J Health Res 13:1–23
25.
go back to reference Mtega WP, Ronald B (2013) The state of rural information and communication services in Tanzania: a meta-analysis. Int J Inf Commun Technol Res 3:64–73 Mtega WP, Ronald B (2013) The state of rural information and communication services in Tanzania: a meta-analysis. Int J Inf Commun Technol Res 3:64–73
26.
go back to reference NBS (2013) 2012 Population and Housing Census. In: National Bureau of Statistics. National Bureau of Statistics, Dar Es Salaam NBS (2013) 2012 Population and Housing Census. In: National Bureau of Statistics. National Bureau of Statistics, Dar Es Salaam
27.
go back to reference Temu EA, Minjas JN, Coetzee M, Hunt RH, Shiff CJ (1998) The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Trans R Soc Trop Med Hyg 92:152–158CrossRefPubMed Temu EA, Minjas JN, Coetzee M, Hunt RH, Shiff CJ (1998) The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Trans R Soc Trop Med Hyg 92:152–158CrossRefPubMed
30.
go back to reference Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRef Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRef
31.
go back to reference Foley DH, Klein TA, Kim HC, Brown T, Wilkerson RC, Rueda LM (2010) Validation of ecological niche models for potential malaria vectors in the Republic of Korea. J Am Mosq Control Assoc 26:210–213CrossRefPubMed Foley DH, Klein TA, Kim HC, Brown T, Wilkerson RC, Rueda LM (2010) Validation of ecological niche models for potential malaria vectors in the Republic of Korea. J Am Mosq Control Assoc 26:210–213CrossRefPubMed
32.
go back to reference Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A (2013) Climate change and range expansion of the Asian Tiger Mosquito (Aedes albopictus) in Northeastern USA: Implications for public health practitioners. PLoS One 8:e60874PubMedCentralCrossRefPubMed Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A (2013) Climate change and range expansion of the Asian Tiger Mosquito (Aedes albopictus) in Northeastern USA: Implications for public health practitioners. PLoS One 8:e60874PubMedCentralCrossRefPubMed
33.
go back to reference Mughini-Gras L, Mulatti P, Severini F, Boccolini D, Romi R, Bongiorno G et al (2014) Ecological niche modelling of potential West Nile Virus Vector mosquito species and their geographical association with equine epizootics in Italy. Ecohealth 11:120–132CrossRefPubMed Mughini-Gras L, Mulatti P, Severini F, Boccolini D, Romi R, Bongiorno G et al (2014) Ecological niche modelling of potential West Nile Virus Vector mosquito species and their geographical association with equine epizootics in Italy. Ecohealth 11:120–132CrossRefPubMed
34.
go back to reference Feria-Arroyo TP, Castro-Arellano I, Gordillo-Perez G, Cavazos AL, Vargas-Sandoval M, Grover A et al (2014) Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region. Parasit Vectors 7:199PubMedCentralCrossRefPubMed Feria-Arroyo TP, Castro-Arellano I, Gordillo-Perez G, Cavazos AL, Vargas-Sandoval M, Grover A et al (2014) Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region. Parasit Vectors 7:199PubMedCentralCrossRefPubMed
35.
go back to reference Giles JR, Peterson AT, Busch JD, Olafson PU, Scoles GA, Davey RB et al (2014) Invasive potential of cattle fever ticks in the southern United States. Parasit Vectors 7:189PubMedCentralCrossRefPubMed Giles JR, Peterson AT, Busch JD, Olafson PU, Scoles GA, Davey RB et al (2014) Invasive potential of cattle fever ticks in the southern United States. Parasit Vectors 7:189PubMedCentralCrossRefPubMed
36.
go back to reference Porretta D, Mastrantonio V, Amendolia S, Gaiarsa S, Epis S, Genchi C et al (2013) Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit Vectors 6:1–8CrossRef Porretta D, Mastrantonio V, Amendolia S, Gaiarsa S, Epis S, Genchi C et al (2013) Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit Vectors 6:1–8CrossRef
37.
go back to reference Dicko AH, Lancelot R, Seck MT, Guerrini L, Sall B, Lo M et al (2014) Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal. Proc Natl Acad Sci USA 111:10149–10154PubMedCentralCrossRefPubMed Dicko AH, Lancelot R, Seck MT, Guerrini L, Sall B, Lo M et al (2014) Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal. Proc Natl Acad Sci USA 111:10149–10154PubMedCentralCrossRefPubMed
38.
go back to reference Matawa F, Murwira KS, Shereni W (2013) Modelling the distribution of suitable Glossina Spp. habitat in the North Western parts of Zimbabwe using remote sensing and climate data. Geoinform Geostast Overv 1–9 Matawa F, Murwira KS, Shereni W (2013) Modelling the distribution of suitable Glossina Spp. habitat in the North Western parts of Zimbabwe using remote sensing and climate data. Geoinform Geostast Overv 1–9
39.
go back to reference Bouyer F, Seck MT, Dicko AH, Sall B, Lo M, Vreysen MJB et al (2014) Ex-ante benefit-cost analysis of the elimination of a Glossina palpalis gambiensis population in the Niayes of Senegal. PLoS Negl Trop Dis 8:e3112PubMedCentralCrossRefPubMed Bouyer F, Seck MT, Dicko AH, Sall B, Lo M, Vreysen MJB et al (2014) Ex-ante benefit-cost analysis of the elimination of a Glossina palpalis gambiensis population in the Niayes of Senegal. PLoS Negl Trop Dis 8:e3112PubMedCentralCrossRefPubMed
40.
go back to reference Samy AM, Campbell LP, Peterson AT (2014) Leishmaniasis transmission: distribution and coarse-resolution ecology of two vectors and two parasites in Egypt. Rev Da Soc Bras De Med Trop 47:57–62CrossRef Samy AM, Campbell LP, Peterson AT (2014) Leishmaniasis transmission: distribution and coarse-resolution ecology of two vectors and two parasites in Egypt. Rev Da Soc Bras De Med Trop 47:57–62CrossRef
41.
go back to reference Fischer D, Moeller P, Thomas SM, Naucke TJ, Beierkuhnlein C (2011) Combining climatic projections and dispersal ability: a method for estimating the responses of sandfly vector species to climate change. PLoS Negl Trop Dis 5:e1407PubMedCentralCrossRefPubMed Fischer D, Moeller P, Thomas SM, Naucke TJ, Beierkuhnlein C (2011) Combining climatic projections and dispersal ability: a method for estimating the responses of sandfly vector species to climate change. PLoS Negl Trop Dis 5:e1407PubMedCentralCrossRefPubMed
42.
go back to reference Colacicco-Mayhugh MG, Masuoka PM, Grieco JP (2010) Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: Psychodidae) in the Middle East. Int J Health Geogr 9:2PubMedCentralCrossRefPubMed Colacicco-Mayhugh MG, Masuoka PM, Grieco JP (2010) Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: Psychodidae) in the Middle East. Int J Health Geogr 9:2PubMedCentralCrossRefPubMed
44.
go back to reference Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRef Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRef
45.
go back to reference Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L, Quintana HL et al (2008) Predicting species distributions in poorly-studied landscapes. Biodivers Conserv 17:1353–1366CrossRef Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L, Quintana HL et al (2008) Predicting species distributions in poorly-studied landscapes. Biodivers Conserv 17:1353–1366CrossRef
46.
go back to reference Acheson ES, Kerr JT (2015) Looking forward by looking back: Using historical calibration to improve forecasts of human disease vector distributions. Vector Borne Zoonotic Dis 15:173–183CrossRefPubMed Acheson ES, Kerr JT (2015) Looking forward by looking back: Using historical calibration to improve forecasts of human disease vector distributions. Vector Borne Zoonotic Dis 15:173–183CrossRefPubMed
47.
go back to reference Coetzee M, Hunt RH, Wilkerson R, della Torre A, Coulibaly MB, Besansky NJ (2013) Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619:246–274CrossRefPubMed Coetzee M, Hunt RH, Wilkerson R, della Torre A, Coulibaly MB, Besansky NJ (2013) Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619:246–274CrossRefPubMed
48.
go back to reference Moo-Llanes D, Ibarra-Cerdena CN, Rebollar-Tellez EA, Ibanez-Bernal S, Gonzalez C, Ramsey JM (2013) Current and future niche of North and Central American sand flies (Diptera: Psychodidae) in climate change scenarios. PLoS Negl Trop Dis 7:e2421PubMedCentralCrossRefPubMed Moo-Llanes D, Ibarra-Cerdena CN, Rebollar-Tellez EA, Ibanez-Bernal S, Gonzalez C, Ramsey JM (2013) Current and future niche of North and Central American sand flies (Diptera: Psychodidae) in climate change scenarios. PLoS Negl Trop Dis 7:e2421PubMedCentralCrossRefPubMed
49.
go back to reference Estrada-Pena A, Venzal JM (2007) Climate niches of tick species in the Mediterranean region: Modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol 44:1130–1138CrossRefPubMed Estrada-Pena A, Venzal JM (2007) Climate niches of tick species in the Mediterranean region: Modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol 44:1130–1138CrossRefPubMed
51.
go back to reference Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766CrossRefPubMed Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766CrossRefPubMed
52.
go back to reference Kerr J, Kulkarni M, Algar A (2011) Integrating theory and predictive modeling for conservation research. In: Drew C, Wiersma YF, Huettmann F (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, pp 9–28CrossRef Kerr J, Kulkarni M, Algar A (2011) Integrating theory and predictive modeling for conservation research. In: Drew C, Wiersma YF, Huettmann F (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, pp 9–28CrossRef
57.
go back to reference Perez-Heydrich C, Warren JL, Burgert CR, Emch ME (2013) Guidelines on the Use of DHS GPS data: DHS Spatial Analyst Reports 8. In: Moore S (ed) USAID, Calverton Perez-Heydrich C, Warren JL, Burgert CR, Emch ME (2013) Guidelines on the Use of DHS GPS data: DHS Spatial Analyst Reports 8. In: Moore S (ed) USAID, Calverton
58.
go back to reference Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420CrossRef Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420CrossRef
60.
go back to reference Matowo J, Jones CM, Kabula B, Ranson H, Steen K, Mosha F et al (2014) Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania. Parasit Vectors 7:274PubMedCentralCrossRefPubMed Matowo J, Jones CM, Kabula B, Ranson H, Steen K, Mosha F et al (2014) Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania. Parasit Vectors 7:274PubMedCentralCrossRefPubMed
61.
go back to reference Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A et al (2013) High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J 12:149PubMedCentralCrossRefPubMed Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A et al (2013) High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J 12:149PubMedCentralCrossRefPubMed
62.
go back to reference Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S et al (2014) Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar J 13:28PubMedCentralCrossRefPubMed Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S et al (2014) Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar J 13:28PubMedCentralCrossRefPubMed
63.
go back to reference Graves PM, Ngondi JM, Hwang J, Getachew A, Gebre T, Mosher AW et al (2011) Factors associated with mosquito net use by individuals in households owning nets in Ethiopia. Malar J 10:354PubMedCentralCrossRefPubMed Graves PM, Ngondi JM, Hwang J, Getachew A, Gebre T, Mosher AW et al (2011) Factors associated with mosquito net use by individuals in households owning nets in Ethiopia. Malar J 10:354PubMedCentralCrossRefPubMed
65.
go back to reference Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL et al (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10:378PubMedCentralCrossRefPubMed Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL et al (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10:378PubMedCentralCrossRefPubMed
66.
go back to reference Wandiga SO, Opondo M, Olago D, Githeko A, Githui F, Marshall M et al (2010) Vulnerability to epidemic malaria in the highlands of Lake Victoria basin: the role of climate change/variability, hydrology and socio-economic factors. Clim Change 99:473–497CrossRef Wandiga SO, Opondo M, Olago D, Githeko A, Githui F, Marshall M et al (2010) Vulnerability to epidemic malaria in the highlands of Lake Victoria basin: the role of climate change/variability, hydrology and socio-economic factors. Clim Change 99:473–497CrossRef
67.
go back to reference Foley DH, Klein TA, Kim HC, Sames WJ, Wilkerson RC, Rueda LM (2009) Geographic distribution and ecology of potential malaria vectors in the Republic of Korea. J Med Entomol 46:680–692CrossRefPubMed Foley DH, Klein TA, Kim HC, Sames WJ, Wilkerson RC, Rueda LM (2009) Geographic distribution and ecology of potential malaria vectors in the Republic of Korea. J Med Entomol 46:680–692CrossRefPubMed
68.
go back to reference Ayala D, Costantini C, Ose K, Kamdem GC, Antonio-Nkondjio C, Agbor J et al (2009) Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malar J 8:307PubMedCentralCrossRefPubMed Ayala D, Costantini C, Ose K, Kamdem GC, Antonio-Nkondjio C, Agbor J et al (2009) Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malar J 8:307PubMedCentralCrossRefPubMed
69.
go back to reference Stefani A, Dusfour I, Cruz MCB, Dessay N, Galardo AKR, Galardo CD et al (2013) Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data. Malar J 12:192PubMedCentralCrossRefPubMed Stefani A, Dusfour I, Cruz MCB, Dessay N, Galardo AKR, Galardo CD et al (2013) Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data. Malar J 12:192PubMedCentralCrossRefPubMed
70.
go back to reference Ermert V, Fink AH, Morse AP, Paeth H (2012) The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environ Health Perspect 120:77–84PubMedCentralCrossRefPubMed Ermert V, Fink AH, Morse AP, Paeth H (2012) The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environ Health Perspect 120:77–84PubMedCentralCrossRefPubMed
71.
go back to reference Mutuku FM, Bayoh MN, Hightower AW, Vulule JM, Gimnig JE, Mueke JM et al (2009) A supervised land cover classification of a western Kenya lowland endemic for human malaria: associations of land cover with larval Anopheles habitats. Int J Health Geogr 8:19PubMedCentralCrossRefPubMed Mutuku FM, Bayoh MN, Hightower AW, Vulule JM, Gimnig JE, Mueke JM et al (2009) A supervised land cover classification of a western Kenya lowland endemic for human malaria: associations of land cover with larval Anopheles habitats. Int J Health Geogr 8:19PubMedCentralCrossRefPubMed
72.
go back to reference Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J et al (2010) The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3:117PubMedCentralCrossRefPubMed Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J et al (2010) The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3:117PubMedCentralCrossRefPubMed
73.
go back to reference Sweeney AW, Beebe NW, Cooper RD, Bauer JT, Peterson AT (2006) Environmental factors associated with distribution and range limits of malaria vector Anopheles farauti in Australia. J Med Entomol 43:1068–1075CrossRefPubMed Sweeney AW, Beebe NW, Cooper RD, Bauer JT, Peterson AT (2006) Environmental factors associated with distribution and range limits of malaria vector Anopheles farauti in Australia. J Med Entomol 43:1068–1075CrossRefPubMed
74.
go back to reference Obsomer V, Defourny P, Coosemans M (2012) Predicted distribution of major malaria vectors belonging to the Anopheles dirus complex in Asia: Ecological niche and environmental influences. PLoS One 7:e50475PubMedCentralCrossRefPubMed Obsomer V, Defourny P, Coosemans M (2012) Predicted distribution of major malaria vectors belonging to the Anopheles dirus complex in Asia: Ecological niche and environmental influences. PLoS One 7:e50475PubMedCentralCrossRefPubMed
75.
go back to reference Goyal MR, Harmsen EW (2014) Evapotranspiration: Temperature versus elevation relationships. In: Evapotranspiration: Principles and Applications for Water Management, vol 1. Apple Academic Press, Inc., Oakville Goyal MR, Harmsen EW (2014) Evapotranspiration: Temperature versus elevation relationships. In: Evapotranspiration: Principles and Applications for Water Management, vol 1. Apple Academic Press, Inc., Oakville
76.
go back to reference Yamana TK, Eltahir EAB (2013) Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit Vectors 6:235PubMedCentralCrossRefPubMed Yamana TK, Eltahir EAB (2013) Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit Vectors 6:235PubMedCentralCrossRefPubMed
77.
go back to reference Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM et al (2012) Species shifts in the Anopheles gambiae complex: Do LLINs successfully control Anopheles arabiensis? PLoS One 7:e31481PubMedCentralCrossRefPubMed Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM et al (2012) Species shifts in the Anopheles gambiae complex: Do LLINs successfully control Anopheles arabiensis? PLoS One 7:e31481PubMedCentralCrossRefPubMed
78.
go back to reference Obsomer V, Titeux N, Vancustem C, Duveiller G, Pekel J, Connor S et al (2013) From Anopheles to spatial surveillance: a roadmap through a multidisciplinary challenge. In: Manguin S, CC BY (eds) Anopheles mosquitoes: New insights into malaria vectors Obsomer V, Titeux N, Vancustem C, Duveiller G, Pekel J, Connor S et al (2013) From Anopheles to spatial surveillance: a roadmap through a multidisciplinary challenge. In: Manguin S, CC BY (eds) Anopheles mosquitoes: New insights into malaria vectors
Metadata
Title
Where have all the mosquito nets gone? Spatial modelling reveals mosquito net distributions across Tanzania do not target optimal Anopheles mosquito habitats
Authors
Emily S. Acheson
Andrew A. Plowright
Jeremy T. Kerr
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0841-x

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.