Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Warfarin | Research

Effects of sodium ferulate for injection on anticoagulation of warfarin in rats in vivo

Authors: Yue Zhao, Chunjuan Yang, Yan Liu, Mengnan Qin, Jiahui Sun, Gaofeng Liu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

Herb-drug interactions may result in increased adverse drug reactions or diminished drug efficacy, especially for drugs with a narrow therapeutic index such as warfarin. The current study investigates the effects of sodium ferulate for injection (SFI) on anticoagulation of warfarin from aspects of pharmacodynamics and pharmacokinetics in rats and predicts the risk of the combination use.

Methods

Rats were randomly divided into different groups and administered single- or multiple-dose of warfarin (0.2 mg/kg) with or without SFI of low dose (8.93 mg/kg) or high dose (26.79 mg/kg). Prothrombin time (PT) and activated partial thromboplastin time (APTT) were detected by a blood coagulation analyzer, and international normalized ratio (INR) values were calculated. UPLC-MS/MS was conducted to measure concentrations of warfarin enantiomers and pharmacokinetic parameters were calculated by DAS2.0 software.

Results

The single-dose study demonstrated that SFI alone had no effect on coagulation indices, but significantly decreased PT and INR values of warfarin when the two drugs were co-administered (P < 0.05 or P < 0.01), while APTT values unaffected (P > 0.05). Cmax and AUC of R/S-warfarin decreased but CL increased significantly in presence of SFI (P < 0.01). The multiple-dose study showed that PT, APTT, INR, and concentrations of R/S-warfarin decreased significantly when SFI was co-administered with warfarin (P < 0.01). Warfarin plasma protein binding rate was not significantly changed by SFI (P > 0.05).

Conclusions

The present study implied that SFI could accelerate warfarin metabolism and weaken its anticoagulation intensity in rats.
Literature
1.
2.
go back to reference Leite PM, Martins MAP, Carvalho MDG, Castilho RO. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: an updated review. Biomed Pharmacother. 2021;143:112103.PubMedCrossRef Leite PM, Martins MAP, Carvalho MDG, Castilho RO. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: an updated review. Biomed Pharmacother. 2021;143:112103.PubMedCrossRef
3.
go back to reference Wang CY, Hsiao CY, Tsai KL, Cheng YH. Injectable thermosensitive chitosan-based hydrogel containing ferulic acid for treating peripheral arterial disease. J Tissue Eng Regen Med. 2020;14:1438–48.PubMedCrossRef Wang CY, Hsiao CY, Tsai KL, Cheng YH. Injectable thermosensitive chitosan-based hydrogel containing ferulic acid for treating peripheral arterial disease. J Tissue Eng Regen Med. 2020;14:1438–48.PubMedCrossRef
4.
go back to reference Zdunska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31:332–6.PubMedCrossRef Zdunska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31:332–6.PubMedCrossRef
5.
go back to reference Zhang X, Gao ZP. Research progress in ferulic acid. Mod Chin Med. 2020;22(1):138–47. Zhang X, Gao ZP. Research progress in ferulic acid. Mod Chin Med. 2020;22(1):138–47.
6.
go back to reference Li D, Rui YX, Guo SD, Luan F, Liu R, Zeng N. Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021;284:119921.PubMedCrossRef Li D, Rui YX, Guo SD, Luan F, Liu R, Zeng N. Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021;284:119921.PubMedCrossRef
7.
go back to reference Neto-Neves EM, da Silva Maia B, Filho C, Dejani NN, de Sousa DP. Ferulic acid and cardiovascular health: therapeutic and preventive potential. Mini Rev Med Chem. 2021;21:1625–37.PubMedCrossRef Neto-Neves EM, da Silva Maia B, Filho C, Dejani NN, de Sousa DP. Ferulic acid and cardiovascular health: therapeutic and preventive potential. Mini Rev Med Chem. 2021;21:1625–37.PubMedCrossRef
8.
go back to reference Wu X, Hu Z, Zhou J, Liu J, Ren P, Huang X. Ferulic acid alleviates atherosclerotic plaques by inhibiting VSMC Proliferation through the NO/p21 signaling pathway. J Cardiovasc Transl Res. 2022;15:865–75.PubMedPubMedCentralCrossRef Wu X, Hu Z, Zhou J, Liu J, Ren P, Huang X. Ferulic acid alleviates atherosclerotic plaques by inhibiting VSMC Proliferation through the NO/p21 signaling pathway. J Cardiovasc Transl Res. 2022;15:865–75.PubMedPubMedCentralCrossRef
9.
go back to reference Li G, Huang X. Influence of sodium ferulate on miR-133a and left ventricle remodeling in rats with myocardial infarction. Hum Exp Toxicol. 2021;40:417–24.PubMedCrossRef Li G, Huang X. Influence of sodium ferulate on miR-133a and left ventricle remodeling in rats with myocardial infarction. Hum Exp Toxicol. 2021;40:417–24.PubMedCrossRef
11.
go back to reference Mu M, Zuo S, Wu RM, Deng KS, Lu S, Zhu JJ, Zou GL, Yang J, Cheng ML, Zhao XK. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-beta/Smad signaling pathway. Drug Des Devel Ther. 2018;12:4107–15.PubMedPubMedCentralCrossRef Mu M, Zuo S, Wu RM, Deng KS, Lu S, Zhu JJ, Zou GL, Yang J, Cheng ML, Zhao XK. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-beta/Smad signaling pathway. Drug Des Devel Ther. 2018;12:4107–15.PubMedPubMedCentralCrossRef
12.
go back to reference Hong Q, Ma ZC, Huang H, Wang YG, Tan HL, Xiao CR, Liang QD, Zhang HT, Gao Y. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling. Eur J Pharmacol. 2016;777:1–8.PubMedCrossRef Hong Q, Ma ZC, Huang H, Wang YG, Tan HL, Xiao CR, Liang QD, Zhang HT, Gao Y. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling. Eur J Pharmacol. 2016;777:1–8.PubMedCrossRef
13.
go back to reference Lin Y, Xu JC. Analysis of the clinical value of sodium ferulate in the treatment of coronary heart diseas. Mod Diagn Treat. 2016;27:46–8.MathSciNetADS Lin Y, Xu JC. Analysis of the clinical value of sodium ferulate in the treatment of coronary heart diseas. Mod Diagn Treat. 2016;27:46–8.MathSciNetADS
14.
go back to reference Lv FY. The therapeutic effect of sodium ferulic acid on coronary heart disease and its protective effect on vascular endothelial function. Henan Med Res. 2017;26:3217–8.ADS Lv FY. The therapeutic effect of sodium ferulic acid on coronary heart disease and its protective effect on vascular endothelial function. Henan Med Res. 2017;26:3217–8.ADS
15.
go back to reference Lai XF, Dai HH, Du L. Study on protective effect and mechanism of sodium ferulate on myocardium in patients with acute myocardial infarction undergoing primary PCI. J Mod Med Health. 2019;35:1807–11. Lai XF, Dai HH, Du L. Study on protective effect and mechanism of sodium ferulate on myocardium in patients with acute myocardial infarction undergoing primary PCI. J Mod Med Health. 2019;35:1807–11.
16.
go back to reference Liu YR. Analysis of the therapeutic effect of sodium ferulic acid on coronary heart diseases and its protective effect on vascular endothelial function. J Contemp Clin Med. 2022;35:10–1.ADS Liu YR. Analysis of the therapeutic effect of sodium ferulic acid on coronary heart diseases and its protective effect on vascular endothelial function. J Contemp Clin Med. 2022;35:10–1.ADS
17.
go back to reference Shen Z, Wu Y, Zhou L, Wang Q, Tang Y, Sun Y, Zheng FJ, Li YH. The efficacy of sodium ferulate combination therapy in coronary heart disease: a systematic review and meta-analysis. Phytomedicine. 2023;115:154829.PubMedCrossRef Shen Z, Wu Y, Zhou L, Wang Q, Tang Y, Sun Y, Zheng FJ, Li YH. The efficacy of sodium ferulate combination therapy in coronary heart disease: a systematic review and meta-analysis. Phytomedicine. 2023;115:154829.PubMedCrossRef
18.
go back to reference Ritchie LA, Penson PE, Lane DA. Warfarin therapy and improved anticoagulation control by patient self-management. Thromb Haemost. 2019;119:1550–2.PubMedCrossRef Ritchie LA, Penson PE, Lane DA. Warfarin therapy and improved anticoagulation control by patient self-management. Thromb Haemost. 2019;119:1550–2.PubMedCrossRef
19.
go back to reference Catterall F, Ames PR, Isles C. Warfarin in patients with mechanical heart valves. BMJ. 2020;371:m3956.PubMedCrossRef Catterall F, Ames PR, Isles C. Warfarin in patients with mechanical heart valves. BMJ. 2020;371:m3956.PubMedCrossRef
20.
go back to reference January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr., Ellinor PT, Ezekowitz MD, Field ME, Furie KL, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the management of patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines and the heart rhythm society in collaboration with the Society of thoracic surgeons. Circulation. 2019;140:e125–51.PubMedCrossRef January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr., Ellinor PT, Ezekowitz MD, Field ME, Furie KL, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the management of patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines and the heart rhythm society in collaboration with the Society of thoracic surgeons. Circulation. 2019;140:e125–51.PubMedCrossRef
21.
go back to reference Wang Z, Xiang X, Liu S, Tang Z, Sun H, Parvez M, Ghim JL, Shin JG, Cai W. A physiologically based pharmacokinetic/pharmacodynamic modeling approach for drug-drug interaction evaluation of warfarin enantiomers with sorafenib. Drug Metab Pharmacokinet. 2021;39:100362.PubMedCrossRef Wang Z, Xiang X, Liu S, Tang Z, Sun H, Parvez M, Ghim JL, Shin JG, Cai W. A physiologically based pharmacokinetic/pharmacodynamic modeling approach for drug-drug interaction evaluation of warfarin enantiomers with sorafenib. Drug Metab Pharmacokinet. 2021;39:100362.PubMedCrossRef
22.
go back to reference Qayyum A, Najmi MH, Khan AM, Abbas M, Naveed AK, Jameel A. Determination of S- and R-warfarin enantiomers by using modified HPLC method. Pak J Pharm Sci. 2015;28:1315–21.PubMed Qayyum A, Najmi MH, Khan AM, Abbas M, Naveed AK, Jameel A. Determination of S- and R-warfarin enantiomers by using modified HPLC method. Pak J Pharm Sci. 2015;28:1315–21.PubMed
23.
go back to reference Wang Z, Wang Z, Wang X, Lv X, Yin H, Jiang L, Xia Y, Li W, Li W, Liu Y. Potential food-drug interaction risk of thymoquinone with warfarin. Chem Biol Interact. 2022;365:110070.PubMedCrossRef Wang Z, Wang Z, Wang X, Lv X, Yin H, Jiang L, Xia Y, Li W, Li W, Liu Y. Potential food-drug interaction risk of thymoquinone with warfarin. Chem Biol Interact. 2022;365:110070.PubMedCrossRef
24.
go back to reference Witt DM, Clark NP, Kaatz S, Schnurr T, Ansell JE. Guidance for the practical management of warfarin therapy in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016;41:187–205.PubMedPubMedCentralCrossRef Witt DM, Clark NP, Kaatz S, Schnurr T, Ansell JE. Guidance for the practical management of warfarin therapy in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016;41:187–205.PubMedPubMedCentralCrossRef
25.
go back to reference Leite PM, Martins MAP, Castilho RO. Review on mechanisms and interactions in concomitant use of herbs and warfarin therapy. Biomed Pharmacother. 2016;83:14–21.PubMedCrossRef Leite PM, Martins MAP, Castilho RO. Review on mechanisms and interactions in concomitant use of herbs and warfarin therapy. Biomed Pharmacother. 2016;83:14–21.PubMedCrossRef
26.
go back to reference Huang Q, Cao L, Luo N, Qian H, Wei M, Xue L, Zhou Q, Zou B, Tan L, Chu Y, et al. Predicting Range of initial warfarin dose based on pharmacometabolomic and genetic inputs. Clin Pharmacol Ther. 2021;110:1585–94.PubMedCrossRef Huang Q, Cao L, Luo N, Qian H, Wei M, Xue L, Zhou Q, Zou B, Tan L, Chu Y, et al. Predicting Range of initial warfarin dose based on pharmacometabolomic and genetic inputs. Clin Pharmacol Ther. 2021;110:1585–94.PubMedCrossRef
27.
go back to reference Tavares LC, Marcatto LR, Santos P. Genotype-guided warfarin therapy: current status. Pharmacogenomics. 2018;19:667–85.PubMedCrossRef Tavares LC, Marcatto LR, Santos P. Genotype-guided warfarin therapy: current status. Pharmacogenomics. 2018;19:667–85.PubMedCrossRef
28.
go back to reference Kulig CE, Roberts AJ, Rowe AS, Kim H, Dager WE. INR response to Low-Dose Vitamin K in Warfarin patients. Ann Pharmacother. 2021;55:1223–9.PubMedCrossRef Kulig CE, Roberts AJ, Rowe AS, Kim H, Dager WE. INR response to Low-Dose Vitamin K in Warfarin patients. Ann Pharmacother. 2021;55:1223–9.PubMedCrossRef
29.
go back to reference Zhuang XM, Chen L, Tan Y, Yang HY, Lu C, Gao Y, Li H. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines. Chin J Nat Med. 2017;15:695–702.PubMed Zhuang XM, Chen L, Tan Y, Yang HY, Lu C, Gao Y, Li H. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines. Chin J Nat Med. 2017;15:695–702.PubMed
30.
go back to reference Tan CSS, Lee SWH. Warfarin and food, herbal or dietary supplement interactions: a systematic review. Br J Clin Pharmacol. 2021;87:352–74.PubMedCrossRef Tan CSS, Lee SWH. Warfarin and food, herbal or dietary supplement interactions: a systematic review. Br J Clin Pharmacol. 2021;87:352–74.PubMedCrossRef
31.
go back to reference Prabhakar PK, Prasad R, Ali S, Doble M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine. 2013;20:488–94.PubMedCrossRef Prabhakar PK, Prasad R, Ali S, Doble M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine. 2013;20:488–94.PubMedCrossRef
32.
go back to reference Taki Y, Yokotani K, Yamada S, Shinozuka K, Kubota Y, Watanabe Y, Umegaki K. Ginkgo biloba extract attenuates warfarin-mediated anticoagulation through induction of hepatic cytochrome P450 enzymes by bilobalide in mice. Phytomedicine. 2012;19:177–82.PubMedCrossRef Taki Y, Yokotani K, Yamada S, Shinozuka K, Kubota Y, Watanabe Y, Umegaki K. Ginkgo biloba extract attenuates warfarin-mediated anticoagulation through induction of hepatic cytochrome P450 enzymes by bilobalide in mice. Phytomedicine. 2012;19:177–82.PubMedCrossRef
33.
go back to reference Sun J, Lu Y, Li Y, Pan J, Liu C, Gong Z, Huang J, Zheng J, Zheng L, Li Y, et al. Influence of Shenxiong glucose injection on the activities of six CYP isozymes and metabolism of warfarin in rats assessed using probe cocktail and pharmacokinetic approaches. Molecules. 2017;22:1994.PubMedPubMedCentralCrossRef Sun J, Lu Y, Li Y, Pan J, Liu C, Gong Z, Huang J, Zheng J, Zheng L, Li Y, et al. Influence of Shenxiong glucose injection on the activities of six CYP isozymes and metabolism of warfarin in rats assessed using probe cocktail and pharmacokinetic approaches. Molecules. 2017;22:1994.PubMedPubMedCentralCrossRef
34.
go back to reference Shi Y, Zhang W, Jiang M, Huang L, Zhou Y, Chen J, Liu D, Liu G, Dong M. Effects of sulfotanshinone sodium injection on the pharmacokinetics and pharmacodynamics of warfarin in rats in vivo. Xenobiotica. 2020;50:705–12.PubMedCrossRef Shi Y, Zhang W, Jiang M, Huang L, Zhou Y, Chen J, Liu D, Liu G, Dong M. Effects of sulfotanshinone sodium injection on the pharmacokinetics and pharmacodynamics of warfarin in rats in vivo. Xenobiotica. 2020;50:705–12.PubMedCrossRef
35.
go back to reference Jiang M, Zhou Y, Chen J, Zhang W, Sun Z, Qin M, Liu Y, Liu G. Effects of Herba erigerontis injection on pharmacodynamics and pharmacokinetics of warfarin in rats in vivo. Basic Clin Pharmacol Toxicol. 2021;128:386–93.PubMedCrossRef Jiang M, Zhou Y, Chen J, Zhang W, Sun Z, Qin M, Liu Y, Liu G. Effects of Herba erigerontis injection on pharmacodynamics and pharmacokinetics of warfarin in rats in vivo. Basic Clin Pharmacol Toxicol. 2021;128:386–93.PubMedCrossRef
36.
37.
go back to reference Winter WE, Flax SD, Harris NS. Coagulation testing in the Core Laboratory. Lab Med. 2017;48:295–313.PubMedCrossRef Winter WE, Flax SD, Harris NS. Coagulation testing in the Core Laboratory. Lab Med. 2017;48:295–313.PubMedCrossRef
38.
go back to reference Dorgalaleh A, Favaloro EJ, Bahraini M, Rad F. Standardization of Prothrombin Time/International Normalized ratio (PT/INR). Int J Lab Hematol. 2021;43:21–8.PubMedCrossRef Dorgalaleh A, Favaloro EJ, Bahraini M, Rad F. Standardization of Prothrombin Time/International Normalized ratio (PT/INR). Int J Lab Hematol. 2021;43:21–8.PubMedCrossRef
39.
go back to reference Papala M, Gillard D, Hardman J, Romano T, Rein LE. Extending INR testing intervals in warfarin patients at a multi-center anticoagulation clinic. J Thromb Thrombolysis. 2022;53:626–32.PubMedCrossRef Papala M, Gillard D, Hardman J, Romano T, Rein LE. Extending INR testing intervals in warfarin patients at a multi-center anticoagulation clinic. J Thromb Thrombolysis. 2022;53:626–32.PubMedCrossRef
40.
go back to reference Bontempi M. Semi-empirical anticoagulation model (SAM): INR monitoring during warfarin therapy. J Pharmacokinet Pharmacodyn. 2022;49:271–82.PubMedCrossRef Bontempi M. Semi-empirical anticoagulation model (SAM): INR monitoring during warfarin therapy. J Pharmacokinet Pharmacodyn. 2022;49:271–82.PubMedCrossRef
42.
go back to reference Donaldson CJ, Harrington DJ. Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins. Br J Biomed Sci. 2017;74:163–9.PubMedCrossRef Donaldson CJ, Harrington DJ. Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins. Br J Biomed Sci. 2017;74:163–9.PubMedCrossRef
43.
44.
go back to reference Xie B, Jiang SQ, Shen XL, Wu HQ, Hu YJ. Pharmacokinetics, plasma protein binding, and metabolism of a potential natural chemosensitizer from Marsdenia tenacissima in rats. J Ethnopharmacol. 2021;281:114544.PubMedCrossRef Xie B, Jiang SQ, Shen XL, Wu HQ, Hu YJ. Pharmacokinetics, plasma protein binding, and metabolism of a potential natural chemosensitizer from Marsdenia tenacissima in rats. J Ethnopharmacol. 2021;281:114544.PubMedCrossRef
45.
go back to reference Di L. An update on the importance of plasma protein binding in drug discovery and development. Expert Opin Drug Discov. 2021;16:1453–65.PubMedCrossRef Di L. An update on the importance of plasma protein binding in drug discovery and development. Expert Opin Drug Discov. 2021;16:1453–65.PubMedCrossRef
46.
go back to reference Bai Y, Fan Y, Ge G, Wang F. Advances in chromatography in the study of drug-plasma protein interactions. Se Pu. 2021;39:1077–85.PubMedPubMedCentral Bai Y, Fan Y, Ge G, Wang F. Advances in chromatography in the study of drug-plasma protein interactions. Se Pu. 2021;39:1077–85.PubMedPubMedCentral
47.
go back to reference Yu X, Jiao Q, Jiang Y, Guo S, Zhang W, Liu B. Study on the plasma protein binding rate and compatibility regularity of the constituents migrating to blood of Simiao Yong’an decoction. Curr Drug Metab. 2020;21:979–93.PubMedCrossRef Yu X, Jiao Q, Jiang Y, Guo S, Zhang W, Liu B. Study on the plasma protein binding rate and compatibility regularity of the constituents migrating to blood of Simiao Yong’an decoction. Curr Drug Metab. 2020;21:979–93.PubMedCrossRef
48.
go back to reference Virani SS, Newby LK, Arnold SV, Bittner V, Brewer LC, Demeter SH, Dixon DL, Fearon WF, Hess B, Johnsonet HM, AHA/ACC/ACCP/ASPC. /NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2023;148(9):e9-e119. Virani SS, Newby LK, Arnold SV, Bittner V, Brewer LC, Demeter SH, Dixon DL, Fearon WF, Hess B, Johnsonet HM, AHA/ACC/ACCP/ASPC. /NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2023;148(9):e9-e119.
49.
go back to reference Schulz-Schüpke S, Byrne RA, Ten Berg JM, Neumann FJ, Han YL, Adriaenssens T, Tölg R, Seyfarth M, Maeng M, Zrenner B, et al. ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 vs. 12 months of clopidogrel therapy after drug-eluting stenting. Eur Heart J. 2015;36(20):1252–63.PubMedCrossRef Schulz-Schüpke S, Byrne RA, Ten Berg JM, Neumann FJ, Han YL, Adriaenssens T, Tölg R, Seyfarth M, Maeng M, Zrenner B, et al. ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 vs. 12 months of clopidogrel therapy after drug-eluting stenting. Eur Heart J. 2015;36(20):1252–63.PubMedCrossRef
50.
go back to reference Jones WS, Mulder H, Wruck LM, Pencina MJ, Kripalani S, Muñoz D, Crenshaw DL, Effron MB, Re RN, Gupta K, et al. Comparative effectiveness of aspirin dosing in Cardiovascular Disease. N Engl J Med. 2021;384(21):1981–90.PubMedPubMedCentralCrossRef Jones WS, Mulder H, Wruck LM, Pencina MJ, Kripalani S, Muñoz D, Crenshaw DL, Effron MB, Re RN, Gupta K, et al. Comparative effectiveness of aspirin dosing in Cardiovascular Disease. N Engl J Med. 2021;384(21):1981–90.PubMedPubMedCentralCrossRef
51.
go back to reference McCarthy L, In ASCVD. 81 mg and 325 mg of aspirin did not differ for CV or bleeding events. Ann Intern Med. 2021;174(10):JC118.PubMedCrossRef McCarthy L, In ASCVD. 81 mg and 325 mg of aspirin did not differ for CV or bleeding events. Ann Intern Med. 2021;174(10):JC118.PubMedCrossRef
52.
go back to reference Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86.CrossRef Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86.CrossRef
53.
go back to reference Antithrombotic Trialists’ Collaboration, Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, Kearney P, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373(9678):1849–60.CrossRef Antithrombotic Trialists’ Collaboration, Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, Kearney P, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373(9678):1849–60.CrossRef
Metadata
Title
Effects of sodium ferulate for injection on anticoagulation of warfarin in rats in vivo
Authors
Yue Zhao
Chunjuan Yang
Yan Liu
Mengnan Qin
Jiahui Sun
Gaofeng Liu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04389-2

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue