Skip to main content
Top
Published in: BMC Neurology 1/2023

Open Access 23-05-2023 | Virology | Review

Immunopathogenesis of viral infections in neurological autoimmune disease

Authors: Mohammad Amin Habibi, Fatemeh Nezhad Shamohammadi, Taraneh Rajaei, Haideh Namdari, Mohammad Reza Pashaei, Hamid Farajifard, Sajjad Ahmadpour

Published in: BMC Neurology | Issue 1/2023

Login to get access

Abstract

Autoimmune diseases develop due to self-tolerance failure in recognizing self and non-self-antigens. Several factors play a role in inducing autoimmunity, including genetic and environmental elements. Several studies demonstrated the causative role of viruses; however, some studies showed the preventive effect of viruses in the development of autoimmunity. Neurological autoimmune diseases are classified based on the targets of autoantibodies, which target intracellular or extracellular antigens rather than neurons. Several theories have been hypothesized to explain the role of viruses in the pathogenesis of neuroinflammation and autoimmune diseases. This study reviewed the current data on the immunopathogenesis of viruses in autoimmunity of the nervous system.
Literature
1.
go back to reference Fairweather D, Root-Bernstein R. Autoimmune Disease: Mechanisms. 2007. Fairweather D, Root-Bernstein R. Autoimmune Disease: Mechanisms. 2007.
2.
go back to reference Arleevskaya MI, Manukyan G, Inoue R, Aminov R. Editorial: microbial and environmental factors in autoimmune and inflammatory diseases. Front Immunol. 2017;8:243.PubMedPubMedCentralCrossRef Arleevskaya MI, Manukyan G, Inoue R, Aminov R. Editorial: microbial and environmental factors in autoimmune and inflammatory diseases. Front Immunol. 2017;8:243.PubMedPubMedCentralCrossRef
3.
go back to reference Lerner A, Arleevskaya M, Schmiedl A, Matthias T. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Front Microbiol. 2017;8:1392.PubMedPubMedCentralCrossRef Lerner A, Arleevskaya M, Schmiedl A, Matthias T. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Front Microbiol. 2017;8:1392.PubMedPubMedCentralCrossRef
4.
go back to reference Klase ZA, Khakhina S, Schneider Ade B, Callahan MV, Glasspool-Malone J, Malone R. Zika Fetal Neuropathogenesis: etiology of a viral syndrome. PLoS Negl Trop Dis. 2016;10(8):e0004877.PubMedPubMedCentralCrossRef Klase ZA, Khakhina S, Schneider Ade B, Callahan MV, Glasspool-Malone J, Malone R. Zika Fetal Neuropathogenesis: etiology of a viral syndrome. PLoS Negl Trop Dis. 2016;10(8):e0004877.PubMedPubMedCentralCrossRef
7.
go back to reference McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol. 2011;122(4):381.PubMedCrossRef McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol. 2011;122(4):381.PubMedCrossRef
9.
go back to reference Croxford JL, Olson JK, Miller SD. Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmun Rev. 2002;1(5):251–60.PubMedCrossRef Croxford JL, Olson JK, Miller SD. Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmun Rev. 2002;1(5):251–60.PubMedCrossRef
10.
go back to reference Fujinami RS, Herrath MGv, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006;19(1):80–94.PubMedPubMedCentralCrossRef Fujinami RS, Herrath MGv, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006;19(1):80–94.PubMedPubMedCentralCrossRef
12.
go back to reference Polepole P, Bartenslager A, Liu Y, Petro TM, Fernando S, Zhang L. Epstein-Barr virus-immortalized B lymphocytes exacerbate experimental autoimmune encephalomyelitis in xenograft mice. J Med Virol. 2021;93(6):3813–23.PubMedCrossRef Polepole P, Bartenslager A, Liu Y, Petro TM, Fernando S, Zhang L. Epstein-Barr virus-immortalized B lymphocytes exacerbate experimental autoimmune encephalomyelitis in xenograft mice. J Med Virol. 2021;93(6):3813–23.PubMedCrossRef
13.
go back to reference Traggiai E. Immortalization of human B cells: analysis of B cell repertoire and production of human monoclonal antibodies. Methods Mol Biol. 2012;901:161–70.PubMedPubMedCentralCrossRef Traggiai E. Immortalization of human B cells: analysis of B cell repertoire and production of human monoclonal antibodies. Methods Mol Biol. 2012;901:161–70.PubMedPubMedCentralCrossRef
14.
go back to reference Plosa EJ, Esbenshade JC, Fuller MP, Weitkamp JH. Cytomegalovirus infection. Pediatr Rev. 2012;33(4):156–63. quiz 63.PubMedCrossRef Plosa EJ, Esbenshade JC, Fuller MP, Weitkamp JH. Cytomegalovirus infection. Pediatr Rev. 2012;33(4):156–63. quiz 63.PubMedCrossRef
15.
go back to reference Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J Pathol. 2015;235(2):288–97.PubMedCrossRef Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J Pathol. 2015;235(2):288–97.PubMedCrossRef
16.
go back to reference Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, et al. Human cytomegalovirus and autoimmune diseases: where are we? Viruses. 2021;13(2):260.PubMedPubMedCentralCrossRef Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, et al. Human cytomegalovirus and autoimmune diseases: where are we? Viruses. 2021;13(2):260.PubMedPubMedCentralCrossRef
17.
go back to reference Alari-Pahissa E, Moreira A, Zabalza A, Alvarez-Lafuente R, Munteis E, Vera A, et al. Low cytomegalovirus seroprevalence in early multiple sclerosis: a case for the ‘hygiene hypothesis’? Eur J Neurol. 2018;25(7):925–33.PubMedCrossRef Alari-Pahissa E, Moreira A, Zabalza A, Alvarez-Lafuente R, Munteis E, Vera A, et al. Low cytomegalovirus seroprevalence in early multiple sclerosis: a case for the ‘hygiene hypothesis’? Eur J Neurol. 2018;25(7):925–33.PubMedCrossRef
18.
go back to reference Ragab D, et al. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol. 2020;11:1446. Ragab D, et al. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol. 2020;11:1446.
19.
go back to reference Zheng MM, Zhang XH. Cross-reactivity between human cytomegalovirus peptide 981–1003 and myelin oligodendroglia glycoprotein peptide 35–55 in experimental autoimmune encephalomyelitis in Lewis rats. Biochem Biophys Res Commun. 2014;443(3):1118–23.PubMedCrossRef Zheng MM, Zhang XH. Cross-reactivity between human cytomegalovirus peptide 981–1003 and myelin oligodendroglia glycoprotein peptide 35–55 in experimental autoimmune encephalomyelitis in Lewis rats. Biochem Biophys Res Commun. 2014;443(3):1118–23.PubMedCrossRef
20.
go back to reference Milovanovic J, Popovic B, Milovanovic M, Kvestak D, Arsenijevic A, Stojanovic B, et al. Murine cytomegalovirus infection induces susceptibility to EAE in resistant BALB/c Mice. Front Immunol. 2017;8:192.PubMedPubMedCentralCrossRef Milovanovic J, Popovic B, Milovanovic M, Kvestak D, Arsenijevic A, Stojanovic B, et al. Murine cytomegalovirus infection induces susceptibility to EAE in resistant BALB/c Mice. Front Immunol. 2017;8:192.PubMedPubMedCentralCrossRef
21.
go back to reference t Hart BA, Jagessar SA, Haanstra K, Verschoor E, Laman JD, Kap YS. The primate EAE model points at EBV-infected B Cells as a preferential therapy target in multiple sclerosis. Front Immunol. 2013;4:145.PubMed t Hart BA, Jagessar SA, Haanstra K, Verschoor E, Laman JD, Kap YS. The primate EAE model points at EBV-infected B Cells as a preferential therapy target in multiple sclerosis. Front Immunol. 2013;4:145.PubMed
22.
go back to reference Vanheusden M, Broux B, Welten SPM, Peeters LM, Panagioti E, Van Wijmeersch B, et al. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. Sci Rep. 2017;7(1):663.PubMedPubMedCentralCrossRef Vanheusden M, Broux B, Welten SPM, Peeters LM, Panagioti E, Van Wijmeersch B, et al. Cytomegalovirus infection exacerbates autoimmune mediated neuroinflammation. Sci Rep. 2017;7(1):663.PubMedPubMedCentralCrossRef
23.
24.
25.
go back to reference Filgueiras IS, Torrentes de Carvalho A, Cunha DP, Mathias da Fonseca DL, El Khawanky N, Freire PP, et al. The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. PLoS Negl Trop Dis. 2021;15(8):e0009575.PubMedPubMedCentralCrossRef Filgueiras IS, Torrentes de Carvalho A, Cunha DP, Mathias da Fonseca DL, El Khawanky N, Freire PP, et al. The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. PLoS Negl Trop Dis. 2021;15(8):e0009575.PubMedPubMedCentralCrossRef
26.
go back to reference Alves-Leon SV, Lima MDR, Nunes PCG, Chimelli LMC, Rabelo K, Nogueira RMR, et al. Zika virus found in brain tissue of a multiple sclerosis patient undergoing an acute disseminated encephalomyelitis-like episode. Mult Scler. 2019;25(3):427–30.PubMedCrossRef Alves-Leon SV, Lima MDR, Nunes PCG, Chimelli LMC, Rabelo K, Nogueira RMR, et al. Zika virus found in brain tissue of a multiple sclerosis patient undergoing an acute disseminated encephalomyelitis-like episode. Mult Scler. 2019;25(3):427–30.PubMedCrossRef
27.
go back to reference Alves-Leon SV, Fontes-Dantas FL, Rueda-Lopes FC. Chapter 18 - Neurological manifestations similar to multiple sclerosis in adults after Zika virus infection, in Zika Virus Biology, Transmission, and Pathology, Martin CR, et al., editors. Academic Press. 2021. p. 199–207. Alves-Leon SV, Fontes-Dantas FL, Rueda-Lopes FC. Chapter 18 - Neurological manifestations similar to multiple sclerosis in adults after Zika virus infection, in Zika Virus Biology, Transmission, and Pathology, Martin CR, et al., editors. Academic Press. 2021. p. 199–207.
28.
go back to reference Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122–30.PubMedCrossRef Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122–30.PubMedCrossRef
29.
go back to reference Schultz V, et al. Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures. Viruses. 2021;13(1). Schultz V, et al. Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures. Viruses. 2021;13(1).
30.
go back to reference Tricarico PM, Caracciolo I, Crovella S, D’Agaro P. Zika virus induces inflammasome activation in the glial cell line U87-MG. Biochem Biophys Res Commun. 2017;492(4):597–602.PubMedCrossRef Tricarico PM, Caracciolo I, Crovella S, D’Agaro P. Zika virus induces inflammasome activation in the glial cell line U87-MG. Biochem Biophys Res Commun. 2017;492(4):597–602.PubMedCrossRef
31.
go back to reference Ojha CR, Rodriguez M, Karuppan MKM, Lapierre J, Kashanchi F, El-Hage N. Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS ONE. 2019;14(2): e0208543.PubMedPubMedCentralCrossRef Ojha CR, Rodriguez M, Karuppan MKM, Lapierre J, Kashanchi F, El-Hage N. Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS ONE. 2019;14(2): e0208543.PubMedPubMedCentralCrossRef
32.
go back to reference Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodríguez Y, Pacheco Y, Halstead S, et al. Autoimmune neurological conditions associated with Zika virus infection. Front Mol Neurosci. 2018;11:116.PubMedPubMedCentralCrossRef Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodríguez Y, Pacheco Y, Halstead S, et al. Autoimmune neurological conditions associated with Zika virus infection. Front Mol Neurosci. 2018;11:116.PubMedPubMedCentralCrossRef
33.
go back to reference Clé M, Desmetz C, Barthelemy J, Martin M-F, Constant O, Maarifi G, et al. Zika virus infection promotes local inflammation, cell adhesion molecule upregulation, and leukocyte recruitment at the blood-brain barrier. mbio. 2020;11(4):e01183-20.PubMedPubMedCentralCrossRef Clé M, Desmetz C, Barthelemy J, Martin M-F, Constant O, Maarifi G, et al. Zika virus infection promotes local inflammation, cell adhesion molecule upregulation, and leukocyte recruitment at the blood-brain barrier. mbio. 2020;11(4):e01183-20.PubMedPubMedCentralCrossRef
34.
go back to reference Papa MP, Meuren LM, Coelho SVA, Lucas CGO, Mustafá YM, Lemos Matassoli F, et al. Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Front Microbiol. 2017;8:2557.PubMedPubMedCentralCrossRef Papa MP, Meuren LM, Coelho SVA, Lucas CGO, Mustafá YM, Lemos Matassoli F, et al. Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Front Microbiol. 2017;8:2557.PubMedPubMedCentralCrossRef
36.
go back to reference Rice EM, Thakolwiboon S, Avila M. Geographic heterogeneity in the association of varicella-zoster virus seropositivity and multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord. 2021;53:103024.PubMedCrossRef Rice EM, Thakolwiboon S, Avila M. Geographic heterogeneity in the association of varicella-zoster virus seropositivity and multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord. 2021;53:103024.PubMedCrossRef
37.
go back to reference Kang JH, Sheu JJ, Lin HC. Increased risk of Guillain-Barré Syndrome following recent herpes zoster: a population-based study across Taiwan. Clin Infect Dis. 2010;51(5):525–30.PubMedCrossRef Kang JH, Sheu JJ, Lin HC. Increased risk of Guillain-Barré Syndrome following recent herpes zoster: a population-based study across Taiwan. Clin Infect Dis. 2010;51(5):525–30.PubMedCrossRef
38.
go back to reference Najafi S, Ghane M, Yousefzadeh-Chabok S, Amiri M. The High Prevalence of the Varicella Zoster Virus in Patients With Relapsing-Remitting Multiple Sclerosis: A Case-Control Study in the North of Iran. Jundishapur J Microbiol. 2016;9(3):e34158.PubMedPubMedCentralCrossRef Najafi S, Ghane M, Yousefzadeh-Chabok S, Amiri M. The High Prevalence of the Varicella Zoster Virus in Patients With Relapsing-Remitting Multiple Sclerosis: A Case-Control Study in the North of Iran. Jundishapur J Microbiol. 2016;9(3):e34158.PubMedPubMedCentralCrossRef
39.
go back to reference Karampoor S, Zahednasab H, Ramagopalan S, Mehrpour M, Etemadifar M, Alsahebfosoul F, et al. Cytomegalovirus and varicella zoster virus seropositivity of Iranian patients with multiple sclerosis: a population-based study. J Neuroimmunol. 2017;309:4–6.PubMedCrossRef Karampoor S, Zahednasab H, Ramagopalan S, Mehrpour M, Etemadifar M, Alsahebfosoul F, et al. Cytomegalovirus and varicella zoster virus seropositivity of Iranian patients with multiple sclerosis: a population-based study. J Neuroimmunol. 2017;309:4–6.PubMedCrossRef
40.
go back to reference Esmaili K, Amini K. Detection of human herpes virus type 6 and varicella zoster virus in the urine of patients with multiple sclerosis in Kerman Province Iran. Neurosci J Shefaye Khatam. 2018;6:19–24.CrossRef Esmaili K, Amini K. Detection of human herpes virus type 6 and varicella zoster virus in the urine of patients with multiple sclerosis in Kerman Province Iran. Neurosci J Shefaye Khatam. 2018;6:19–24.CrossRef
41.
go back to reference Mancuso R, Delbue S, Borghi E, Pagani E, Calvo MG, Caputo D, et al. Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis. J Med Virol. 2007;79(2):192–9.PubMedCrossRef Mancuso R, Delbue S, Borghi E, Pagani E, Calvo MG, Caputo D, et al. Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis. J Med Virol. 2007;79(2):192–9.PubMedCrossRef
42.
go back to reference Sotelo J, Martínez-Palomo A, Ordoñez G, Pineda B. Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis. Ann Neurol. 2008;63(3):303–11.PubMedCrossRef Sotelo J, Martínez-Palomo A, Ordoñez G, Pineda B. Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis. Ann Neurol. 2008;63(3):303–11.PubMedCrossRef
43.
go back to reference Kattimani Y, Veerappa AM. Complex interaction between mutant HNRNPA1 and gE of varicella zoster virus in pathogenesis of multiple sclerosis. Autoimmunity. 2018;51(4):147–51.PubMedCrossRef Kattimani Y, Veerappa AM. Complex interaction between mutant HNRNPA1 and gE of varicella zoster virus in pathogenesis of multiple sclerosis. Autoimmunity. 2018;51(4):147–51.PubMedCrossRef
44.
go back to reference Ascherio A, Munger KL. Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol. 2010;5(3):271–7.PubMedCrossRef Ascherio A, Munger KL. Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol. 2010;5(3):271–7.PubMedCrossRef
46.
go back to reference Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8<sup>+</sup> T cells. Proc Natl Acad Sci. 2016;113(42):E6467–75.PubMedPubMedCentralCrossRef Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8<sup>+</sup> T cells. Proc Natl Acad Sci. 2016;113(42):E6467–75.PubMedPubMedCentralCrossRef
47.
go back to reference Nociti V, Frisullo G, Marti A, Luigetti M, Iorio R, Patanella AK, et al. Epstein-Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J Neuroimmunol. 2010;225(1–2):149–52.PubMedCrossRef Nociti V, Frisullo G, Marti A, Luigetti M, Iorio R, Patanella AK, et al. Epstein-Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J Neuroimmunol. 2010;225(1–2):149–52.PubMedCrossRef
48.
go back to reference Santiago O, Gutierrez J, Sorlozano A, Dios Luna J, Villegas E, Fernandez O. Relation between Epstein-Barr virus and multiple sclerosis: analytic study of scientific production. Eur J Clin Microbiol Infect Dis. 2010;29(7):857–66.PubMedCrossRef Santiago O, Gutierrez J, Sorlozano A, Dios Luna J, Villegas E, Fernandez O. Relation between Epstein-Barr virus and multiple sclerosis: analytic study of scientific production. Eur J Clin Microbiol Infect Dis. 2010;29(7):857–66.PubMedCrossRef
49.
go back to reference Al-Temaimi R, Alroughani R, Jacob S, Al-Mulla F. Gender influence in EBV antibody response in multiple sclerosis patients from Kuwait. J Neuroimmunol. 2015;285:57–61.PubMedCrossRef Al-Temaimi R, Alroughani R, Jacob S, Al-Mulla F. Gender influence in EBV antibody response in multiple sclerosis patients from Kuwait. J Neuroimmunol. 2015;285:57–61.PubMedCrossRef
50.
go back to reference Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS ONE. 2018;13(2):e0192109.PubMedPubMedCentralCrossRef Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS ONE. 2018;13(2):e0192109.PubMedPubMedCentralCrossRef
51.
go back to reference Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis. Science. 2022;375(6578):264–5.PubMedCrossRef Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis. Science. 2022;375(6578):264–5.PubMedCrossRef
52.
go back to reference Mameli G, Cocco E, Frau J, Marrosu MG, Sechi LA. Epstein Barr Virus and Mycobacterium avium subsp. paratuberculosis peptides are recognized in sera and cerebrospinal fluid of MS patients. Sci Rep. 2016;6:22401.PubMedPubMedCentralCrossRef Mameli G, Cocco E, Frau J, Marrosu MG, Sechi LA. Epstein Barr Virus and Mycobacterium avium subsp. paratuberculosis peptides are recognized in sera and cerebrospinal fluid of MS patients. Sci Rep. 2016;6:22401.PubMedPubMedCentralCrossRef
53.
go back to reference Jog NR, McClain MT, Heinlen LD, Gross T, Towner R, Guthridge JM, et al. Epstein Barr virus nuclear antigen 1 (EBNA-1) peptides recognized by adult multiple sclerosis patient sera induce neurologic symptoms in a murine model. J Autoimmun. 2020;106:102332.PubMedCrossRef Jog NR, McClain MT, Heinlen LD, Gross T, Towner R, Guthridge JM, et al. Epstein Barr virus nuclear antigen 1 (EBNA-1) peptides recognized by adult multiple sclerosis patient sera induce neurologic symptoms in a murine model. J Autoimmun. 2020;106:102332.PubMedCrossRef
54.
go back to reference Tengvall K, Huang J, Hellström C, Kammer P, Biström M, Ayoglu B, et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc Natl Acad Sci U S A. 2019;116(34):16955–60.PubMedPubMedCentralCrossRef Tengvall K, Huang J, Hellström C, Kammer P, Biström M, Ayoglu B, et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc Natl Acad Sci U S A. 2019;116(34):16955–60.PubMedPubMedCentralCrossRef
55.
go back to reference Pender MP, Csurhes PA, Burrows JM, Burrows SR. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin Transl Immunol. 2017;6(1):e126.CrossRef Pender MP, Csurhes PA, Burrows JM, Burrows SR. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin Transl Immunol. 2017;6(1):e126.CrossRef
56.
go back to reference Guerrera G, Ruggieri S, Picozza M, Piras E, Gargano F, Placido R, et al. EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. Neurol Neuroimmunol Neuroinflammation. 2020;7(6):e876.CrossRef Guerrera G, Ruggieri S, Picozza M, Piras E, Gargano F, Placido R, et al. EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. Neurol Neuroimmunol Neuroinflammation. 2020;7(6):e876.CrossRef
57.
go back to reference Shi Y, Lutz CT. Interferon–gamma control of EBV-transformed B cells: a role for CD8+ T cells that poorly kill EBV-infected cells. Viral Immunol. 2002;15(1):213–25.PubMedCrossRef Shi Y, Lutz CT. Interferon–gamma control of EBV-transformed B cells: a role for CD8+ T cells that poorly kill EBV-infected cells. Viral Immunol. 2002;15(1):213–25.PubMedCrossRef
58.
go back to reference Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2014;20(11):1541–4.CrossRef Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2014;20(11):1541–4.CrossRef
59.
go back to reference Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CRM. HTLV-1–infected T cells contain a single integrated provirus in natural infection. Blood. 2012;120(17):3488–90.PubMedPubMedCentralCrossRef Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CRM. HTLV-1–infected T cells contain a single integrated provirus in natural infection. Blood. 2012;120(17):3488–90.PubMedPubMedCentralCrossRef
60.
go back to reference Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene. 2005;24(39):6058–68.PubMedCrossRef Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene. 2005;24(39):6058–68.PubMedCrossRef
61.
go back to reference Schachtele SJ, Hu S, Little MR, Lokensgard JR. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation. 2010;7(1):35.PubMedPubMedCentralCrossRef Schachtele SJ, Hu S, Little MR, Lokensgard JR. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation. 2010;7(1):35.PubMedPubMedCentralCrossRef
63.
go back to reference Yamano Y, Nagai M, Brennan M, Mora CA, Soldan SS, Tomaru U, et al. Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8+ T cells, and disease severity in HTLV-1–associated myelopathy (HAM/TSP). Blood. 2002;99(1):88–94.PubMedCrossRef Yamano Y, Nagai M, Brennan M, Mora CA, Soldan SS, Tomaru U, et al. Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8+ T cells, and disease severity in HTLV-1–associated myelopathy (HAM/TSP). Blood. 2002;99(1):88–94.PubMedCrossRef
64.
go back to reference Li XH, Gaynor RB. Regulation of NF-kappaB by the HTLV-1 Tax protein. Gene Expr. 1999;7(4–6):233–45.PubMed Li XH, Gaynor RB. Regulation of NF-kappaB by the HTLV-1 Tax protein. Gene Expr. 1999;7(4–6):233–45.PubMed
65.
go back to reference Siekevitz M, Feinberg MB, Holbrook N, Wong-Staal F, Greene WC. Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I. Proc Natl Acad Sci U S A. 1987;84(15):5389–93.PubMedPubMedCentralCrossRef Siekevitz M, Feinberg MB, Holbrook N, Wong-Staal F, Greene WC. Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I. Proc Natl Acad Sci U S A. 1987;84(15):5389–93.PubMedPubMedCentralCrossRef
66.
go back to reference Cross SL, Feinberg MB, Wolf JB, Holbrook NJ, Wong-Staal F, Leonard WJ. Regulation of the human interleukin-2 receptor alpha chain promoter: activation of a nonfunctional promoter by the transactivator gene of HTLV-I. Cell. 1987;49(1):47–56.PubMedCrossRef Cross SL, Feinberg MB, Wolf JB, Holbrook NJ, Wong-Staal F, Leonard WJ. Regulation of the human interleukin-2 receptor alpha chain promoter: activation of a nonfunctional promoter by the transactivator gene of HTLV-I. Cell. 1987;49(1):47–56.PubMedCrossRef
67.
go back to reference Azimi N, Brown K, Bamford RN, Tagaya Y, Siebenlist U, Waldmann TA. Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc Natl Acad Sci U S A. 1998;95(5):2452–7.PubMedPubMedCentralCrossRef Azimi N, Brown K, Bamford RN, Tagaya Y, Siebenlist U, Waldmann TA. Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc Natl Acad Sci U S A. 1998;95(5):2452–7.PubMedPubMedCentralCrossRef
68.
go back to reference Mariner JM, Lantz V, Waldmann TA, Azimi N. Human T cell lymphotropic virus type I Tax activates IL-15R alpha gene expression through an NF-kappa B site. J Immunol. 2001;166(4):2602–9.PubMedCrossRef Mariner JM, Lantz V, Waldmann TA, Azimi N. Human T cell lymphotropic virus type I Tax activates IL-15R alpha gene expression through an NF-kappa B site. J Immunol. 2001;166(4):2602–9.PubMedCrossRef
69.
go back to reference Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601.PubMedCrossRef Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601.PubMedCrossRef
70.
go back to reference Ju W, Zhang M, Jiang JK, Thomas CJ, Oh U, Bryant BR, et al. CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP. Blood. 2011;117(6):1938–46.PubMedPubMedCentralCrossRef Ju W, Zhang M, Jiang JK, Thomas CJ, Oh U, Bryant BR, et al. CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP. Blood. 2011;117(6):1938–46.PubMedPubMedCentralCrossRef
71.
go back to reference Matsuoka M, Jeang KT. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax HBZ and therapy. Oncogene. 2011;30(12):1379–89.PubMedCrossRef Matsuoka M, Jeang KT. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax HBZ and therapy. Oncogene. 2011;30(12):1379–89.PubMedCrossRef
72.
go back to reference Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW, et al. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest. 2005;115(5):1361–8.PubMedPubMedCentralCrossRef Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW, et al. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest. 2005;115(5):1361–8.PubMedPubMedCentralCrossRef
73.
go back to reference Oh U, Grant C, Griffith C, Fugo K, Takenouchi N, Jacobson S. Reduced Foxp3 protein expression is associated with inflammatory disease during human t lymphotropic virus type 1 Infection. J Infect Dis. 2006;193(11):1557–66.PubMedCrossRef Oh U, Grant C, Griffith C, Fugo K, Takenouchi N, Jacobson S. Reduced Foxp3 protein expression is associated with inflammatory disease during human t lymphotropic virus type 1 Infection. J Infect Dis. 2006;193(11):1557–66.PubMedCrossRef
74.
go back to reference Michaëlsson J, Barbosa HM, Jordan KA, Chapman JM, Brunialti MK, Neto WK, Nukui Y, Sabino EC, Chieia MA, Oliveira AS, Nixon DF. The frequency of CD127low expressing CD4+ CD25high T regulatory cells is inversely correlated with human T lymphotrophic virus type-1 (HTLV-1) proviral load in HTLV-1-infection and HTLV-1-associated myelopathy/tropical spastic paraparesis. BMC Immunol. 2008;9(1):1–2.CrossRef Michaëlsson J, Barbosa HM, Jordan KA, Chapman JM, Brunialti MK, Neto WK, Nukui Y, Sabino EC, Chieia MA, Oliveira AS, Nixon DF. The frequency of CD127low expressing CD4+ CD25high T regulatory cells is inversely correlated with human T lymphotrophic virus type-1 (HTLV-1) proviral load in HTLV-1-infection and HTLV-1-associated myelopathy/tropical spastic paraparesis. BMC Immunol. 2008;9(1):1–2.CrossRef
75.
go back to reference Araya N, et al. Human T-lymphotropic virus type 1 (HTLV-1) and regulatory T cells in HTLV-1-associated neuroinflammatory disease. Viruses. 2011;3(9):1532–48. Araya N, et al. Human T-lymphotropic virus type 1 (HTLV-1) and regulatory T cells in HTLV-1-associated neuroinflammatory disease. Viruses. 2011;3(9):1532–48.
76.
go back to reference Grant C, Oh U, Yao K, Yamano Y, Jacobson S. Dysregulation of TGF-beta signaling and regulatory and effector T-cell function in virus-induced neuroinflammatory disease. Blood. 2008;111(12):5601–9.PubMedPubMedCentralCrossRef Grant C, Oh U, Yao K, Yamano Y, Jacobson S. Dysregulation of TGF-beta signaling and regulatory and effector T-cell function in virus-induced neuroinflammatory disease. Blood. 2008;111(12):5601–9.PubMedPubMedCentralCrossRef
77.
go back to reference Araya N, Sato T, Yagishita N, Ando H, Utsunomiya A, Jacobson S, et al. Human T-lymphotropic virus type 1 (HTLV-1) and regulatory T cells in HTLV-1-associated neuroinflammatory disease. Viruses. 2011;3(9):1532–48.PubMedPubMedCentralCrossRef Araya N, Sato T, Yagishita N, Ando H, Utsunomiya A, Jacobson S, et al. Human T-lymphotropic virus type 1 (HTLV-1) and regulatory T cells in HTLV-1-associated neuroinflammatory disease. Viruses. 2011;3(9):1532–48.PubMedPubMedCentralCrossRef
78.
go back to reference Araya N, Sato T, Ando H, Tomaru U, Yoshida M, Coler-Reilly A, et al. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J Clin Invest. 2014;124(8):3431–42.PubMedPubMedCentralCrossRef Araya N, Sato T, Ando H, Tomaru U, Yoshida M, Coler-Reilly A, et al. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J Clin Invest. 2014;124(8):3431–42.PubMedPubMedCentralCrossRef
79.
go back to reference Yamano Y, Coler-Reilly A. HTLV-1 induces a Th1-like state in CD4<sup>+</sup><span style="display:inline-block;width:0.10em;"><!----></span>CCR4<sup>+</sup> T cells that produces an inflammatory positive feedback loop via astrocytes in HAM/TSP. J Neuroimmunol. 2017;304:51–5.PubMedCrossRef Yamano Y, Coler-Reilly A. HTLV-1 induces a Th1-like state in CD4<sup>+</sup><span style="display:inline-block;width:0.10em;"><!----></span>CCR4<sup>+</sup> T cells that produces an inflammatory positive feedback loop via astrocytes in HAM/TSP. J Neuroimmunol. 2017;304:51–5.PubMedCrossRef
81.
go back to reference Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Gottlieb SL, et al. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE. 2015;10(10):e0140765.PubMedPubMedCentralCrossRef Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Gottlieb SL, et al. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE. 2015;10(10):e0140765.PubMedPubMedCentralCrossRef
82.
go back to reference Whitley RJ, Roizman B. Herpes simplex virus infections. The Lancet. 2001;357(9267):1513–8.CrossRef Whitley RJ, Roizman B. Herpes simplex virus infections. The Lancet. 2001;357(9267):1513–8.CrossRef
83.
go back to reference Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 1974;14(1):8–19.PubMedPubMedCentralCrossRef Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 1974;14(1):8–19.PubMedPubMedCentralCrossRef
84.
go back to reference Perng G-C, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science. 2000;287(5457):1500–3.PubMedCrossRef Perng G-C, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science. 2000;287(5457):1500–3.PubMedCrossRef
85.
go back to reference Medici MA, Sciortino MT, Perri D, Amici C, Avitabile E, Ciotti M, et al. Protection by Herpes Simplex Virus Glycoprotein D against Fas-mediated Apoptosis: ROLE OF NUCLEAR FACTOR & #x3ba;B *. J Biol Chem. 2003;278(38):36059–67.PubMedCrossRef Medici MA, Sciortino MT, Perri D, Amici C, Avitabile E, Ciotti M, et al. Protection by Herpes Simplex Virus Glycoprotein D against Fas-mediated Apoptosis: ROLE OF NUCLEAR FACTOR & #x3ba;B *. J Biol Chem. 2003;278(38):36059–67.PubMedCrossRef
86.
go back to reference Marino-Merlo F, Papaianni E, Medici MA, Macchi B, Grelli S, Mosca C, et al. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis. Cell Death Dis. 2016;7(9):e2354.PubMedPubMedCentralCrossRef Marino-Merlo F, Papaianni E, Medici MA, Macchi B, Grelli S, Mosca C, et al. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis. Cell Death Dis. 2016;7(9):e2354.PubMedPubMedCentralCrossRef
87.
go back to reference Pontes MS, Van Waesberghe C, Nauwynck H, Verhasselt B, Favoreel HW. Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells. Virus Res. 2016;213:214–8.PubMedCrossRef Pontes MS, Van Waesberghe C, Nauwynck H, Verhasselt B, Favoreel HW. Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells. Virus Res. 2016;213:214–8.PubMedCrossRef
88.
go back to reference Nguyen ML, Kraft RM, Blaho JA. African green monkey kidney Vero cells require de novo protein synthesis for efficient herpes simplex virus 1-dependent apoptosis. Virology. 2005;336(2):274–90.PubMedCrossRef Nguyen ML, Kraft RM, Blaho JA. African green monkey kidney Vero cells require de novo protein synthesis for efficient herpes simplex virus 1-dependent apoptosis. Virology. 2005;336(2):274–90.PubMedCrossRef
89.
go back to reference Nguyen ML, Blaho JA. Apoptosis during herpes simplex virus infection. Adv Virus Res. 2006;69:67–97. Academic Press.CrossRef Nguyen ML, Blaho JA. Apoptosis during herpes simplex virus infection. Adv Virus Res. 2006;69:67–97. Academic Press.CrossRef
90.
go back to reference Klionsky DJ, Cuervo AM, Dunn JWA, Levine B, van der Klei IJ, Seglen PO. How shall I eat thee? Autophagy. 2007;3(5):413–6.PubMedCrossRef Klionsky DJ, Cuervo AM, Dunn JWA, Levine B, van der Klei IJ, Seglen PO. How shall I eat thee? Autophagy. 2007;3(5):413–6.PubMedCrossRef
91.
go back to reference Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–9.PubMedCrossRef Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–9.PubMedCrossRef
92.
go back to reference Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-i, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–4.PubMedCrossRef Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-i, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–4.PubMedCrossRef
94.
go back to reference Molina V, Shoenfeld Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity. 2005;38(3):235–45.PubMedCrossRef Molina V, Shoenfeld Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity. 2005;38(3):235–45.PubMedCrossRef
95.
go back to reference Kaźmierski R, Wender M, Guzik P, Zielonka D. Association of influenza incidence with multiple sclerosis onset. Folia Neuropathol. 2004;42(1):19–23.PubMed Kaźmierski R, Wender M, Guzik P, Zielonka D. Association of influenza incidence with multiple sclerosis onset. Folia Neuropathol. 2004;42(1):19–23.PubMed
96.
go back to reference Krone B, Pohl D, Rostasy K, Kahler E, Brunner E, Oeffner F, et al. Common infectious agents in multiple sclerosis: a case-control study in children. Mult Scler. 2008;14(1):136–9.PubMedCrossRef Krone B, Pohl D, Rostasy K, Kahler E, Brunner E, Oeffner F, et al. Common infectious agents in multiple sclerosis: a case-control study in children. Mult Scler. 2008;14(1):136–9.PubMedCrossRef
97.
go back to reference DeStefano F, Verstraeten T, Jackson LA, Okoro CA, Benson P, Black SB, et al. Vaccinations and risk of central nervous system demyelinating diseases in adults. Arch Neurol. 2003;60(4):504–9.PubMedCrossRef DeStefano F, Verstraeten T, Jackson LA, Okoro CA, Benson P, Black SB, et al. Vaccinations and risk of central nervous system demyelinating diseases in adults. Arch Neurol. 2003;60(4):504–9.PubMedCrossRef
98.
go back to reference Patone M, Handunnetthi L, Saatci D, Pan J, Katikireddi SV, Razvi S, et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med. 2021;27(12):2144–53.PubMedPubMedCentralCrossRef Patone M, Handunnetthi L, Saatci D, Pan J, Katikireddi SV, Razvi S, et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med. 2021;27(12):2144–53.PubMedPubMedCentralCrossRef
99.
go back to reference Murillo-Zamora E, Guzmán-Esquivel J, Sánchez-Piña RA, Cedeño-Laurent G, Delgado-Enciso I, Mendoza-Cano O. Physical distancing reduced the incidence of influenza and supports a favorable impact on SARS-CoV-2 spread in Mexico. J Infect Dev Ctries. 2020;14(9):953–6.PubMedCrossRef Murillo-Zamora E, Guzmán-Esquivel J, Sánchez-Piña RA, Cedeño-Laurent G, Delgado-Enciso I, Mendoza-Cano O. Physical distancing reduced the incidence of influenza and supports a favorable impact on SARS-CoV-2 spread in Mexico. J Infect Dev Ctries. 2020;14(9):953–6.PubMedCrossRef
100.
go back to reference Li S, Han L, Shi H, Chong MK, Zhao S, Ran J. Excess deaths from Alzheimer’s disease and Parkinson’s disease during the COVID-19 pandemic in the USA. Age Ageing. 2022;51(12):afac277.PubMedCrossRef Li S, Han L, Shi H, Chong MK, Zhao S, Ran J. Excess deaths from Alzheimer’s disease and Parkinson’s disease during the COVID-19 pandemic in the USA. Age Ageing. 2022;51(12):afac277.PubMedCrossRef
101.
go back to reference Gilstrap L, Zhou W, Alsan M, Nanda A, Skinner JS. Trends in mortality rates among Medicare enrollees with Alzheimer disease and related dementias before and during the early phase of the COVID-19 pandemic. JAMA Neurol. 2022;79(4):342–8.PubMedPubMedCentralCrossRef Gilstrap L, Zhou W, Alsan M, Nanda A, Skinner JS. Trends in mortality rates among Medicare enrollees with Alzheimer disease and related dementias before and during the early phase of the COVID-19 pandemic. JAMA Neurol. 2022;79(4):342–8.PubMedPubMedCentralCrossRef
102.
go back to reference Moghadasi AN, Mirmosayyeb O, Barzegar M, Sahraian MA, Ghajarzadeh M. The prevalence of COVID-19 infection in patients with multiple sclerosis (MS): a systematic review and meta-analysis. Neurol Sci. 2021;42(8):3093–9.PubMedPubMedCentralCrossRef Moghadasi AN, Mirmosayyeb O, Barzegar M, Sahraian MA, Ghajarzadeh M. The prevalence of COVID-19 infection in patients with multiple sclerosis (MS): a systematic review and meta-analysis. Neurol Sci. 2021;42(8):3093–9.PubMedPubMedCentralCrossRef
103.
go back to reference Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, et al. Elucidating the neuropathologic mechanisms of SARS-CoV-2 infection. Front Neurol. 2021;12:660087.PubMedPubMedCentralCrossRef Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, et al. Elucidating the neuropathologic mechanisms of SARS-CoV-2 infection. Front Neurol. 2021;12:660087.PubMedPubMedCentralCrossRef
105.
go back to reference Marino Gammazza A, Légaré S, Lo Bosco G, Fucarino A, Angileri F, Oliveri M, et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe. 2021;2(3):e94.PubMedCrossRef Marino Gammazza A, Légaré S, Lo Bosco G, Fucarino A, Angileri F, Oliveri M, et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe. 2021;2(3):e94.PubMedCrossRef
106.
go back to reference Dufour C, Co TK, Liu A. GM1 ganglioside antibody and COVID-19 related Guillain Barre syndrome – a case report, systemic review and implication for vaccine development. Brain Behav Immun Health. 2021;12:100203.PubMedPubMedCentralCrossRef Dufour C, Co TK, Liu A. GM1 ganglioside antibody and COVID-19 related Guillain Barre syndrome – a case report, systemic review and implication for vaccine development. Brain Behav Immun Health. 2021;12:100203.PubMedPubMedCentralCrossRef
107.
go back to reference Wozniak M, Mee A, Itzhaki R. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol. 2009;217(1):131–8.PubMedCrossRef Wozniak M, Mee A, Itzhaki R. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol. 2009;217(1):131–8.PubMedCrossRef
108.
go back to reference Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular β-amyloid accumulation and secretase upregulation. Neurosci Lett. 2007;429(2):95–100.PubMedCrossRef Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular β-amyloid accumulation and secretase upregulation. Neurosci Lett. 2007;429(2):95–100.PubMedCrossRef
109.
go back to reference Kavouras JH, Prandovszky E, Valyi-Nagy K, Kovacs SK, Tiwari V, Kovacs M, et al. Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. J Neurovirol. 2007;13(5):416–25.PubMedCrossRef Kavouras JH, Prandovszky E, Valyi-Nagy K, Kovacs SK, Tiwari V, Kovacs M, et al. Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. J Neurovirol. 2007;13(5):416–25.PubMedCrossRef
110.
go back to reference Yoon SW, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol. 2014;385:359–75.PubMed Yoon SW, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol. 2014;385:359–75.PubMed
111.
112.
go back to reference Pica N, Palese P. Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med. 2013;64:189–202.PubMedCrossRef Pica N, Palese P. Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med. 2013;64:189–202.PubMedCrossRef
113.
114.
go back to reference Haber P, DeStefano F, Angulo FJ, Iskander J, Shadomy SV, Weintraub E, et al. Guillain-Barré syndrome following influenza vaccination. JAMA. 2004;292(20):2478–81.PubMedCrossRef Haber P, DeStefano F, Angulo FJ, Iskander J, Shadomy SV, Weintraub E, et al. Guillain-Barré syndrome following influenza vaccination. JAMA. 2004;292(20):2478–81.PubMedCrossRef
115.
go back to reference Sivadon-Tardy V, Orlikowski D, Porcher R, Sharshar T, Durand M-C, Enouf V, et al. Guillain-Barré syndrome and influenza virus infection. Clin Infect Dis. 2009;48(1):48–56.PubMedCrossRef Sivadon-Tardy V, Orlikowski D, Porcher R, Sharshar T, Durand M-C, Enouf V, et al. Guillain-Barré syndrome and influenza virus infection. Clin Infect Dis. 2009;48(1):48–56.PubMedCrossRef
116.
go back to reference Tam CC, O’Brien SJ, Petersen I, Islam A, Hayward A, Rodrigues LC. Guillain-Barré syndrome and preceding infection with campylobacter, influenza and Epstein-Barr virus in the general practice research database. PLoS ONE. 2007;2(4):e344.PubMedPubMedCentralCrossRef Tam CC, O’Brien SJ, Petersen I, Islam A, Hayward A, Rodrigues LC. Guillain-Barré syndrome and preceding infection with campylobacter, influenza and Epstein-Barr virus in the general practice research database. PLoS ONE. 2007;2(4):e344.PubMedPubMedCentralCrossRef
117.
go back to reference Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol. 2007;178(4):2182.PubMedCrossRef Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol. 2007;178(4):2182.PubMedCrossRef
118.
go back to reference Marks DJ, Mitchison NA, Segal AW, Sieper J. Can unresolved infection precipitate autoimmune disease? Curr Top Microbiol Immunol. 2006;305:105–25.PubMed Marks DJ, Mitchison NA, Segal AW, Sieper J. Can unresolved infection precipitate autoimmune disease? Curr Top Microbiol Immunol. 2006;305:105–25.PubMed
119.
go back to reference Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61(8):774–80.PubMedCrossRef Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61(8):774–80.PubMedCrossRef
120.
go back to reference Fiore AE, Shay DK, Broder K, Iskander JK, Uyeki TM, Mootrey G, et al. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2008. MMWR Recomm Rep. 2008;57(Rr-7):1–60.PubMed Fiore AE, Shay DK, Broder K, Iskander JK, Uyeki TM, Mootrey G, et al. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2008. MMWR Recomm Rep. 2008;57(Rr-7):1–60.PubMed
121.
go back to reference Hughes RA, Hadden RD, Gregson NA, Smith KJ. Pathogenesis of Guillain-Barré syndrome. J Neuroimmunol. 1999;100(1–2):74–97.PubMedCrossRef Hughes RA, Hadden RD, Gregson NA, Smith KJ. Pathogenesis of Guillain-Barré syndrome. J Neuroimmunol. 1999;100(1–2):74–97.PubMedCrossRef
122.
go back to reference Kuwahara M, Samukawa M, Ikeda T, Morikawa M, Ueno R, Hamada Y, et al. Characterization of the neurological diseases associated with Mycoplasma pneumoniae infection and anti-glycolipid antibodies. J Neurol. 2017;264(3):467–75.PubMedCrossRef Kuwahara M, Samukawa M, Ikeda T, Morikawa M, Ueno R, Hamada Y, et al. Characterization of the neurological diseases associated with Mycoplasma pneumoniae infection and anti-glycolipid antibodies. J Neurol. 2017;264(3):467–75.PubMedCrossRef
123.
go back to reference Ang CW, Laman JD, Willison HJ, Wagner ER, Endtz HP, De Klerk MA, et al. Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain-Barré and Miller Fisher patients. Infect Immun. 2002;70(3):1202–8.PubMedPubMedCentralCrossRef Ang CW, Laman JD, Willison HJ, Wagner ER, Endtz HP, De Klerk MA, et al. Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain-Barré and Miller Fisher patients. Infect Immun. 2002;70(3):1202–8.PubMedPubMedCentralCrossRef
124.
go back to reference Kusunoki S, Shiina M, Kanazawa I. Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology. 2001;57(4):736–8.PubMedCrossRef Kusunoki S, Shiina M, Kanazawa I. Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology. 2001;57(4):736–8.PubMedCrossRef
125.
go back to reference Yamana M, Kuwahara M, Fukumoto Y, Yoshikawa K, Takada K, Kusunoki S. Guillain-Barré syndrome and related diseases after influenza virus infection. Neurol Neuroimmunol Neuroinflammation. 2019;6(4):e575.CrossRef Yamana M, Kuwahara M, Fukumoto Y, Yoshikawa K, Takada K, Kusunoki S. Guillain-Barré syndrome and related diseases after influenza virus infection. Neurol Neuroimmunol Neuroinflammation. 2019;6(4):e575.CrossRef
126.
go back to reference Nachamkin I, Shadomy SV, Moran AP, Cox N, Fitzgerald C, Ung H, et al. Anti-ganglioside antibody induction by swine (A/NJ/1976/H1N1) and other influenza vaccines: insights into vaccine-associated Guillain-Barré syndrome. J Infect Dis. 2008;198(2):226–33.PubMedCrossRef Nachamkin I, Shadomy SV, Moran AP, Cox N, Fitzgerald C, Ung H, et al. Anti-ganglioside antibody induction by swine (A/NJ/1976/H1N1) and other influenza vaccines: insights into vaccine-associated Guillain-Barré syndrome. J Infect Dis. 2008;198(2):226–33.PubMedCrossRef
127.
go back to reference Kendal AP, Bozeman FM, Ennis FA. Further studies of the neuraminidase content of inactivated influenza vaccines and the neuraminidase antibody responses after vaccination of immunologically primed and unprimed populations. Infect Immun. 1980;29(3):966–71.PubMedPubMedCentralCrossRef Kendal AP, Bozeman FM, Ennis FA. Further studies of the neuraminidase content of inactivated influenza vaccines and the neuraminidase antibody responses after vaccination of immunologically primed and unprimed populations. Infect Immun. 1980;29(3):966–71.PubMedPubMedCentralCrossRef
129.
go back to reference Nordvig AS, Fong KT, Willey JZ, Thakur KT, Boehme AK, Vargas WS, et al. Potential Neurologic Manifestations of COVID-19. Neurol Clin Pract. 2021;11(2):e135-e46.PubMedPubMedCentralCrossRef Nordvig AS, Fong KT, Willey JZ, Thakur KT, Boehme AK, Vargas WS, et al. Potential Neurologic Manifestations of COVID-19. Neurol Clin Pract. 2021;11(2):e135-e46.PubMedPubMedCentralCrossRef
130.
go back to reference Sahin A-R, Erdogan A, Agaoglu PM, Dineri Y, Cakirci A-Y, Senel M-E, et al. 2019 novel coronavirus (COVID-19) outbreak: a review of the current literature. EJMO. 2020;4(1):1–7. Sahin A-R, Erdogan A, Agaoglu PM, Dineri Y, Cakirci A-Y, Senel M-E, et al. 2019 novel coronavirus (COVID-19) outbreak: a review of the current literature. EJMO. 2020;4(1):1–7.
131.
go back to reference Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383–4.PubMedPubMedCentralCrossRef Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383–4.PubMedPubMedCentralCrossRef
132.
go back to reference Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323(8):707–8.PubMedCrossRef Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323(8):707–8.PubMedCrossRef
133.
go back to reference Gerges Harb J, Noureldine HA, Chedid G, Eldine MN, Abdallah DA, Chedid NF, et al. SARS, MERS and COVID-19: clinical manifestations and organ-system complications: a mini review. Pathog Dis. 2020;78(4):ftaa033.PubMedCrossRef Gerges Harb J, Noureldine HA, Chedid G, Eldine MN, Abdallah DA, Chedid NF, et al. SARS, MERS and COVID-19: clinical manifestations and organ-system complications: a mini review. Pathog Dis. 2020;78(4):ftaa033.PubMedCrossRef
134.
135.
go back to reference Sharma K, Tengsupakul S, Sanchez O, Phaltas R, Maertens P. Guillain–Barré syndrome with unilateral peripheral facial and bulbar palsy in a child: a case report. SAGE Open Med Case Rep. 2019;7:2050313X19838750.PubMedPubMedCentral Sharma K, Tengsupakul S, Sanchez O, Phaltas R, Maertens P. Guillain–Barré syndrome with unilateral peripheral facial and bulbar palsy in a child: a case report. SAGE Open Med Case Rep. 2019;7:2050313X19838750.PubMedPubMedCentral
136.
go back to reference Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Monit. 2020;26:e928996.PubMedPubMedCentral Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Monit. 2020;26:e928996.PubMedPubMedCentral
137.
go back to reference Tawakul AA, Al-Doboke AW, Altayyar SA, Alsulami SA, Alfahmi AM, Nooh RT. Guillain-Barré syndrome in the COVID-19 pandemic. Neurol Int. 2021;14(1):34–48.PubMedPubMedCentralCrossRef Tawakul AA, Al-Doboke AW, Altayyar SA, Alsulami SA, Alfahmi AM, Nooh RT. Guillain-Barré syndrome in the COVID-19 pandemic. Neurol Int. 2021;14(1):34–48.PubMedPubMedCentralCrossRef
138.
go back to reference Dewanjee S, Vallamkondu J, Kalra RS, Puvvada N, Kandimalla R, Reddy PH. Emerging COVID-19 neurological manifestations: present outlook and potential neurological challenges in COVID-19 pandemic. Mol Neurobiol. 2021;58(9):4694–715.PubMedPubMedCentralCrossRef Dewanjee S, Vallamkondu J, Kalra RS, Puvvada N, Kandimalla R, Reddy PH. Emerging COVID-19 neurological manifestations: present outlook and potential neurological challenges in COVID-19 pandemic. Mol Neurobiol. 2021;58(9):4694–715.PubMedPubMedCentralCrossRef
139.
go back to reference Zito A, Alfonsi E, Franciotta D, Todisco M, Gastaldi M, Cotta Ramusino M, et al. COVID-19 and Guillain-Barré syndrome: a case report and review of literature. Front Neurol. 2020;11:909.PubMedPubMedCentralCrossRef Zito A, Alfonsi E, Franciotta D, Todisco M, Gastaldi M, Cotta Ramusino M, et al. COVID-19 and Guillain-Barré syndrome: a case report and review of literature. Front Neurol. 2020;11:909.PubMedPubMedCentralCrossRef
140.
go back to reference AlKetbi R, AlNuaimi D, AlMulla M, AlTalai N, Samir M, Kumar N, et al. Acute myelitis as a neurological complication of Covid-19: a case report and MRI findings. Radiol Case Rep. 2020;15(9):1591–5.PubMedPubMedCentralCrossRef AlKetbi R, AlNuaimi D, AlMulla M, AlTalai N, Samir M, Kumar N, et al. Acute myelitis as a neurological complication of Covid-19: a case report and MRI findings. Radiol Case Rep. 2020;15(9):1591–5.PubMedPubMedCentralCrossRef
141.
go back to reference Bellucci M, Germano F, Grisanti S, Castellano C, Tazza F, Mobilia EM, et al. Case report: post-COVID-19 vaccine recurrence of Guillain-Barré syndrome following an antecedent parainfectious COVID-19-related GBS. Front Immunol. 2022;13:894872.PubMedPubMedCentralCrossRef Bellucci M, Germano F, Grisanti S, Castellano C, Tazza F, Mobilia EM, et al. Case report: post-COVID-19 vaccine recurrence of Guillain-Barré syndrome following an antecedent parainfectious COVID-19-related GBS. Front Immunol. 2022;13:894872.PubMedPubMedCentralCrossRef
142.
go back to reference Keddie S, Pakpoor J, Mousele C, Pipis M, Machado PM, Foster M, et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain. 2021;144(2):682–93.PubMedCrossRef Keddie S, Pakpoor J, Mousele C, Pipis M, Machado PM, Foster M, et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain. 2021;144(2):682–93.PubMedCrossRef
143.
go back to reference Palaiodimou L, Stefanou M-I, Katsanos AH, Fragkou PC, Papadopoulou M, Moschovos C, et al. Prevalence, clinical characteristics and outcomes of Guillain−Barré syndrome spectrum associated with COVID-19: a systematic review and meta-analysis. Eur J Neurol. 2021;28(10):3517–29.PubMedPubMedCentralCrossRef Palaiodimou L, Stefanou M-I, Katsanos AH, Fragkou PC, Papadopoulou M, Moschovos C, et al. Prevalence, clinical characteristics and outcomes of Guillain−Barré syndrome spectrum associated with COVID-19: a systematic review and meta-analysis. Eur J Neurol. 2021;28(10):3517–29.PubMedPubMedCentralCrossRef
144.
go back to reference Chiu NC, Chi H, Tai YL, Peng CC, Tseng CY, Chen CC, et al. Impact of wearing masks, hand hygiene, and social distancing on influenza, enterovirus, and all-cause pneumonia during the coronavirus pandemic: retrospective national epidemiological surveillance study. J Med Internet Res. 2020;22(8):e21257.PubMedPubMedCentralCrossRef Chiu NC, Chi H, Tai YL, Peng CC, Tseng CY, Chen CC, et al. Impact of wearing masks, hand hygiene, and social distancing on influenza, enterovirus, and all-cause pneumonia during the coronavirus pandemic: retrospective national epidemiological surveillance study. J Med Internet Res. 2020;22(8):e21257.PubMedPubMedCentralCrossRef
145.
go back to reference Restrepo-Vera JL, Llauradó A, Palasí A, González-Martínez V, Gratacòs M, Salvadó M, et al. Immunological, clinical, and epidemiological features of Guillain-Barré syndrome associated with SARS-CoV-2 Infection. Acta Neurol Scand. 2023;2023:5380946.CrossRef Restrepo-Vera JL, Llauradó A, Palasí A, González-Martínez V, Gratacòs M, Salvadó M, et al. Immunological, clinical, and epidemiological features of Guillain-Barré syndrome associated with SARS-CoV-2 Infection. Acta Neurol Scand. 2023;2023:5380946.CrossRef
146.
go back to reference Wang L, et al. Association of COVID-19 with New-Onset Alzheimer's Disease. J Alzheimers Dis. 2022;89(2):411–14. Wang L, et al. Association of COVID-19 with New-Onset Alzheimer's Disease. J Alzheimers Dis. 2022;89(2):411–14.
147.
go back to reference Espíndola OM, Brandão CO, Gomes YCP, Siqueira M, Soares CN, Lima MASD, et al. Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. Int J Infect Dis. 2021;102:155–62.PubMedCrossRef Espíndola OM, Brandão CO, Gomes YCP, Siqueira M, Soares CN, Lima MASD, et al. Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. Int J Infect Dis. 2021;102:155–62.PubMedCrossRef
148.
go back to reference Hussain FS, Eldeeb MA, Blackmore D, Siddiqi ZA. Guillain Barré syndrome and COVID-19: possible role of the cytokine storm. Autoimmun Rev. 2020;19(12):102681.PubMedPubMedCentralCrossRef Hussain FS, Eldeeb MA, Blackmore D, Siddiqi ZA. Guillain Barré syndrome and COVID-19: possible role of the cytokine storm. Autoimmun Rev. 2020;19(12):102681.PubMedPubMedCentralCrossRef
149.
go back to reference Maxeiner HG, Marion Schneider E, Kurfiss ST, Brettschneider J, Tumani H, Bechter K. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine. 2014;69(1):62–7.PubMedCrossRef Maxeiner HG, Marion Schneider E, Kurfiss ST, Brettschneider J, Tumani H, Bechter K. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine. 2014;69(1):62–7.PubMedCrossRef
150.
go back to reference Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76.PubMedCrossRef Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76.PubMedCrossRef
151.
go back to reference Gupta M, Weaver DF. COVID-19 as a Trigger of Brain Autoimmunity. ACS Chem Neurosci. 2021;12(14):2558–61.PubMedCrossRef Gupta M, Weaver DF. COVID-19 as a Trigger of Brain Autoimmunity. ACS Chem Neurosci. 2021;12(14):2558–61.PubMedCrossRef
152.
go back to reference Rinaldi V, Bellucci G, Buscarinu MC, Reniè R, Marrone A, Nasello M, et al. CNS inflammatory demyelinating events after COVID-19 vaccines: a case series and systematic review. Front Neurol. 2022;13:1018785.PubMedPubMedCentralCrossRef Rinaldi V, Bellucci G, Buscarinu MC, Reniè R, Marrone A, Nasello M, et al. CNS inflammatory demyelinating events after COVID-19 vaccines: a case series and systematic review. Front Neurol. 2022;13:1018785.PubMedPubMedCentralCrossRef
153.
go back to reference Abdelhady M, Husain MA, Hawas Y, Elazb MA, Mansour LS, Mohamed M, et al. Encephalitis following COVID-19 vaccination: a systematic review. Vaccines. 2023;11(3):576.PubMedPubMedCentralCrossRef Abdelhady M, Husain MA, Hawas Y, Elazb MA, Mansour LS, Mohamed M, et al. Encephalitis following COVID-19 vaccination: a systematic review. Vaccines. 2023;11(3):576.PubMedPubMedCentralCrossRef
154.
go back to reference Toljan K, Amin M, Kunchok A, Ontaneda D. New diagnosis of multiple sclerosis in the setting of mRNA COVID-19 vaccine exposure. J Neuroimmunol. 2022;362:577785.PubMedCrossRef Toljan K, Amin M, Kunchok A, Ontaneda D. New diagnosis of multiple sclerosis in the setting of mRNA COVID-19 vaccine exposure. J Neuroimmunol. 2022;362:577785.PubMedCrossRef
155.
go back to reference Tagliaferri AR, Horani G, Stephens K, Michael P. A rare presentation of undiagnosed multiple sclerosis after the COVID-19 vaccine. J Community Hosp Intern Med Perspect. 2021;11(6):772–5.PubMedPubMedCentralCrossRef Tagliaferri AR, Horani G, Stephens K, Michael P. A rare presentation of undiagnosed multiple sclerosis after the COVID-19 vaccine. J Community Hosp Intern Med Perspect. 2021;11(6):772–5.PubMedPubMedCentralCrossRef
156.
go back to reference Mirmosayyeb O, et al. Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) following COVID-19 vaccines: a systematic review. Rev Neurol (Paris). 2023;179(4):265–81. Mirmosayyeb O, et al. Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) following COVID-19 vaccines: a systematic review. Rev Neurol (Paris). 2023;179(4):265–81.
157.
go back to reference Czarnowska A, Kapica-Topczewska K, Tarasów E, Tarasiuk J, Chorąży M, Kochanowicz J, et al. Case report: First manifestation of multiple sclerosis temporally correlated with COVID-19 vaccination. Front Neurol. 2023;14:1097799.PubMedPubMedCentralCrossRef Czarnowska A, Kapica-Topczewska K, Tarasów E, Tarasiuk J, Chorąży M, Kochanowicz J, et al. Case report: First manifestation of multiple sclerosis temporally correlated with COVID-19 vaccination. Front Neurol. 2023;14:1097799.PubMedPubMedCentralCrossRef
158.
go back to reference Stefanou MI, et al. Safety of COVID-19 vaccines in multiple sclerosis: a systematic review and meta-analysis. Mult Scler. 2023;29(4-5):585–94. Stefanou MI, et al. Safety of COVID-19 vaccines in multiple sclerosis: a systematic review and meta-analysis. Mult Scler. 2023;29(4-5):585–94.
159.
go back to reference Yazdani A, Mirmosayyeb O, Ghaffary EM, Hashemi MS, Ghajarzadeh M. COVID-19 vaccines and patients with multiple sclerosis: willingness, unwillingness and hesitancy: a systematic review and meta-analysis. Neurol Sci. 2022;43(7):4085–94.PubMedPubMedCentralCrossRef Yazdani A, Mirmosayyeb O, Ghaffary EM, Hashemi MS, Ghajarzadeh M. COVID-19 vaccines and patients with multiple sclerosis: willingness, unwillingness and hesitancy: a systematic review and meta-analysis. Neurol Sci. 2022;43(7):4085–94.PubMedPubMedCentralCrossRef
160.
go back to reference Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol. 2019;45(4):394–412.PubMedCrossRef Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol. 2019;45(4):394–412.PubMedCrossRef
161.
go back to reference Pignolo A, Aprile M, Gagliardo C, Giammanco GM, D’Amelio M, Aridon P, et al. Clinical onset and multiple sclerosis relapse after SARS-CoV-2 infection. Neurol Int. 2021;13(4):695–700.PubMedPubMedCentralCrossRef Pignolo A, Aprile M, Gagliardo C, Giammanco GM, D’Amelio M, Aridon P, et al. Clinical onset and multiple sclerosis relapse after SARS-CoV-2 infection. Neurol Int. 2021;13(4):695–700.PubMedPubMedCentralCrossRef
162.
go back to reference Jaisankar PJ, Kucera A, Lomiguen CM, Chin J. Complications of COVID-19 pneumonia and multiple sclerosis exacerbation. Cureus. 2021;13(8):e17506.PubMedPubMedCentral Jaisankar PJ, Kucera A, Lomiguen CM, Chin J. Complications of COVID-19 pneumonia and multiple sclerosis exacerbation. Cureus. 2021;13(8):e17506.PubMedPubMedCentral
163.
go back to reference Barzegar M, Vaheb S, Mirmosayyeb O, Afshari-Safavi A, Nehzat N, Shaygannejad V. Can coronavirus disease 2019 (COVID-19) trigger exacerbation of multiple sclerosis? A retrospective study. Mult Scler Relat Disord. 2021;52:102947.PubMedPubMedCentralCrossRef Barzegar M, Vaheb S, Mirmosayyeb O, Afshari-Safavi A, Nehzat N, Shaygannejad V. Can coronavirus disease 2019 (COVID-19) trigger exacerbation of multiple sclerosis? A retrospective study. Mult Scler Relat Disord. 2021;52:102947.PubMedPubMedCentralCrossRef
Metadata
Title
Immunopathogenesis of viral infections in neurological autoimmune disease
Authors
Mohammad Amin Habibi
Fatemeh Nezhad Shamohammadi
Taraneh Rajaei
Haideh Namdari
Mohammad Reza Pashaei
Hamid Farajifard
Sajjad Ahmadpour
Publication date
23-05-2023

Other articles of this Issue 1/2023

BMC Neurology 1/2023 Go to the issue