Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2019

Open Access 01-12-2019 | Ventricular Fibrillation | Original research

Extracorporeal membrane oxygenation mitigates myocardial injury and improves survival in porcine model of ventricular fibrillation cardiac arrest

Authors: Bo Liu, Qiang Zhang, Yong Liang, Yun Zhang, Xiaoli Yuan, Jiyang Ling, Chunsheng Li

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2019

Login to get access

Abstract

Introduction

Despite decades of improved strategy in conventional cardiopulmonary resuscitation (CCPR), survival rates of favorable neurological outcome after cardiac arrest (CA) remains poor. It is indicated that the survival rate of successful resuscitation of extracorporeal membrane oxygenation (ECMO) is superior to that of CCPR. But the effect of ECMO in heart is unclear. We aimed to investigate whether ECMO produces cardiac protection by ameliorating post-ischemia reperfusion myocardial injury and myocardial apoptosis.

Methods

After undergoing 8-min untreated ventricle fibrillation (VF) and 6-min basic life support, 20 male pigs were ultimately used in this study and randomly divided into two groups: CCPR group (n = 10) and extracorporeal CPR (ECPR) group (n = 10). Hemodynamics and blood samples were obtained at baseline and 1, 2, 4, and 6 h during resuscitation. The successfully resuscitated pigs were sacrificed at 6 h after return of spontaneous circulation (ROSC), and the hearts were removed and analyzed under electron microscopy, and immunohistochemistry, quantitative real-time polymerase chain reaction, and immunofluorescence staining assay were performed to evaluate myocardial injury and myocardial apoptosis.

Results

There were no significant differences at basic hemodynamic status between the two groups. The survival rate of ECPR was significantly higher than CCPR group (10/10 [100%] vs. 4/10 [40%], P = 0.04). Compared to CCPR group, ECPR group exhibited a better outcome in hemodynamic function. Cardiac function was significantly impaired after ROSC in both groups, but left ventricular ejection fraction (LVEF) was significantly elevated in ECPR group than CCPR group. The expression of myocardial injury biomarkers (CK-MB, cTNI, H-FABP), endothelial injury biomarker (sP-selectin), and cardiac function biomarker (BNP) were remarkably increased after ROSC in both groups, but low levels in ECPR group than in CCPR group. Cardiomyocytes injury was attenuated in ECPR group under transmission electron microscopy (TEM). Typical apoptotic nuclei of cardiomyocytes were significantly reduced and oxidative damage were attenuated in ECPR group.

Conclusions

During prolonged VF-induced CA, ECPR contributes to improving hemodynamics, attenuating myocardial ischemia-reperfusion injury, ameliorating myocardial ultra structure, improving cardiac function, and elevating survival rate by preventing oxidative damage, regulating energy metabolism, inhibiting cardiomyocyte apoptosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Albaeni A, Eid SM, Akinyele B, et al. The association between post resuscitation hemoglobin level and survival with good neurological outcome following out of hospital cardiac arrest. Resuscitation. 2016;99:7–12.CrossRef Albaeni A, Eid SM, Akinyele B, et al. The association between post resuscitation hemoglobin level and survival with good neurological outcome following out of hospital cardiac arrest. Resuscitation. 2016;99:7–12.CrossRef
2.
go back to reference Khera R, Chan PS, Donnino M, et al. Hospital variation in time to epinephrine for nonshockable in-hospital cardiac arrest. Circulation. 2016;134:2105–14.CrossRef Khera R, Chan PS, Donnino M, et al. Hospital variation in time to epinephrine for nonshockable in-hospital cardiac arrest. Circulation. 2016;134:2105–14.CrossRef
3.
go back to reference Pearson DA, Darrell Nelson R, et al. Comparison of team-focused CPR vs standard CPR in resuscitation from out-of-hospital cardiac arrest: results from a statewide quality improvement initiative. Resuscitation. 2016;105:165–72.CrossRef Pearson DA, Darrell Nelson R, et al. Comparison of team-focused CPR vs standard CPR in resuscitation from out-of-hospital cardiac arrest: results from a statewide quality improvement initiative. Resuscitation. 2016;105:165–72.CrossRef
4.
go back to reference Avalli L, Maggioni E, Formica F, et al. Favourable survival of in-hospital compared to out-of-hospital refractory cardiac arrest patients treated with extracorporeal membrane oxygenation: an Italian tertiary care Centre experience. Resuscitation. 2012;83:579–83.CrossRef Avalli L, Maggioni E, Formica F, et al. Favourable survival of in-hospital compared to out-of-hospital refractory cardiac arrest patients treated with extracorporeal membrane oxygenation: an Italian tertiary care Centre experience. Resuscitation. 2012;83:579–83.CrossRef
5.
go back to reference Debaty G, Babaz V, Durand M, et al. Prognostic factors for extracorporeal cardiopulmonary resuscitation recipients following out-of-hospital refractory cardiac arrest. A systematic review and meta-analysis. Resuscitation. 2017;112:1–10.CrossRef Debaty G, Babaz V, Durand M, et al. Prognostic factors for extracorporeal cardiopulmonary resuscitation recipients following out-of-hospital refractory cardiac arrest. A systematic review and meta-analysis. Resuscitation. 2017;112:1–10.CrossRef
6.
go back to reference Radeschi G, Mina A, Berta G, et al. Incidence and outcome of in-hospital cardiac arrest in Italy: a multicentre observational study in the Piedmont region. Resuscitation. 2017;119:48–55.CrossRef Radeschi G, Mina A, Berta G, et al. Incidence and outcome of in-hospital cardiac arrest in Italy: a multicentre observational study in the Piedmont region. Resuscitation. 2017;119:48–55.CrossRef
7.
go back to reference Shin TG, Jo IJ, Sim MS, et al. Two-year survival and neurological outcome of in-hospital cardiac arrest patients rescued by extracorporeal cardiopulmonary resuscitation. Int J Cardiol. 2013;168:3424–30.CrossRef Shin TG, Jo IJ, Sim MS, et al. Two-year survival and neurological outcome of in-hospital cardiac arrest patients rescued by extracorporeal cardiopulmonary resuscitation. Int J Cardiol. 2013;168:3424–30.CrossRef
8.
go back to reference Mosca MS, Narotsky DL, et al. Duration of conventional cardiopulmonary resuscitation prior to extracorporeal cardiopulmonary resuscitation and survival among adult cardiac arrest patients. Perfusion. 2016;31:200–6.CrossRef Mosca MS, Narotsky DL, et al. Duration of conventional cardiopulmonary resuscitation prior to extracorporeal cardiopulmonary resuscitation and survival among adult cardiac arrest patients. Perfusion. 2016;31:200–6.CrossRef
9.
go back to reference Kim SJ, Jung JS, Park JH, et al. An optimal transition time to extracorporeal cardiopulmonary resuscitation for predicting good neurological outcome in patients with out-of-hospital cardiac arrest: a propensity-matched study. Crit Care. 2014;18:535.CrossRef Kim SJ, Jung JS, Park JH, et al. An optimal transition time to extracorporeal cardiopulmonary resuscitation for predicting good neurological outcome in patients with out-of-hospital cardiac arrest: a propensity-matched study. Crit Care. 2014;18:535.CrossRef
10.
go back to reference Lin JW, Wang MJ, et al. Comparing the survival between extracorporeal rescue and conventional resuscitation in adult in-hospital cardiac arrests: propensity analysis of three-year data. Resuscitation. 2010;81:796–803.CrossRef Lin JW, Wang MJ, et al. Comparing the survival between extracorporeal rescue and conventional resuscitation in adult in-hospital cardiac arrests: propensity analysis of three-year data. Resuscitation. 2010;81:796–803.CrossRef
11.
go back to reference Maekawa K, Tanno K, Hase M, et al. Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis. Crit Care Med. 2013;41:1186–96.CrossRef Maekawa K, Tanno K, Hase M, et al. Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis. Crit Care Med. 2013;41:1186–96.CrossRef
12.
go back to reference Ji XF, Yang L, Zhang MY, et al. Shen-fu injection attenuates postresuscitation myocardial dysfunction in a porcine model of cardiac arrest. Shock. 2011;35:530–6.CrossRef Ji XF, Yang L, Zhang MY, et al. Shen-fu injection attenuates postresuscitation myocardial dysfunction in a porcine model of cardiac arrest. Shock. 2011;35:530–6.CrossRef
13.
go back to reference Travers AH, Rea TD, Bobrow BJ, et al. Part 4: CPR overview: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S676–84.CrossRef Travers AH, Rea TD, Bobrow BJ, et al. Part 4: CPR overview: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S676–84.CrossRef
14.
go back to reference Zhang Q, Yuan W, Wang G, et al. The protective effects of a phosphodiesterase 5 inhibitor, sildenafil, on postresuscitation cardiac dysfunction of cardiac arrest: metabolic evidence from microdialysis. Crit Care. 2014;18:641.CrossRef Zhang Q, Yuan W, Wang G, et al. The protective effects of a phosphodiesterase 5 inhibitor, sildenafil, on postresuscitation cardiac dysfunction of cardiac arrest: metabolic evidence from microdialysis. Crit Care. 2014;18:641.CrossRef
15.
go back to reference Carretero MJ, Fontanals J, Agustí M, et al. Monitoring in resuscitation: comparison of cardiac output measurement between pulmonary artery catheter and NICO. Resuscitation. 2010;81:404–9.CrossRef Carretero MJ, Fontanals J, Agustí M, et al. Monitoring in resuscitation: comparison of cardiac output measurement between pulmonary artery catheter and NICO. Resuscitation. 2010;81:404–9.CrossRef
16.
go back to reference Naim MY, Sutton RM, Friess SH, et al. Blood pressure- and coronary perfusion pressure-targeted cardiopulmonary resuscitation improves 24-hour survival from ventricular fibrillation cardiac arrest. Crit Care Med. 2016;44:e1111–7.CrossRef Naim MY, Sutton RM, Friess SH, et al. Blood pressure- and coronary perfusion pressure-targeted cardiopulmonary resuscitation improves 24-hour survival from ventricular fibrillation cardiac arrest. Crit Care Med. 2016;44:e1111–7.CrossRef
17.
go back to reference Halperin HR, Lee K, Zviman M, et al. Outcomes from low versus high-flow cardiopulmonary resuscitation in a swine model of cardiac arrest. Am J Emerg Med. 2010;28:195–202.CrossRef Halperin HR, Lee K, Zviman M, et al. Outcomes from low versus high-flow cardiopulmonary resuscitation in a swine model of cardiac arrest. Am J Emerg Med. 2010;28:195–202.CrossRef
18.
go back to reference entzer JC, Chonde MD, Dezfulian C. Myocardial dysfunction and shock after cardiac arrest. Biomed Res Int. 2015;2015:314796. entzer JC, Chonde MD, Dezfulian C. Myocardial dysfunction and shock after cardiac arrest. Biomed Res Int. 2015;2015:314796.
19.
go back to reference Stub D, Byrne M, Pellegrino V, et al. Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in a sheep model of refractory ischaemic cardiac arrest. Heart Lung Circ. 2013;22:421–7.CrossRef Stub D, Byrne M, Pellegrino V, et al. Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in a sheep model of refractory ischaemic cardiac arrest. Heart Lung Circ. 2013;22:421–7.CrossRef
20.
go back to reference Reynolds JC, Salcido DD, et al. Extracorporeal life support during cardiac arrest resuscitation in a porcine model of ventricular fibrillation. J Extra Corpor Technol. 2013;45:33–9.PubMedPubMedCentral Reynolds JC, Salcido DD, et al. Extracorporeal life support during cardiac arrest resuscitation in a porcine model of ventricular fibrillation. J Extra Corpor Technol. 2013;45:33–9.PubMedPubMedCentral
21.
go back to reference Yang M, Hu X, Lu X, et al. The effects of α- and β-adrenergic blocking agents on postresuscitation myocardial dysfunction and myocardial tissue injury in a rat model of cardiac arrest. Transl Res. 2015;165:589–98.CrossRef Yang M, Hu X, Lu X, et al. The effects of α- and β-adrenergic blocking agents on postresuscitation myocardial dysfunction and myocardial tissue injury in a rat model of cardiac arrest. Transl Res. 2015;165:589–98.CrossRef
22.
go back to reference Ye XD, He Y, Wang S, et al. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin. 2018;39:1155–63.CrossRef Ye XD, He Y, Wang S, et al. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin. 2018;39:1155–63.CrossRef
23.
go back to reference Troelsen TT, Granfeldt A, Secher N, et al. Impaired NO-mediated vasodilatation in rat coronary arteries after asphyxial cardiac arrest. Acta Anaesthesiol Scand. 2015;59:654–67.CrossRef Troelsen TT, Granfeldt A, Secher N, et al. Impaired NO-mediated vasodilatation in rat coronary arteries after asphyxial cardiac arrest. Acta Anaesthesiol Scand. 2015;59:654–67.CrossRef
24.
go back to reference Gando S, Nanzaki S, Morimoto Y, et al. Alterations of soluble L- and P-selectins during cardiac arrest and CPR. Intensive Care Med. 1999;25:588–93.CrossRef Gando S, Nanzaki S, Morimoto Y, et al. Alterations of soluble L- and P-selectins during cardiac arrest and CPR. Intensive Care Med. 1999;25:588–93.CrossRef
25.
go back to reference Isenschmid C, Kalt J, Gamp M, et al. Routine blood markers from different biological pathways improve early risk stratification in cardiac arrest patients: results from the prospective, observational COMMUNICATE study. Resuscitation. 2018;130:138–45.CrossRef Isenschmid C, Kalt J, Gamp M, et al. Routine blood markers from different biological pathways improve early risk stratification in cardiac arrest patients: results from the prospective, observational COMMUNICATE study. Resuscitation. 2018;130:138–45.CrossRef
26.
go back to reference Donnino MW, Andersen LW, Giberson T, et al. Initial lactate and lactate change in post-cardiac arrest: a multicenter validation study. Crit Care Med. 2014;42:1804–11.CrossRef Donnino MW, Andersen LW, Giberson T, et al. Initial lactate and lactate change in post-cardiac arrest: a multicenter validation study. Crit Care Med. 2014;42:1804–11.CrossRef
27.
go back to reference Laurikkala J, Skrifvars MB, Bäcklund M, et al. Early lactate values after out-of-hospital cardiac arrest: associations with one-year outcome. Shock. 2019;51:168–73.CrossRef Laurikkala J, Skrifvars MB, Bäcklund M, et al. Early lactate values after out-of-hospital cardiac arrest: associations with one-year outcome. Shock. 2019;51:168–73.CrossRef
28.
go back to reference Hayashida K, Suzuki M, Yonemoto N, et al. Early lactate clearance is associated with improved outcomes in patients with Postcardiac arrest syndrome: a prospective, multicenter observational study (SOS-KANTO 2012 study). Crit Care Med. 2017;45:e559–66.CrossRef Hayashida K, Suzuki M, Yonemoto N, et al. Early lactate clearance is associated with improved outcomes in patients with Postcardiac arrest syndrome: a prospective, multicenter observational study (SOS-KANTO 2012 study). Crit Care Med. 2017;45:e559–66.CrossRef
29.
go back to reference Chambers DJ, Braimbridge MV, Hearse DJ. Free radicals and cardioplegia. Free radical scavengers improve postischemic function of rat myocardium. Eur J Cardiothorac Surg. 1987;1:37–45.CrossRef Chambers DJ, Braimbridge MV, Hearse DJ. Free radicals and cardioplegia. Free radical scavengers improve postischemic function of rat myocardium. Eur J Cardiothorac Surg. 1987;1:37–45.CrossRef
30.
go back to reference Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res. 2009;81:449–56.CrossRef Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res. 2009;81:449–56.CrossRef
31.
go back to reference Cohen MV. Free radicals in ischemic and reperfusion myocardial injury: is this the time for clinical trials? Ann Intern Med. 1989;111:918–31.CrossRef Cohen MV. Free radicals in ischemic and reperfusion myocardial injury: is this the time for clinical trials? Ann Intern Med. 1989;111:918–31.CrossRef
32.
go back to reference Liu C, Bai Y, Chen Y, et al. Reduction of Na/K-ATPase potentiates marinobufagenin-induced cardiac dysfunction and myocyte apoptosis. J Biol Chem. 2012;287:16390–8.CrossRef Liu C, Bai Y, Chen Y, et al. Reduction of Na/K-ATPase potentiates marinobufagenin-induced cardiac dysfunction and myocyte apoptosis. J Biol Chem. 2012;287:16390–8.CrossRef
33.
go back to reference Sadi AM, Afroze T, Siraj MA, et al. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury. Clin Sci (Lond). 2018;132:641–4.CrossRef Sadi AM, Afroze T, Siraj MA, et al. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury. Clin Sci (Lond). 2018;132:641–4.CrossRef
34.
go back to reference Yeh CH, Chen TP, Wang YC, et al. Carvedilol treatment after myocardial infarct decreases cardiomyocytic apoptosis in the peri-infarct zone during cardioplegia-induced cardiac arrest. Shock. 2013;39:343–52.CrossRef Yeh CH, Chen TP, Wang YC, et al. Carvedilol treatment after myocardial infarct decreases cardiomyocytic apoptosis in the peri-infarct zone during cardioplegia-induced cardiac arrest. Shock. 2013;39:343–52.CrossRef
35.
go back to reference Liang LN, Zhong X, Zhou Y, et al. Cardioprotective effect of nicorandil against myocardial injury following cardiac arrest in swine. Am J Emerg Med. 2017;35:1082–9.CrossRef Liang LN, Zhong X, Zhou Y, et al. Cardioprotective effect of nicorandil against myocardial injury following cardiac arrest in swine. Am J Emerg Med. 2017;35:1082–9.CrossRef
36.
go back to reference Wang G, Zhang Q, Yuan W, et al. Enalapril protects against myocardial ischemia/reperfusion injury in a swine model of cardiac arrest and resuscitation. Int J Mol Med. 2016;38:1463–73.CrossRef Wang G, Zhang Q, Yuan W, et al. Enalapril protects against myocardial ischemia/reperfusion injury in a swine model of cardiac arrest and resuscitation. Int J Mol Med. 2016;38:1463–73.CrossRef
37.
go back to reference Dorn GW 2nd. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodeling. Cardiovasc Res. 2009;81:465–73.CrossRef Dorn GW 2nd. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodeling. Cardiovasc Res. 2009;81:465–73.CrossRef
38.
go back to reference Yang B, Ye D, Wang Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets. 2013;17:255–63.CrossRef Yang B, Ye D, Wang Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets. 2013;17:255–63.CrossRef
Metadata
Title
Extracorporeal membrane oxygenation mitigates myocardial injury and improves survival in porcine model of ventricular fibrillation cardiac arrest
Authors
Bo Liu
Qiang Zhang
Yong Liang
Yun Zhang
Xiaoli Yuan
Jiyang Ling
Chunsheng Li
Publication date
01-12-2019
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-019-0653-z

Other articles of this Issue 1/2019

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2019 Go to the issue