Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 2/2015

01-03-2015

Ventricular fibrillation: are swine a sensitive species?

Authors: Gregory P. Walcott, Mark W. Kroll, Raymond E. Ideker

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 2/2015

Login to get access

Abstract

Purpose

Legislation and sentiment have pushed large-animal electrophysiological research from the canine to the swine model. Anecdotal experience suggests that the swine is particularly sensitive to ventricular fibrillation (VF) induction, and radiofrequency ablation studies are consistent with this. Currently, no data exist directly comparing the VF threshold (VFT) in humans to swine. Because of the perceived difference in vulnerability to VF induction, we hypothesized that the VFT would be lower in swine compared to humans.

Methods

Six anesthetized open-chested swine, 31 ± 2 kg, were studied that were part of an ongoing study with up to 6 h of previous closed-chest percutaneous pacing with repeated VF cycles. Similar to the human study of Horowitz et al., 24 pulses of 4 ms each were applied at a rate of 100 Hz during the ST segment to the epicardium via a pair of 7-mm diameter platinum electrodes whose centers were 15 mm apart. Current was increased until VF was induced.

Results

The swine right ventricle (RV) VFT was 9.7 ± 2.1 mA [median = 9.0, interquartile range (IQR) = 7.8–12.0], and the left ventricle (LV) VFT was 10.7 ± 2.2 mA [median = 10.5, IQR = 8.8–12.5] (p = NS). Horowitz reported the RV VFT in six patients as 24.3 ± 5.2 mA [median = 24.5, IQR = 19.0–29.3] and the LV VFT in ten patients as 33.6 ± 9.5 mA [median = 36.5, IQR = 27.3–42.3] (p = .11). Both the RV and LV VFTs were lower for swine (p < 0.003), and each of the mean and median VFTs for the ventricles together was one third that of the humans.

Conclusions

Swine are about three times as sensitive to the electrical induction of VF as are humans.
Literature
1.
go back to reference (1991) Final rules: animal welfare; 9 CFR Part 3, USDA 0579-AA20. (1991) Final rules: animal welfare; 9 CFR Part 3, USDA 0579-AA20.
2.
go back to reference European Commission (1986) Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. European Commission (1986) Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes.
3.
go back to reference Pak, H. N., Kim, Y. H., Lim, H. E., Chou, C. C., Miyauchi, Y., Fang, Y. H., et al. (2006). Role of the posterior papillary muscle and Purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. Journal of Cardiovascular Electrophysiology, 17, 777–783.CrossRefPubMed Pak, H. N., Kim, Y. H., Lim, H. E., Chou, C. C., Miyauchi, Y., Fang, Y. H., et al. (2006). Role of the posterior papillary muscle and Purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. Journal of Cardiovascular Electrophysiology, 17, 777–783.CrossRefPubMed
4.
go back to reference Van Herendael, H., Zado, E. S., Haqqani, H., Tschabrunn, C. M., Callans, D. J., Frankel, D. S., et al. (2014). Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm, 11, 566–573.CrossRefPubMed Van Herendael, H., Zado, E. S., Haqqani, H., Tschabrunn, C. M., Callans, D. J., Frankel, D. S., et al. (2014). Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm, 11, 566–573.CrossRefPubMed
5.
go back to reference Nishida, K., Michael, G., Dobrev, D., & Nattel, S. (2010). Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace, 12, 160–172.CrossRefPubMed Nishida, K., Michael, G., Dobrev, D., & Nattel, S. (2010). Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace, 12, 160–172.CrossRefPubMed
6.
go back to reference Holland, R. P., & Brooks, H. (1976). The QRS complex during myocardial ischemia. An experimental analysis in the porcine heart. Journal of Clinical Investigation, 57, 541–550.CrossRefPubMedCentralPubMed Holland, R. P., & Brooks, H. (1976). The QRS complex during myocardial ischemia. An experimental analysis in the porcine heart. Journal of Clinical Investigation, 57, 541–550.CrossRefPubMedCentralPubMed
8.
go back to reference Gaum, W. E., Elharrar, V., Walker, P. D., & Zipes, D. P. (1977). Influence of excitability on the ventricular fibrillation threshold in dogs. American Journal of Cardiology, 40, 929–935.CrossRefPubMed Gaum, W. E., Elharrar, V., Walker, P. D., & Zipes, D. P. (1977). Influence of excitability on the ventricular fibrillation threshold in dogs. American Journal of Cardiology, 40, 929–935.CrossRefPubMed
9.
go back to reference Nimunkar, A. J., & Webster, J. G. (2009). Safety of pulsed electric devices. Physiological Measurement, 30, 101.CrossRefPubMed Nimunkar, A. J., & Webster, J. G. (2009). Safety of pulsed electric devices. Physiological Measurement, 30, 101.CrossRefPubMed
11.
go back to reference (2006) Household and similar electrical appliances—safety—IEC 60335-2-76: particular requirements for electric fence energizers. (2006) Household and similar electrical appliances—safety—IEC 60335-2-76: particular requirements for electric fence energizers.
12.
go back to reference (2005) Effects of current on human beings and livestock, IEC/TS60479-1: effects of currents passing through the human body. (2005) Effects of current on human beings and livestock, IEC/TS60479-1: effects of currents passing through the human body.
13.
go back to reference Walcott, G. P., Kroll, M. W., & Ideker, R. E. (2011). Ventricular fibrillation threshold of rapid short pulses. Conference of the IEEE Engineering in Medicine and Biology Society, 33, 255–258. Walcott, G. P., Kroll, M. W., & Ideker, R. E. (2011). Ventricular fibrillation threshold of rapid short pulses. Conference of the IEEE Engineering in Medicine and Biology Society, 33, 255–258.
14.
go back to reference Ferris, L. P., King, B. G., Spence, P. W., & Williams, H. B. (1936). Effect of electric shock on the heart. Electrical Engineering, 55, 498–515.CrossRef Ferris, L. P., King, B. G., Spence, P. W., & Williams, H. B. (1936). Effect of electric shock on the heart. Electrical Engineering, 55, 498–515.CrossRef
15.
go back to reference Jacobsen, J., Buntenkotter, S., & Reinhard, H. J. (1975). Experimental studies in pigs on mortality due to sinusoidal and phase-controlled alternating and rectified currents (author’s transl). Biomedizinische Technik (Berl), 20, 99–107.CrossRef Jacobsen, J., Buntenkotter, S., & Reinhard, H. J. (1975). Experimental studies in pigs on mortality due to sinusoidal and phase-controlled alternating and rectified currents (author’s transl). Biomedizinische Technik (Berl), 20, 99–107.CrossRef
16.
go back to reference Chilbert, M. (1998). High-voltage and high current injuries. In J. Reilly (Ed.), Applied bioelectricity: from electrical stimulation to electrical pathology (pp. 412–453). New York: Springer.CrossRef Chilbert, M. (1998). High-voltage and high current injuries. In J. Reilly (Ed.), Applied bioelectricity: from electrical stimulation to electrical pathology (pp. 412–453). New York: Springer.CrossRef
17.
go back to reference Richardson, E. (2009) Intrapericardial delivery of anti-arrhythmic agents, PhD Thesis, University of Minnesota. Richardson, E. (2009) Intrapericardial delivery of anti-arrhythmic agents, PhD Thesis, University of Minnesota.
18.
go back to reference Stratbucker, R. A., Kroll, M. W., McDaniel, W., & Panescu, D. (2006). Cardiac current density distribution by electrical pulses from TASER devices. Conference of the IEEE Engineering in Medicine and Biology Society, 28, 6305–6307. Stratbucker, R. A., Kroll, M. W., McDaniel, W., & Panescu, D. (2006). Cardiac current density distribution by electrical pulses from TASER devices. Conference of the IEEE Engineering in Medicine and Biology Society, 28, 6305–6307.
19.
go back to reference Wolf, P. D., Tang, A. S., Ideker, R. E., & Pilkington, T. C. (1992). Calculating endocardial potentials from epicardial potentials measured during external stimulation. IEEE Transactions on Biomedical Engineering, 39, 913–920.CrossRefPubMed Wolf, P. D., Tang, A. S., Ideker, R. E., & Pilkington, T. C. (1992). Calculating endocardial potentials from epicardial potentials measured during external stimulation. IEEE Transactions on Biomedical Engineering, 39, 913–920.CrossRefPubMed
20.
go back to reference Swerdlow, C. D., Olson, W. H., O’Connor, M. E., Gallik, D. M., Malkin, R. A., & Laks, M. (1999). Cardiovascular collapse caused by electrocardiographically silent 60-Hz intracardiac leakage current. Implications for electrical safety. Circulation, 99, 2559–2564.CrossRefPubMed Swerdlow, C. D., Olson, W. H., O’Connor, M. E., Gallik, D. M., Malkin, R. A., & Laks, M. (1999). Cardiovascular collapse caused by electrocardiographically silent 60-Hz intracardiac leakage current. Implications for electrical safety. Circulation, 99, 2559–2564.CrossRefPubMed
21.
go back to reference Horowitz, L. N., Spear, J. F., Josephson, M. E., Kastor, J. A., & Moore, E. N. (1979). The effects of coronary artery disease on the ventricular fibrillation threshold in man. Circulation, 60, 792–797.CrossRefPubMed Horowitz, L. N., Spear, J. F., Josephson, M. E., Kastor, J. A., & Moore, E. N. (1979). The effects of coronary artery disease on the ventricular fibrillation threshold in man. Circulation, 60, 792–797.CrossRefPubMed
22.
go back to reference (1985) Position of the American Heart Association on research animal use, Circulation, 71(4), 849A–50A. (1985) Position of the American Heart Association on research animal use, Circulation, 71(4), 849A–50A.
23.
go back to reference Darragh, K. M., Manoharan, G., Navarro, C., Walsh, S. J., Allen, J. D., Anderson, J. M., et al. (2012). Synchronized defibrillation for ventricular fibrillation. European Heart Journal Acute Cardiovascular Care, 1, 285–290.CrossRefPubMedCentralPubMed Darragh, K. M., Manoharan, G., Navarro, C., Walsh, S. J., Allen, J. D., Anderson, J. M., et al. (2012). Synchronized defibrillation for ventricular fibrillation. European Heart Journal Acute Cardiovascular Care, 1, 285–290.CrossRefPubMedCentralPubMed
24.
go back to reference Huang, J., Walcott, G. P., Ruse, R. B., Bohanan, S. J., Killingsworth, C. R., & Ideker, R. E. (2012). Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform. Circulation, 126, 1328–1333.CrossRefPubMedCentralPubMed Huang, J., Walcott, G. P., Ruse, R. B., Bohanan, S. J., Killingsworth, C. R., & Ideker, R. E. (2012). Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform. Circulation, 126, 1328–1333.CrossRefPubMedCentralPubMed
25.
go back to reference Rollins, D. L., Wolf, P. D., Ideker, R. E., & Smith, W. M. (1990). A Macintosh based programmable cardiac stimulator. Journal of the American College of Cardiology, 15, A261.CrossRef Rollins, D. L., Wolf, P. D., Ideker, R. E., & Smith, W. M. (1990). A Macintosh based programmable cardiac stimulator. Journal of the American College of Cardiology, 15, A261.CrossRef
26.
go back to reference Antoni, H. (1979). What is measured by the so-called threshold for fibrillation. Progress in Pharmacology, 2/4, 5–12. Antoni, H. (1979). What is measured by the so-called threshold for fibrillation. Progress in Pharmacology, 2/4, 5–12.
27.
go back to reference Cha, Y.-M., Peters, B. B., Birgersdotter-Green, U., & Chen, P.-S. (1993). A reappraisal of ventricular fibrillation threshold testing. American Journal of Physiology, 264, H1005–H1010.PubMed Cha, Y.-M., Peters, B. B., Birgersdotter-Green, U., & Chen, P.-S. (1993). A reappraisal of ventricular fibrillation threshold testing. American Journal of Physiology, 264, H1005–H1010.PubMed
28.
go back to reference Dixon, M. E., Trank, J. W., & Dobell, R. C. (1964). Ventricular fibrillation threshold: variation with coronary flow and its value in assessing experimental myocardial revascularization. Journal of Thoracic and Cardiovascular Surgery, 47, 620–627.PubMed Dixon, M. E., Trank, J. W., & Dobell, R. C. (1964). Ventricular fibrillation threshold: variation with coronary flow and its value in assessing experimental myocardial revascularization. Journal of Thoracic and Cardiovascular Surgery, 47, 620–627.PubMed
29.
go back to reference Green, H. L., Raftery, E. B., & Gregory, I. C. (1972). Ventricular fibrillation threshold of healthy dogs to 50 Hz current in relation of earth leakage currents of electromedical equipment. Biomedical Engineering, 7, 408–414.PubMed Green, H. L., Raftery, E. B., & Gregory, I. C. (1972). Ventricular fibrillation threshold of healthy dogs to 50 Hz current in relation of earth leakage currents of electromedical equipment. Biomedical Engineering, 7, 408–414.PubMed
30.
go back to reference Swerdlow, C. D., Shehata, M., & Chen, P. S. (2007). Using the upper limit of vulnerability to assess defibrillation efficacy at implantation of ICDs. Pacing and Clinical Electrophysiology, 30, 258–270.CrossRefPubMed Swerdlow, C. D., Shehata, M., & Chen, P. S. (2007). Using the upper limit of vulnerability to assess defibrillation efficacy at implantation of ICDs. Pacing and Clinical Electrophysiology, 30, 258–270.CrossRefPubMed
31.
go back to reference Dalziel, C. F., & Lee, W. R. (1968). Reevaluation of lethal electric currents. IEEE Transactions on Industry and General Applications, IGA-4, 467–476.CrossRef Dalziel, C. F., & Lee, W. R. (1968). Reevaluation of lethal electric currents. IEEE Transactions on Industry and General Applications, IGA-4, 467–476.CrossRef
32.
go back to reference Geddes, L. A., Cabler, P., Moore, A. G., Rosborough, J., & Tacker, W. A. (1973). Threshold 60-Hz current required for ventricular fibrillation in subjects of various body weights. IEEE Transactions on Biomedical Engineering, 20, 465–468.CrossRefPubMed Geddes, L. A., Cabler, P., Moore, A. G., Rosborough, J., & Tacker, W. A. (1973). Threshold 60-Hz current required for ventricular fibrillation in subjects of various body weights. IEEE Transactions on Biomedical Engineering, 20, 465–468.CrossRefPubMed
33.
go back to reference Cooper, D., Ye, Y, Rolf L Jr, & Zuhdi, N. (1991) The pig as potential organ donor for man, In: Xenotransplantation (pp. 481–500). Berlin Heidelberg: Springer. Cooper, D., Ye, Y, Rolf L Jr, & Zuhdi, N. (1991) The pig as potential organ donor for man, In: Xenotransplantation (pp. 481–500). Berlin Heidelberg: Springer.
34.
go back to reference Douglas, W. R. (1972). Of pigs and men and research. Space Life Sciences, 3, 226–234.PubMed Douglas, W. R. (1972). Of pigs and men and research. Space Life Sciences, 3, 226–234.PubMed
35.
go back to reference Hughes, H. (1986). Swine in cardiovascular research. Laboratory Animal Science, 36, 348.PubMed Hughes, H. (1986). Swine in cardiovascular research. Laboratory Animal Science, 36, 348.PubMed
36.
go back to reference Lumb, G. (1966). Experimentally induced cardiac failure in swine: pathological changes. In L. K. Bustad & R. O. McClellan (Eds.), Swine in biomedical research (pp. 389–403). Richland: Pacific Northwest Laboratory. Lumb, G. (1966). Experimentally induced cardiac failure in swine: pathological changes. In L. K. Bustad & R. O. McClellan (Eds.), Swine in biomedical research (pp. 389–403). Richland: Pacific Northwest Laboratory.
37.
go back to reference White, D., & Wallwork, J. (1993). Xenografting: probability, possibility, or pipe dream? Lancet, 342, 879–880.CrossRefPubMed White, D., & Wallwork, J. (1993). Xenografting: probability, possibility, or pipe dream? Lancet, 342, 879–880.CrossRefPubMed
38.
go back to reference Hamlin, R. L. (2007). Animal models of ventricular arrhythmias. Pharmacology and Therapeutics, 113, 276–295.CrossRefPubMed Hamlin, R. L. (2007). Animal models of ventricular arrhythmias. Pharmacology and Therapeutics, 113, 276–295.CrossRefPubMed
39.
go back to reference Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L., & Anderson, R. H. (1998). Anatomy of the pig heart: comparisons with normal human cardiac structure. Journal of Anatomy, 193(Pt 1), 105–119.CrossRefPubMedCentralPubMed Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L., & Anderson, R. H. (1998). Anatomy of the pig heart: comparisons with normal human cardiac structure. Journal of Anatomy, 193(Pt 1), 105–119.CrossRefPubMedCentralPubMed
40.
go back to reference Glomset, D. J., & Glomset, A. T. (1940). A morphologic study of the cardiac conduction system in ungulates, dog, and man: Part II: the purkinje system. American Heart Journal, 20, 677–701.CrossRef Glomset, D. J., & Glomset, A. T. (1940). A morphologic study of the cardiac conduction system in ungulates, dog, and man: Part II: the purkinje system. American Heart Journal, 20, 677–701.CrossRef
41.
go back to reference Sedmera, D., & Gourdie, R. G. (2014). Why do we have Purkinje fibers deep in our heart. Physiological Research, 63(Suppl 1), S9–S18.PubMed Sedmera, D., & Gourdie, R. G. (2014). Why do we have Purkinje fibers deep in our heart. Physiological Research, 63(Suppl 1), S9–S18.PubMed
42.
go back to reference Hamlin, R. L. (1960). The QRS electrocardiogram, epicardiogram, vectorcardiogram and ventricular excitation of swine. American Journal of Physiology, 198, 537–542.PubMed Hamlin, R. L. (1960). The QRS electrocardiogram, epicardiogram, vectorcardiogram and ventricular excitation of swine. American Journal of Physiology, 198, 537–542.PubMed
43.
go back to reference Hamlin, R. L., Burton, R. R., Leverett, S. D., & Burns, J. W. (1975). Ventricular activation process in minipigs. Journal of Electrocardiology, 8, 113–116.CrossRefPubMed Hamlin, R. L., Burton, R. R., Leverett, S. D., & Burns, J. W. (1975). Ventricular activation process in minipigs. Journal of Electrocardiology, 8, 113–116.CrossRefPubMed
44.
go back to reference Huang, J., Dosdall, D. J., Cheng, K. A., Li, L., Rogers, J. M., & Ideker, R. E. (2014). The importance of Purkinje activation in long duration ventricular fibrillation. Journal of the American Heart Association, 3, e000495.CrossRefPubMedCentralPubMed Huang, J., Dosdall, D. J., Cheng, K. A., Li, L., Rogers, J. M., & Ideker, R. E. (2014). The importance of Purkinje activation in long duration ventricular fibrillation. Journal of the American Heart Association, 3, e000495.CrossRefPubMedCentralPubMed
45.
go back to reference Cheng, K. A., Dosdall, D. J., Li, L., Rogers, J. M., Ideker, R. E., & Huang, J. (2012). Evolution of activation patterns during long-duration ventricular fibrillation in pigs. American Journal of Physiology—Heart and Circulatory Physiology, 302, H992–H1002.CrossRefPubMedCentralPubMed Cheng, K. A., Dosdall, D. J., Li, L., Rogers, J. M., Ideker, R. E., & Huang, J. (2012). Evolution of activation patterns during long-duration ventricular fibrillation in pigs. American Journal of Physiology—Heart and Circulatory Physiology, 302, H992–H1002.CrossRefPubMedCentralPubMed
46.
go back to reference Horowitz, L. N., Spear, J. F., & Moore, E. N. (1981). Relation of the endocardial and epicardial ventricular fibrillation thresholds of the right and left ventricles. American Journal of Cardiology, 48, 698–701.CrossRefPubMed Horowitz, L. N., Spear, J. F., & Moore, E. N. (1981). Relation of the endocardial and epicardial ventricular fibrillation thresholds of the right and left ventricles. American Journal of Cardiology, 48, 698–701.CrossRefPubMed
47.
go back to reference Damiano, R., Smith, P. K., Tripp, H., Asano, T., Small, K., Lowe, J., et al. (1986). The effect of chemical ablation of the endocardium on ventricular fibrillation threshold. Circulation, 74, 645–652.CrossRefPubMed Damiano, R., Smith, P. K., Tripp, H., Asano, T., Small, K., Lowe, J., et al. (1986). The effect of chemical ablation of the endocardium on ventricular fibrillation threshold. Circulation, 74, 645–652.CrossRefPubMed
48.
go back to reference Spear, J., Horowitz, L., Moore, E. (1977) Relationship of endocardial and epicardial ventricular-fibrillation thresholds of right and left-ventricles. American Journal of Cardiology, 39, 274–274. Spear, J., Horowitz, L., Moore, E. (1977) Relationship of endocardial and epicardial ventricular-fibrillation thresholds of right and left-ventricles. American Journal of Cardiology, 39, 274–274.
49.
go back to reference Wong, M. C., Edwards, G., Spence, S. J., Kalman, J. M., Kumar, S., Joseph, S. A., et al. (2013). Characterization of catheter–tissue contact force during epicardial radiofrequency ablation in an ovine model. Circulation. Arrhythmia and Electrophysiology, 6, 1222–1228.CrossRefPubMed Wong, M. C., Edwards, G., Spence, S. J., Kalman, J. M., Kumar, S., Joseph, S. A., et al. (2013). Characterization of catheter–tissue contact force during epicardial radiofrequency ablation in an ovine model. Circulation. Arrhythmia and Electrophysiology, 6, 1222–1228.CrossRefPubMed
50.
go back to reference Sacher, F., Wright, M., Derval, N., Denis, A., Ramoul, K., Roten, L., et al. (2013). Endocardial versus epicardial ventricular radiofrequency ablation: utility of in vivo contact force assessment. Circulation. Arrhythmia and Electrophysiology, 6, 144–150. Sacher, F., Wright, M., Derval, N., Denis, A., Ramoul, K., Roten, L., et al. (2013). Endocardial versus epicardial ventricular radiofrequency ablation: utility of in vivo contact force assessment. Circulation. Arrhythmia and Electrophysiology, 6, 144–150.
51.
go back to reference Li, G. R., Du, X. L., Siow, Y. L., Karmin, O., Tse, H. F., & Lau, C. P. (2003). Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovascular Research, 58, 89–98.CrossRefPubMed Li, G. R., Du, X. L., Siow, Y. L., Karmin, O., Tse, H. F., & Lau, C. P. (2003). Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovascular Research, 58, 89–98.CrossRefPubMed
52.
go back to reference Li, G. R., Feng, J., Yue, L., & Carrier, M. (1998). Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. American Journal of Physiology, 275, H369–H377.PubMed Li, G. R., Feng, J., Yue, L., & Carrier, M. (1998). Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. American Journal of Physiology, 275, H369–H377.PubMed
53.
go back to reference Zygmunt, A. C. (1994). Intracellular calcium activates a chloride current in canine ventricular myocytes. American Journal of Physiology, 267, H1984–H1995.PubMed Zygmunt, A. C. (1994). Intracellular calcium activates a chloride current in canine ventricular myocytes. American Journal of Physiology, 267, H1984–H1995.PubMed
54.
go back to reference Dudel, J., Peper, K., Rüdel, R., & Trautwein, W. (1967). The dynamic chloride component of membrane current in Purkinje fibers. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere, 295, 197–212.CrossRef Dudel, J., Peper, K., Rüdel, R., & Trautwein, W. (1967). The dynamic chloride component of membrane current in Purkinje fibers. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere, 295, 197–212.CrossRef
Metadata
Title
Ventricular fibrillation: are swine a sensitive species?
Authors
Gregory P. Walcott
Mark W. Kroll
Raymond E. Ideker
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 2/2015
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-014-9964-1

Other articles of this Issue 2/2015

Journal of Interventional Cardiac Electrophysiology 2/2015 Go to the issue