Skip to main content
Top
Published in: Head & Neck Oncology 1/2011

Open Access 01-12-2011 | Research

Vascular mimicry in cultured head and neck tumour cell lines

Authors: Tahwinder Upile, Waseem Jerjes, Hani Radhi, Mohammed Al-Khawalde, Panagiotis Kafas, Seyed Nouraei, Holger Sudhoff

Published in: Head & Neck Oncology | Issue 1/2011

Login to get access

Abstract

Introduction

Vascuologenesis is the de novo establishment of blood vessels and vascular networks from mesoderm-derived endothelial cell precursors (angioblasts). Recently a novel mechanism, by which some genetically deregulated and aggressive tumour cells generate "micro-vascular" channels without the participation of endothelial cells and independent of angiogenesis, has been proposed. This has been termed "vasculogenic mimicry" and has implications beyond angiogenesis and adds another layer of complexity to the current concept for the generation of tumour micro-circulation. We suggest this is common phenomenon in head and neck squamous cell carcinoma (HNSCC) cell lines and other aggressive tumour cell lines. We present experimental evidence of vasculogenic mimicry in HNSCC cell lines and compare them with other tumours and a positive control vascular cell line.

Materials and methods

The cell lines used were HUVEC, HN 2a, 2b (primary and metastatic tongue base squamous carcinoma cell line), HCT116 (colonic carcinoma cell line) and DU145 (prostate carcinoma cell line).
Pilot experiments were undertaken to assess growth of a bank of tumour cell lines on (growth factor reduced) matrigel (Sigma) with standard media (DMEM with 10% Fetal Calf Serum).
A functional growth assay was performed by preparing the appropriate cell suspension in serum free medium plated onto either bare plastic or a well pre-coated with growth factor reduced type 4 collagen analogues.
Phase contrast photomicrographs were taken at 4 hours and 24 hours. Image analysis was performed; particular features of interest were two dimensional area (surrogate of growth and migration), branch points and end point measurements (surrogate of intercellular complexity).

Results

There were observable differences in growth of the cells on laboratory plastic and collagen matrix. Tumour cells formed capillary like networks similar to HUVEC cells. Metastatic HNSCC cells lines were found to have vasculogenic properties similar to HUVEC cell lines when compared to cell lines from their corresponding primary tumour. The endothelial growth factor antibodies used did not inhibit or stimulate cell growth when compared to control but did discourage vascular mimicry. Other tumour cell lines also displayed this property.

Discussion

Tumour "vasculogenic mimicry" must still be regarded as a controversial issue whose existence is not proven. The clinical importance of this phenomenon however, is that it does explain the lack of complete efficacy of current anti-angiogenic treatments due to the added layer of complexity. It provides a feasible mechanism of early tumour vascular supply which can co-exist and incorporate with later angiogenic mechanisms. We suggest that "vasculogenic mimicry" maybe a common neoplastic phenomena which appears to also be dictated by the cells micro-environment. Its existence also suggests a further process that of the development of tumour mosaic vessels as the neo-vasculature integrates with the existing endothelial lined systems.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS, Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999, 155 (3): 739-52. 10.1016/S0002-9440(10)65173-5.PubMedCentralCrossRefPubMed Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS, Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999, 155 (3): 739-52. 10.1016/S0002-9440(10)65173-5.PubMedCentralCrossRefPubMed
2.
go back to reference Sood AK, Fletcher MS, Hendrix MJ: The embryonic-like properties of aggressive human tumor cells. J Soc Gynecol Investig. 2002, 9 (1): 2-9. 10.1016/S1071-5576(01)00147-2.CrossRefPubMed Sood AK, Fletcher MS, Hendrix MJ: The embryonic-like properties of aggressive human tumor cells. J Soc Gynecol Investig. 2002, 9 (1): 2-9. 10.1016/S1071-5576(01)00147-2.CrossRefPubMed
3.
go back to reference Sood AK, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE, Seftor RE, Hendrix MJ: Molecular determinants of ovarian cancer plasticity. Am J Pathol. 2001, 158 (4): 1279-88. 10.1016/S0002-9440(10)64079-5.PubMedCentralCrossRefPubMed Sood AK, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE, Seftor RE, Hendrix MJ: Molecular determinants of ovarian cancer plasticity. Am J Pathol. 2001, 158 (4): 1279-88. 10.1016/S0002-9440(10)64079-5.PubMedCentralCrossRefPubMed
4.
go back to reference Hendrix MJ, Seftor EA, Hess AR, Seftor RE: Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003, 3 (6): 411-21. 10.1038/nrc1092.CrossRefPubMed Hendrix MJ, Seftor EA, Hess AR, Seftor RE: Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003, 3 (6): 411-21. 10.1038/nrc1092.CrossRefPubMed
5.
go back to reference Reinmuth N, Parikh AA, Ahmad SA, Liu W, Stoeltzing O, Fan F, Takeda A, Akagi M, Ellis LM: Biology of angiogenesis in tumors of the gastrointestinal tract. Microsc Res Tech. 2003, 60 (2): 199-207. 10.1002/jemt.10258.CrossRefPubMed Reinmuth N, Parikh AA, Ahmad SA, Liu W, Stoeltzing O, Fan F, Takeda A, Akagi M, Ellis LM: Biology of angiogenesis in tumors of the gastrointestinal tract. Microsc Res Tech. 2003, 60 (2): 199-207. 10.1002/jemt.10258.CrossRefPubMed
6.
go back to reference Shirakawa K, Wakasugi H, Heike Y, Watanabe I, Yamada S, Saito K, Konishi F: Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer. 2002, 99 (6): 821-8. 10.1002/ijc.10423.CrossRefPubMed Shirakawa K, Wakasugi H, Heike Y, Watanabe I, Yamada S, Saito K, Konishi F: Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer. 2002, 99 (6): 821-8. 10.1002/ijc.10423.CrossRefPubMed
7.
go back to reference Johnson JP: Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 1999, 18 (3): 345-57. 10.1023/A:1006304806799.CrossRefPubMed Johnson JP: Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 1999, 18 (3): 345-57. 10.1023/A:1006304806799.CrossRefPubMed
8.
9.
go back to reference Kerbel R, Folkman J: Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002, 2 (10): 727-39. 10.1038/nrc905.CrossRefPubMed Kerbel R, Folkman J: Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002, 2 (10): 727-39. 10.1038/nrc905.CrossRefPubMed
10.
go back to reference Cavallaro U, Christofori G: Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta. 2001, 1552 (1): 39-45.PubMed Cavallaro U, Christofori G: Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta. 2001, 1552 (1): 39-45.PubMed
Metadata
Title
Vascular mimicry in cultured head and neck tumour cell lines
Authors
Tahwinder Upile
Waseem Jerjes
Hani Radhi
Mohammed Al-Khawalde
Panagiotis Kafas
Seyed Nouraei
Holger Sudhoff
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Head & Neck Oncology / Issue 1/2011
Electronic ISSN: 1758-3284
DOI
https://doi.org/10.1186/1758-3284-3-55

Other articles of this Issue 1/2011

Head & Neck Oncology 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine