Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire

Authors: Jennifer Keegan, Claire E Raphael, Kim Parker, Robin M Simpson, Stephen Strain, Ranil de Silva, Carlo Di Mario, Julian Collinson, Rod H Stables, Ricardo Wage, Peter Drivas, Malindie Sugathapala, Sanjay K Prasad, David N Firmin

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning.

Methods

A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data.

Results

When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R2: 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R2 values (mean +/−SD: 0.79 +/−.13).

Conclusions

High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.
Literature
1.
go back to reference Davies JE, Whinnett ZI, Francis DP, et al. Evidence of a dominant backward-propagating ‘suction’ wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006;113:1768–78.CrossRefPubMed Davies JE, Whinnett ZI, Francis DP, et al. Evidence of a dominant backward-propagating ‘suction’ wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006;113:1768–78.CrossRefPubMed
2.
go back to reference Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anaethetised dog. Circ Res. 1981;49:584–93.CrossRefPubMed Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anaethetised dog. Circ Res. 1981;49:584–93.CrossRefPubMed
3.
go back to reference Sen SS, Petraco R, Mayet J, Davies J. Wave intensity analysis in the human coronary circulation in health and disease. Curr Cardiol Rev. 2014;10:17–23.PubMedCentralCrossRefPubMed Sen SS, Petraco R, Mayet J, Davies J. Wave intensity analysis in the human coronary circulation in health and disease. Curr Cardiol Rev. 2014;10:17–23.PubMedCentralCrossRefPubMed
4.
go back to reference Ofili EO, Labovitz AJ, Kern MJ. Coronary flow velocity dynamics in normal and diseased arteries. Am J Cardiol. 1993;71:3D–9D.CrossRefPubMed Ofili EO, Labovitz AJ, Kern MJ. Coronary flow velocity dynamics in normal and diseased arteries. Am J Cardiol. 1993;71:3D–9D.CrossRefPubMed
5.
go back to reference Ofili EO, Kern MJ, Labovitz AJ, St Vrain JA, Segal J, Aguirre FV, et al. Analysis of coronary blood flow velocity dynamics in angiographically normal and stenosed arteries before and after endolumen enlargement by angioplasty. J Am Coll Cardiol. 1993;21:308–16.CrossRefPubMed Ofili EO, Kern MJ, Labovitz AJ, St Vrain JA, Segal J, Aguirre FV, et al. Analysis of coronary blood flow velocity dynamics in angiographically normal and stenosed arteries before and after endolumen enlargement by angioplasty. J Am Coll Cardiol. 1993;21:308–16.CrossRefPubMed
6.
go back to reference Davies JE, Sen S, Broyd C, Hadjiloizou N, Baksi J, Francis DP, et al. Arterial pulse wave dynamics after percutaneous aortic valve replacement: fall in coronary diastolic suction with increasing heart rate as a basis for angina symptoms in aortic stenosis. Circulation. 2011;124(14):1565–72.CrossRefPubMed Davies JE, Sen S, Broyd C, Hadjiloizou N, Baksi J, Francis DP, et al. Arterial pulse wave dynamics after percutaneous aortic valve replacement: fall in coronary diastolic suction with increasing heart rate as a basis for angina symptoms in aortic stenosis. Circulation. 2011;124(14):1565–72.CrossRefPubMed
7.
go back to reference Doucette JW, Douglas CP, Payne HP, Flynn AE, Goto M, Nassi M, et al. Validation of a Doppler guidewire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;85:1899–911.CrossRefPubMed Doucette JW, Douglas CP, Payne HP, Flynn AE, Goto M, Nassi M, et al. Validation of a Doppler guidewire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;85:1899–911.CrossRefPubMed
8.
go back to reference Sakuma H, Kawada N, Takeda K, Higgins CB. MR measurement of coronary blood flow. J Magn Reson Imaging. 1999;10:728–33.CrossRefPubMed Sakuma H, Kawada N, Takeda K, Higgins CB. MR measurement of coronary blood flow. J Magn Reson Imaging. 1999;10:728–33.CrossRefPubMed
9.
go back to reference Ishida M, Sakuma H. Magnetic resonance of coronary arteries assessment of luminal narrowing and blood flow in coronaries. J Thoracic Imaging. 2014;29:155–62.CrossRefPubMed Ishida M, Sakuma H. Magnetic resonance of coronary arteries assessment of luminal narrowing and blood flow in coronaries. J Thoracic Imaging. 2014;29:155–62.CrossRefPubMed
10.
go back to reference Schiemann M, Bakhtiary F, Hietschold V, Koch A, Esmaeili A, Ackermann H, et al. MR-based coronary artery blood velocity measurements in patients without coronary artery disease. Eur Radiol. 2006;16:1124–30.CrossRefPubMed Schiemann M, Bakhtiary F, Hietschold V, Koch A, Esmaeili A, Ackermann H, et al. MR-based coronary artery blood velocity measurements in patients without coronary artery disease. Eur Radiol. 2006;16:1124–30.CrossRefPubMed
11.
go back to reference Johnson K, Sharma P, Oshinski J. Coronary artery flow measurement using navigator echo gated phase contrast velocity mapping at 3.0 Tesla. J Biomech. 2008;41:595–602.PubMedCentralCrossRefPubMed Johnson K, Sharma P, Oshinski J. Coronary artery flow measurement using navigator echo gated phase contrast velocity mapping at 3.0 Tesla. J Biomech. 2008;41:595–602.PubMedCentralCrossRefPubMed
12.
go back to reference Hundley GW, Lange RA, Clarke GD, et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation. 1996;93:1502–8.CrossRefPubMed Hundley GW, Lange RA, Clarke GD, et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation. 1996;93:1502–8.CrossRefPubMed
13.
go back to reference Sakuma H, Blake LM, Amidon TM, O’Sullivan M, Szolar DH, Ap F, et al. Coronary flow reserve: noninvasive measurement in humans with breath-hold velocity-encoded cine MR imaging. Radiology. 1996;198:745–50.CrossRefPubMed Sakuma H, Blake LM, Amidon TM, O’Sullivan M, Szolar DH, Ap F, et al. Coronary flow reserve: noninvasive measurement in humans with breath-hold velocity-encoded cine MR imaging. Radiology. 1996;198:745–50.CrossRefPubMed
14.
go back to reference Shibata M, Sakuma H, Isaka N, Takeda K, Higgins C, Nakano T. Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guidewire. J Magn Reson Imaging. 1999;10:563–68.CrossRefPubMed Shibata M, Sakuma H, Isaka N, Takeda K, Higgins C, Nakano T. Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guidewire. J Magn Reson Imaging. 1999;10:563–68.CrossRefPubMed
15.
go back to reference Nagel E, Bornstedt A, Hug J, et al. Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med. 1999;41:544–9.CrossRefPubMed Nagel E, Bornstedt A, Hug J, et al. Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med. 1999;41:544–9.CrossRefPubMed
16.
go back to reference Hofman MB, van Rossum AC, Sprenger M, Westerhof N. Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurement: effects of cardiac and respiratory motion. Magn Reson Med. 1996;35:521–31.CrossRefPubMed Hofman MB, van Rossum AC, Sprenger M, Westerhof N. Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurement: effects of cardiac and respiratory motion. Magn Reson Med. 1996;35:521–31.CrossRefPubMed
17.
go back to reference Marcus JT, Smeenk HG, Kuijer JP, van der Geest RJ, Heethaar RM, van Rossum AC. Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr. 1999;23:567–76.CrossRefPubMed Marcus JT, Smeenk HG, Kuijer JP, van der Geest RJ, Heethaar RM, van Rossum AC. Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr. 1999;23:567–76.CrossRefPubMed
18.
go back to reference Keegan J, Gatehouse P, Yang GZ, Firmin D. Interleaved spiral cine coronary artery velocity mapping. Magn Reson Med. 2000;43:787–92.CrossRefPubMed Keegan J, Gatehouse P, Yang GZ, Firmin D. Interleaved spiral cine coronary artery velocity mapping. Magn Reson Med. 2000;43:787–92.CrossRefPubMed
19.
go back to reference Keegan J, Gatehouse PD, Mohiaddin RH, Yang GZ, Firmin DN. Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and right coronary artery blood flow velocity. J Magn Reson Imaging. 2004;19:40–9.CrossRefPubMed Keegan J, Gatehouse PD, Mohiaddin RH, Yang GZ, Firmin DN. Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and right coronary artery blood flow velocity. J Magn Reson Imaging. 2004;19:40–9.CrossRefPubMed
20.
go back to reference Keegan J, Gatehouse PD, Yang GZ, Firmin DN. Spiral phase velocity mapping of left and right coronary artery blood flow: correction for through-plane motion using selective fat-only excitation. J Magn Reson Imaging. 2004;20:953–60.CrossRefPubMed Keegan J, Gatehouse PD, Yang GZ, Firmin DN. Spiral phase velocity mapping of left and right coronary artery blood flow: correction for through-plane motion using selective fat-only excitation. J Magn Reson Imaging. 2004;20:953–60.CrossRefPubMed
21.
go back to reference Brandts A, Roes S, Doornbos J, Weiss R, de Roos A, Stuber M, et al. Right coronary artery flow velocity and volume assessment with spiral k-space sampled breath-hold velocity-encoded magnetic resonance imaging at 3Tesla: accuracy and reproducibility. J Magn Reson Imaging. 2010;31:1215–23.PubMedCentralCrossRefPubMed Brandts A, Roes S, Doornbos J, Weiss R, de Roos A, Stuber M, et al. Right coronary artery flow velocity and volume assessment with spiral k-space sampled breath-hold velocity-encoded magnetic resonance imaging at 3Tesla: accuracy and reproducibility. J Magn Reson Imaging. 2010;31:1215–23.PubMedCentralCrossRefPubMed
22.
go back to reference Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, Stuber M. Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol. 2010;56:1657–65.CrossRefPubMed Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, Stuber M. Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol. 2010;56:1657–65.CrossRefPubMed
23.
go back to reference Hays AG, Kelle S, Hirsch GA, Soleimanifard S, Yu J, Agarwal H, et al. Regional coronary endothelial function is closely related to local early coronary atherosclerosis in patients with mild coronary artery disease: a pilot study. Circ Cardiovasc Imaging. 2012;5:341–8.PubMedCentralCrossRefPubMed Hays AG, Kelle S, Hirsch GA, Soleimanifard S, Yu J, Agarwal H, et al. Regional coronary endothelial function is closely related to local early coronary atherosclerosis in patients with mild coronary artery disease: a pilot study. Circ Cardiovasc Imaging. 2012;5:341–8.PubMedCentralCrossRefPubMed
24.
go back to reference Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding computerized tomography application. IEEE Trans Med Imaging. 1991;10:473–78.CrossRefPubMed Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding computerized tomography application. IEEE Trans Med Imaging. 1991;10:473–78.CrossRefPubMed
25.
go back to reference Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.CrossRef Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.CrossRef
26.
go back to reference Atherton TJ, Kerbyson DJ. Size invariant circle detection. Image Vis Comput. 1999;17:795–803.CrossRef Atherton TJ, Kerbyson DJ. Size invariant circle detection. Image Vis Comput. 1999;17:795–803.CrossRef
27.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed
28.
go back to reference Di Mario C, Gil R, Serruys P. Long-term reproducibility of coronary flow velocity measurements in patients with coronary artery disease. Am J Cardiol. 1995;75:1177–80.CrossRefPubMed Di Mario C, Gil R, Serruys P. Long-term reproducibility of coronary flow velocity measurements in patients with coronary artery disease. Am J Cardiol. 1995;75:1177–80.CrossRefPubMed
29.
go back to reference McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure and ventricular preload. Circulation. 1990;81:1319–30.CrossRefPubMed McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure and ventricular preload. Circulation. 1990;81:1319–30.CrossRefPubMed
30.
go back to reference Richardson PD, Pivkin IV, Karniadkis GE, Laidlaw DH. Blood flow at arterial branches: complexities to resolve for the angioplasty suite. Lect Notes Comput Sci. 2006;3993:538–45.CrossRef Richardson PD, Pivkin IV, Karniadkis GE, Laidlaw DH. Blood flow at arterial branches: complexities to resolve for the angioplasty suite. Lect Notes Comput Sci. 2006;3993:538–45.CrossRef
31.
go back to reference Akasaka T, Yoshikawa J, Yoshida K, Maeda K, Tagagi T, Miyake S. Phasic coronary flow characteristics in patients with hypertrophic cardiomyopathy: a study bycoronary Doppler catheter. J Am Soc Echocardiogr. 1994;7:9–19.CrossRefPubMed Akasaka T, Yoshikawa J, Yoshida K, Maeda K, Tagagi T, Miyake S. Phasic coronary flow characteristics in patients with hypertrophic cardiomyopathy: a study bycoronary Doppler catheter. J Am Soc Echocardiogr. 1994;7:9–19.CrossRefPubMed
32.
go back to reference Ge J, Erbel R, Gerber T, Gorge G, Kock L, Haude M, et al. Intravascular ultrasound imaging of angiographically normal coronary arteres: a prospective study in vivo. Br Heart J. 1994;71:572–8.PubMedCentralCrossRefPubMed Ge J, Erbel R, Gerber T, Gorge G, Kock L, Haude M, et al. Intravascular ultrasound imaging of angiographically normal coronary arteres: a prospective study in vivo. Br Heart J. 1994;71:572–8.PubMedCentralCrossRefPubMed
33.
go back to reference Liu B, Qiu P, Chen H, Li Q. Comparison of simulataneous invasive and non-invasive measurements of blood pressure based on MIMIC ll database. Artery Research. 2014;8:209–13.CrossRef Liu B, Qiu P, Chen H, Li Q. Comparison of simulataneous invasive and non-invasive measurements of blood pressure based on MIMIC ll database. Artery Research. 2014;8:209–13.CrossRef
34.
go back to reference Duncker D, Bache R. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.CrossRefPubMed Duncker D, Bache R. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.CrossRefPubMed
Metadata
Title
Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire
Authors
Jennifer Keegan
Claire E Raphael
Kim Parker
Robin M Simpson
Stephen Strain
Ranil de Silva
Carlo Di Mario
Julian Collinson
Rod H Stables
Ricardo Wage
Peter Drivas
Malindie Sugathapala
Sanjay K Prasad
David N Firmin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0189-y

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue