Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification

Authors: Mariana Bustamante, Sven Petersson, Jonatan Eriksson, Urban Alehagen, Petter Dyverfeldt, Carl-Johan Carlhäll, Tino Ebbers

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Flow volume quantification in the great thoracic vessels is used in the assessment of several cardiovascular diseases. Clinically, it is often based on semi-automatic segmentation of a vessel throughout the cardiac cycle in 2D cine phase-contrast Cardiovascular Magnetic Resonance (CMR) images. Three-dimensional (3D), time-resolved phase-contrast CMR with three-directional velocity encoding (4D flow CMR) permits assessment of net flow volumes and flow patterns retrospectively at any location in a time-resolved 3D volume. However, analysis of these datasets can be demanding. The aim of this study is to develop and evaluate a fully automatic method for segmentation and analysis of 4D flow CMR data of the great thoracic vessels.

Methods

The proposed method utilizes atlas-based segmentation to segment the great thoracic vessels in systole, and registration between different time frames of the cardiac cycle in order to segment these vessels over time. Additionally, net flow volumes are calculated automatically at locations of interest. The method was applied on 4D flow CMR datasets obtained from 11 healthy volunteers and 10 patients with heart failure. Evaluation of the method was performed visually, and by comparison of net flow volumes in the ascending aorta obtained automatically (using the proposed method), and semi-automatically. Further evaluation was done by comparison of net flow volumes obtained automatically at different locations in the aorta, pulmonary artery, and caval veins.

Results

Visual evaluation of the generated segmentations resulted in good outcomes for all the major vessels in all but one dataset. The comparison between automatically and semi-automatically obtained net flow volumes in the ascending aorta resulted in very high correlation (r 2=0.926). Moreover, comparison of the net flow volumes obtained automatically in other vessel locations also produced high correlations where expected: pulmonary trunk vs. proximal ascending aorta (r 2=0.955), pulmonary trunk vs. pulmonary branches (r 2=0.808), and pulmonary trunk vs. caval veins (r 2=0.906).

Conclusions

The proposed method allows for automatic analysis of 4D flow CMR data, including vessel segmentation, assessment of flow volumes at locations of interest, and 4D flow visualization. This constitutes an important step towards facilitating the clinical utility of 4D flow CMR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular Applications of Phase-Contrast MRI. Am J Roentgenol. 2009; 192(3):662–75.CrossRef Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular Applications of Phase-Contrast MRI. Am J Roentgenol. 2009; 192(3):662–75.CrossRef
2.
go back to reference Chai P, Mohiaddin R. How We Perform Cardiovascular Magnetic Resonance Flow Assessment Using Phase-Contrast Velocity Mapping. J Cardiovasc Magn Reson. 2005; 7(4):705–16.PubMed Chai P, Mohiaddin R. How We Perform Cardiovascular Magnetic Resonance Flow Assessment Using Phase-Contrast Velocity Mapping. J Cardiovasc Magn Reson. 2005; 7(4):705–16.PubMed
3.
go back to reference Chatzimavroudis G, Oshinski J, Franch R, Walker P, Yoganathan A, Pettigrew R. Evaluation of the Precision of Magnetic Resonance Phase Velocity Mapping for Blood Flow Measurements. J Cardiovasc Magn Reson (Taylor & Francis Ltd). 2001; 3(1):11.CrossRef Chatzimavroudis G, Oshinski J, Franch R, Walker P, Yoganathan A, Pettigrew R. Evaluation of the Precision of Magnetic Resonance Phase Velocity Mapping for Blood Flow Measurements. J Cardiovasc Magn Reson (Taylor & Francis Ltd). 2001; 3(1):11.CrossRef
4.
go back to reference Hsiao A, Tariq U, Alley MT, Lustig M, Vasanawala SS. Inlet and outlet valve flow and regurgitant volume may be directly and reliably quantified with accelerated, volumetric phase-contrast MRI. J Magn Reson Imaging. 2014; 14:376–85. Hsiao A, Tariq U, Alley MT, Lustig M, Vasanawala SS. Inlet and outlet valve flow and regurgitant volume may be directly and reliably quantified with accelerated, volumetric phase-contrast MRI. J Magn Reson Imaging. 2014; 14:376–85.
5.
go back to reference Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters. Magn Reson Med. 2008; 60(5):1218–1231.CrossRefPubMed Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters. Magn Reson Med. 2008; 60(5):1218–1231.CrossRefPubMed
6.
go back to reference Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, et al. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging. 2010; 31(3):711–8.CrossRefPubMed Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, et al. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging. 2010; 31(3):711–8.CrossRefPubMed
7.
go back to reference Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging. 2012; 36(5):1015–36.CrossRefPubMed Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging. 2012; 36(5):1015–36.CrossRefPubMed
8.
go back to reference Frydrychowicz A, François CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: Potential clinical applications. Eur J Radiol. 2011; 80(1):24–35.PubMedCentralCrossRefPubMed Frydrychowicz A, François CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: Potential clinical applications. Eur J Radiol. 2011; 80(1):24–35.PubMedCentralCrossRefPubMed
9.
go back to reference Valverde I, Nordmeyer S, Uribe S, Greil G, Berger F, Kuehne T, et al. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson. 2012; 14(1):25.PubMedCentralCrossRefPubMed Valverde I, Nordmeyer S, Uribe S, Greil G, Berger F, Kuehne T, et al. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson. 2012; 14(1):25.PubMedCentralCrossRefPubMed
10.
go back to reference Hanneman K, Sivagnanam M, Nguyen ET, Wald R, Greiser A, Crean AM, Ley S, et al. Magnetic Resonance Assessment of Pulmonary (QP) to Systemic (QS) Flows Using 4D Phase-contrast Imaging: Pilot Study Comparison with Standard Through-plane 2D Phase-contrast Imaging. Acad Radiol. 2014; 21(8):1002–1008.CrossRefPubMed Hanneman K, Sivagnanam M, Nguyen ET, Wald R, Greiser A, Crean AM, Ley S, et al. Magnetic Resonance Assessment of Pulmonary (QP) to Systemic (QS) Flows Using 4D Phase-contrast Imaging: Pilot Study Comparison with Standard Through-plane 2D Phase-contrast Imaging. Acad Radiol. 2014; 21(8):1002–1008.CrossRefPubMed
11.
go back to reference Brix L, Ringgaard S, Rasmusson A, Sørensen T, Kim WY. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson. 2009; 11(1):3.PubMedCentralCrossRefPubMed Brix L, Ringgaard S, Rasmusson A, Sørensen T, Kim WY. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson. 2009; 11(1):3.PubMedCentralCrossRefPubMed
12.
go back to reference Van Rossum AC, Sprenger M, Visser FC, Peels KH, Valk J, Roos JP. An in vivo validation of quantitative blood flow imaging in arteries and veins using magnetic resonance phase-shift techniques. Eur Heart J. 1991; 12(2):117–26.PubMed Van Rossum AC, Sprenger M, Visser FC, Peels KH, Valk J, Roos JP. An in vivo validation of quantitative blood flow imaging in arteries and veins using magnetic resonance phase-shift techniques. Eur Heart J. 1991; 12(2):117–26.PubMed
13.
go back to reference Lesage D, Angelini ED, Bloch I, Funka-Lea G. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med Image Anal. 2009; 13(6):819–45.CrossRefPubMed Lesage D, Angelini ED, Bloch I, Funka-Lea G. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med Image Anal. 2009; 13(6):819–45.CrossRefPubMed
14.
go back to reference Suri JS, Kecheng L, Reden L, Laxminarayan S. A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inf Technol Biomed. 2002; 6(4):338–50.CrossRefPubMed Suri JS, Kecheng L, Reden L, Laxminarayan S. A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inf Technol Biomed. 2002; 6(4):338–50.CrossRefPubMed
15.
go back to reference van Pelt R, Nguyen H, ter Haar Romeny B, Vilanova A. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements. Int J CARS. 2012; 7(2):217–24.CrossRef van Pelt R, Nguyen H, ter Haar Romeny B, Vilanova A. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements. Int J CARS. 2012; 7(2):217–24.CrossRef
16.
go back to reference Hennemuth A, Friman O, Schumann C, Bock J, Drexl J, Huellebrand M, et al. Fast interactive exploration of 4D MRI flow data. Proc. SPIE. 2011; 7964:79640–7964011. doi:10.1117/12.878202.CrossRef Hennemuth A, Friman O, Schumann C, Bock J, Drexl J, Huellebrand M, et al. Fast interactive exploration of 4D MRI flow data. Proc. SPIE. 2011; 7964:79640–7964011. doi:10.​1117/​12.​878202.CrossRef
17.
go back to reference Bock J, Frydrychowicz A, Stalder AF, Bley TA, Burkhardt H, Hennig J, et al. 4D phase contrast MRI at 3 T: Effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med. 2010; 63(2):330–8.CrossRefPubMed Bock J, Frydrychowicz A, Stalder AF, Bley TA, Burkhardt H, Hennig J, et al. 4D phase contrast MRI at 3 T: Effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med. 2010; 63(2):330–8.CrossRefPubMed
18.
go back to reference van Pelt R, Olivan Bescos J, Breeuwer M, Clough RE, Groller ME, ter Haar Romeny B, et al. Interactive Virtual Probing of 4D MRI Blood-Flow. IEEE Trans Vis Comput Graph. 2011; 17(12):2153–162.CrossRefPubMed van Pelt R, Olivan Bescos J, Breeuwer M, Clough RE, Groller ME, ter Haar Romeny B, et al. Interactive Virtual Probing of 4D MRI Blood-Flow. IEEE Trans Vis Comput Graph. 2011; 17(12):2153–162.CrossRefPubMed
19.
go back to reference Rohlfing T, Brandt R, Menzel R, Russakoff D, Maurer JCalvinR. In: (Suri J, Wilson D, Laxminarayan S, editors.)Quo Vadis, Atlas-Based Segmentation? Topics in Biomedical Engineering International Book Series. US: Springer; 2005, pp. 435–86. Chap. 11. Rohlfing T, Brandt R, Menzel R, Russakoff D, Maurer JCalvinR. In: (Suri J, Wilson D, Laxminarayan S, editors.)Quo Vadis, Atlas-Based Segmentation? Topics in Biomedical Engineering International Book Series. US: Springer; 2005, pp. 435–86. Chap. 11.
20.
go back to reference Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D. Atlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration In: Dohi T, Kikinis R, editors. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer: 2002. p. 642–50. Chap. 79. Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D. Atlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration In: Dohi T, Kikinis R, editors. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer: 2002. p. 642–50. Chap. 79.
21.
go back to reference Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-Based Attenuation Correction for Whole-Body PET/MRI: Quantitative Evaluation of Segmentation- and Atlas-Based Methods. J Nucl Med. 2011; 52(9):1392–9.CrossRefPubMed Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-Based Attenuation Correction for Whole-Body PET/MRI: Quantitative Evaluation of Segmentation- and Atlas-Based Methods. J Nucl Med. 2011; 52(9):1392–9.CrossRefPubMed
22.
go back to reference Cabezas M, Oliver A, Lladó X, Freixenet J, Bach Cuadra M. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed. 2011; 104(3):158–77.CrossRef Cabezas M, Oliver A, Lladó X, Freixenet J, Bach Cuadra M. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed. 2011; 104(3):158–77.CrossRef
23.
go back to reference Xiang QS. Temporal phase unwrapping for cine velocity imaging. J Magn Reson Imaging. 1995; 5(5):529–34.CrossRefPubMed Xiang QS. Temporal phase unwrapping for cine velocity imaging. J Magn Reson Imaging. 1995; 5(5):529–34.CrossRefPubMed
24.
go back to reference Ebbers T, Haraldsson H, Dyverfeldt P, Sigfridsson A, Warntjes M, Wigström L, Vol. 16. Higher order weighted least-squares phase offset correction for improved accuracy in phase-contrast mri. Toronto, Canada: Proceedings ISMRM; 2008. Ebbers T, Haraldsson H, Dyverfeldt P, Sigfridsson A, Warntjes M, Wigström L, Vol. 16. Higher order weighted least-squares phase offset correction for improved accuracy in phase-contrast mri. Toronto, Canada: Proceedings ISMRM; 2008.
25.
go back to reference Forsberg D. Robust Image Registration for Improved Clinical Efficiency: Using Local Structure Analysis and Model-Based Processing. Linköping Studies in Science and Technology. Dissertations No. 1514. Linköping, Sweden: LiU-Tryck; 2013. Forsberg D. Robust Image Registration for Improved Clinical Efficiency: Using Local Structure Analysis and Model-Based Processing. Linköping Studies in Science and Technology. Dissertations No. 1514. Linköping, Sweden: LiU-Tryck; 2013.
26.
go back to reference Knutsson H, Andersson M. Morphons: segmentation using elastic canvas and paint on priors. In: Image Processing, 2005. ICIP 2005. IEEE International Conference On: 2005. p. 1226–9. Knutsson H, Andersson M. Morphons: segmentation using elastic canvas and paint on priors. In: Image Processing, 2005. ICIP 2005. IEEE International Conference On: 2005. p. 1226–9.
27.
go back to reference Knutsson H, Andersson M. Morphons: paint on priors and elastic canvas for segmentation and registration. Berlin, Heidelberg: Springer-Verlag; 2005. Knutsson H, Andersson M. Morphons: paint on priors and elastic canvas for segmentation and registration. Berlin, Heidelberg: Springer-Verlag; 2005.
28.
go back to reference Wrangsjö A, Pettersson J, Knutsson H. Non-rigid Registration Using Morphons In: Kalviainen H, Parkkinen J, Kaarna A, editors. Lecture Notes in Computer Science. Berlin Heidelberg: Springer: 2005. p. 501–10. Chap. 51. Wrangsjö A, Pettersson J, Knutsson H. Non-rigid Registration Using Morphons In: Kalviainen H, Parkkinen J, Kaarna A, editors. Lecture Notes in Computer Science. Berlin Heidelberg: Springer: 2005. p. 501–10. Chap. 51.
29.
go back to reference Jolliffe IT. Springer Series in Statistics, 2nd edn. New York: Springer; 2002. Jolliffe IT. Springer Series in Statistics, 2nd edn. New York: Springer; 2002.
30.
go back to reference Forsberg D, Eklund A, Andersson M, Knutsson H. Phase-Based Non-Rigid 3D Image Registration: From Minutes to Seconds Using CUDA. Lect. Notes Comp. Sc. 2011; 6688:414–32.CrossRef Forsberg D, Eklund A, Andersson M, Knutsson H. Phase-Based Non-Rigid 3D Image Registration: From Minutes to Seconds Using CUDA. Lect. Notes Comp. Sc. 2011; 6688:414–32.CrossRef
Metadata
Title
Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification
Authors
Mariana Bustamante
Sven Petersson
Jonatan Eriksson
Urban Alehagen
Petter Dyverfeldt
Carl-Johan Carlhäll
Tino Ebbers
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0190-5

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue