Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Validation of a continuous infusion of low dose Iohexol to measure glomerular filtration rate: randomised clinical trial

Authors: John J Dixon, Katie Lane, R Neil Dalton, Charles Turner, R Michael Grounds, Iain AM MacPhee, Barbara J Philips

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Introduction

There is currently no accurate method of measuring glomerular filtration rate (GFR) during acute kidney injury (AKI). Knowledge of how much GFR varies in stable subjects is necessary before changes in GFR can be attributed to AKI. We have designed a method of continuous measurement of GFR intended as a research tool to time effects of AKI. The aims of this crossover trial were to establish accuracy and precision of a continuous infusion of low dose Iohexol (CILDI) and variation in GFR in stable volunteers over a range of estimated GFR (23-138 mL/min/1.73 m2).

Methods

We randomised 17 volunteers to GFR measurement by plasma clearance (PC) and renal clearance (RC) of either a single bolus of Iohexol (SBI; routine method), or of a continuous infusion of low dose Iohexol (CILDI; experimental method) at 0.5 mL/h for 12 h. GFR was measured by the alternative method after a washout period (4–28 days). Iohexol concentration was measured by high performance liquid chromatography/electrospray tandem mass spectrometry and time to steady state concentration (Css) determined.

Results

Mean PC was 76.7 ± 28.5 mL/min/1.73 m2 (SBI), and 78.9 ± 28.6 mL/min/1.73 m2 (CILDI), p = 0.82. No crossover effects occurred (p = 0.85). Correlation (r) between the methods was 0.98 (p < 0.0001). Bias was 2.2 mL/min/1.73 m2 (limits of agreement −8.2 to 12.6 mL/min/1.73 m2) for CILDI. PC overestimated RC by 7.1 ± 7.3 mL/min/1.73 m2. Mean intra-individual variation in GFR (CILDI) was 10.3% (p < 0.003). Mean ± SD Css was 172 ± 185 min.

Conclusion

We hypothesise that changes in GFR >10.3% depict evolving AKI. If this were applicable to AKI, this is less than the 50% change in serum creatinine currently required to define AKI. CILDI is now ready for testing in patients with AKI.

Trial registration

This trial was registered with the European Union Clinical Trials Register (https://​www.​clinicaltrialsre​gister.​eu/​), registration number: 2010-019933-89.
Literature
1.
go back to reference Mehta R, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.CrossRefPubMedCentralPubMed Mehta R, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.CrossRefPubMedCentralPubMed
2.
go back to reference Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.CrossRefPubMedCentralPubMed Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.CrossRefPubMedCentralPubMed
3.
go back to reference Kidney Disease Improving Global Outcomes work group. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int Suppl. 2012;2(1):1–138.CrossRef Kidney Disease Improving Global Outcomes work group. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int Suppl. 2012;2(1):1–138.CrossRef
4.
go back to reference Ostermann M, Chang RWS. Challenges of defining acute kidney injury. Q J Med. 2011;104:237–43.CrossRef Ostermann M, Chang RWS. Challenges of defining acute kidney injury. Q J Med. 2011;104:237–43.CrossRef
6.
go back to reference Doi K, Yuen PS, Eisner C, Hu X, Leelahavanichkul A, Schnermann J, et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J Am Soc Nephrol. 2009;20:1217–21.CrossRefPubMedCentralPubMed Doi K, Yuen PS, Eisner C, Hu X, Leelahavanichkul A, Schnermann J, et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J Am Soc Nephrol. 2009;20:1217–21.CrossRefPubMedCentralPubMed
7.
go back to reference Wilson FP, Sheehan JM, Mariani LH, Berns JS. Creatinine generation is reduced in patients requiring continuous venovenous hemodialysis and independently predicts mortality. Nephrol Dial Transplant. 2012;27:4088–94.CrossRefPubMedCentralPubMed Wilson FP, Sheehan JM, Mariani LH, Berns JS. Creatinine generation is reduced in patients requiring continuous venovenous hemodialysis and independently predicts mortality. Nephrol Dial Transplant. 2012;27:4088–94.CrossRefPubMedCentralPubMed
8.
go back to reference Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73(9):1008–16.CrossRefPubMed Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73(9):1008–16.CrossRefPubMed
9.
go back to reference Erley CM, Badar BD, Berger ED, Vochazer A, Jorzik JJ, Dietz K, et al. Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med. 2001;29(8):1544–50.CrossRefPubMed Erley CM, Badar BD, Berger ED, Vochazer A, Jorzik JJ, Dietz K, et al. Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med. 2001;29(8):1544–50.CrossRefPubMed
10.
go back to reference Sterner G, Frennby B, Mansson S, Nyman U, Van Western D, Almén T. Determining “true” glomerular filtration rate in healthy adults using infusion of inulin and comparing it with values obtained using other clearance techniques or prediction equations. Scand J Urol Nephrol. 2008;42(3):278–85.CrossRefPubMed Sterner G, Frennby B, Mansson S, Nyman U, Van Western D, Almén T. Determining “true” glomerular filtration rate in healthy adults using infusion of inulin and comparing it with values obtained using other clearance techniques or prediction equations. Scand J Urol Nephrol. 2008;42(3):278–85.CrossRefPubMed
11.
go back to reference Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6(2):257–63.PubMed Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6(2):257–63.PubMed
12.
go back to reference Effersöe H, Groth S, Jensen LI, Golman K. Measurement of renal function with iohexol. A comparison of iohexol, 99mTc-DTPA and 51Cr-EDTA clearance. Invest Radiol. 1990;25(7):778–82.CrossRefPubMed Effersöe H, Groth S, Jensen LI, Golman K. Measurement of renal function with iohexol. A comparison of iohexol, 99mTc-DTPA and 51Cr-EDTA clearance. Invest Radiol. 1990;25(7):778–82.CrossRefPubMed
13.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd AF, Feldman HI, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). Ann Intern Med. 2009;150(9):604–12.CrossRefPubMedCentralPubMed Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd AF, Feldman HI, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). Ann Intern Med. 2009;150(9):604–12.CrossRefPubMedCentralPubMed
16.
go back to reference GE Healthcare Inc. OMNIPAQUE (Iohexol): Summary of product characteristics. Princeton, NJ, USA: GE Healthcare; 2009. GE Healthcare Inc. OMNIPAQUE (Iohexol): Summary of product characteristics. Princeton, NJ, USA: GE Healthcare; 2009.
17.
go back to reference Hemmegarn BR, Zhang J, Manns BJ, Tonelli M, Larsen E, Ghali WA, et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int. 2006;69(12):2155–61.CrossRef Hemmegarn BR, Zhang J, Manns BJ, Tonelli M, Larsen E, Ghali WA, et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int. 2006;69(12):2155–61.CrossRef
18.
20.
go back to reference Brochner-Mortensen J. A simple method for the determination of Glomerular Filtration Rate. Scand J Clin Lab Invest. 1972;30:271–4.CrossRefPubMed Brochner-Mortensen J. A simple method for the determination of Glomerular Filtration Rate. Scand J Clin Lab Invest. 1972;30:271–4.CrossRefPubMed
21.
go back to reference Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP, et al. Accuracy of the MDRD (Modification of diet in Renal Disease) Study and CKD-EPI (CKD Epidemiology Collaboration) Equations for Estimation of GFR in the elderly. Am J Kidney Dis. 2012;61(1):57–66.CrossRefPubMed Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP, et al. Accuracy of the MDRD (Modification of diet in Renal Disease) Study and CKD-EPI (CKD Epidemiology Collaboration) Equations for Estimation of GFR in the elderly. Am J Kidney Dis. 2012;61(1):57–66.CrossRefPubMed
23.
go back to reference Bland JM, Altman DG. Measuring agreement in medical comparison studies. Stat Methods Med Res. 1999;8:135–60.CrossRefPubMed Bland JM, Altman DG. Measuring agreement in medical comparison studies. Stat Methods Med Res. 1999;8:135–60.CrossRefPubMed
24.
go back to reference Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS. Guidelines for the Measurement of Glomerular Filtration Rate using Plasma Sampling. http://www.bnms.org.uk (accessed 23 December 2014). Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS. Guidelines for the Measurement of Glomerular Filtration Rate using Plasma Sampling. http://​www.​bnms.​org.​uk (accessed 23 December 2014).
25.
go back to reference James TJ, Lewis AV, Tan GD, Altmann P, Taylor RP, Levy JC. Validity of simplified protocols to estimate glomerular filtration rate using iohexol clearance. Ann Clin Biochem. 2007;44:369–76.CrossRefPubMed James TJ, Lewis AV, Tan GD, Altmann P, Taylor RP, Levy JC. Validity of simplified protocols to estimate glomerular filtration rate using iohexol clearance. Ann Clin Biochem. 2007;44:369–76.CrossRefPubMed
26.
go back to reference Mills M, Armitage P. The two-period cross-over clinical trial. B J Clin Pharm. 1979;8:7–20.CrossRef Mills M, Armitage P. The two-period cross-over clinical trial. B J Clin Pharm. 1979;8:7–20.CrossRef
27.
go back to reference van Acker BAC, Koomen GCM, Arisz L. Drawbacks of the constant-infusion technique for measurement of renal function. Am J Physiol. 1995;268(37):F543–52.PubMed van Acker BAC, Koomen GCM, Arisz L. Drawbacks of the constant-infusion technique for measurement of renal function. Am J Physiol. 1995;268(37):F543–52.PubMed
28.
go back to reference Koopman MG, Koomen GCM, Krediet E, de Moor EAM, Hoek FJ, Arisz L. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci. 1989;77:105–11.PubMed Koopman MG, Koomen GCM, Krediet E, de Moor EAM, Hoek FJ, Arisz L. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci. 1989;77:105–11.PubMed
29.
go back to reference Olsson B, Aulie Å, Sveen K, Andrew E. Human Pharmacokinetics of Iohexol A New Nonionic Contrast Medium. Invest Radiol. 1983;18:177–82.CrossRefPubMed Olsson B, Aulie Å, Sveen K, Andrew E. Human Pharmacokinetics of Iohexol A New Nonionic Contrast Medium. Invest Radiol. 1983;18:177–82.CrossRefPubMed
30.
go back to reference Lundqvist S, Holmberg G, Jakobsson G, Lithner F, Skinningsrud K, Stegmayr B, et al. Assessment of possible nephrotoxicty from Iohexol in patients with normal and impaired renal function. Acta Radiol. 1998;39(4):362–7.CrossRefPubMed Lundqvist S, Holmberg G, Jakobsson G, Lithner F, Skinningsrud K, Stegmayr B, et al. Assessment of possible nephrotoxicty from Iohexol in patients with normal and impaired renal function. Acta Radiol. 1998;39(4):362–7.CrossRefPubMed
31.
go back to reference Cavalier E, Rozet E, Dubois N, Charlier C, Hubert P, Chapelle J-P, et al. Performance of Iohexol determination in serum and urine by HPLC: validation, risk and uncertainty assessment. Clinica Chem Acta. 2008;396(1–2):80–5.CrossRef Cavalier E, Rozet E, Dubois N, Charlier C, Hubert P, Chapelle J-P, et al. Performance of Iohexol determination in serum and urine by HPLC: validation, risk and uncertainty assessment. Clinica Chem Acta. 2008;396(1–2):80–5.CrossRef
32.
go back to reference Kays AJ. Economics. In: Biology and Chemistry of Jerusalem Artichoke: Helicanthus tuberosus L. Nottingham, SF: Taylor & Francis Group LLC; 2008. p. 407–21. Kays AJ. Economics. In: Biology and Chemistry of Jerusalem Artichoke: Helicanthus tuberosus L. Nottingham, SF: Taylor & Francis Group LLC; 2008. p. 407–21.
33.
go back to reference Nissenson AR, Pereira BJG, Collins AJ, Steinberg EP. Prevalence and characteristics of individuals with chronic kidney disease in a large health organization. Am J Kid Dis. 2001;37(6):1177–83.CrossRefPubMed Nissenson AR, Pereira BJG, Collins AJ, Steinberg EP. Prevalence and characteristics of individuals with chronic kidney disease in a large health organization. Am J Kid Dis. 2001;37(6):1177–83.CrossRefPubMed
34.
go back to reference Schnurr E, Lahme W, Küppers H. Measurement of renal clearance of inulin and PAH in the steady state without urine collection. Clin Nephrol. 1980;13:26–9.PubMed Schnurr E, Lahme W, Küppers H. Measurement of renal clearance of inulin and PAH in the steady state without urine collection. Clin Nephrol. 1980;13:26–9.PubMed
35.
go back to reference Moore AEB, Park-Holohan S-J, Blake GM, Fogelman I. Conventional measurements of GFR using Cr-51-EDTA overestimate true renal clearance by 10%. Eur J Nucl Med Mol Imaging. 2003;30:4–8.CrossRefPubMed Moore AEB, Park-Holohan S-J, Blake GM, Fogelman I. Conventional measurements of GFR using Cr-51-EDTA overestimate true renal clearance by 10%. Eur J Nucl Med Mol Imaging. 2003;30:4–8.CrossRefPubMed
36.
go back to reference Barrett BJ, Carlisle EJ. Meta-analysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188(1):171–8.CrossRefPubMed Barrett BJ, Carlisle EJ. Meta-analysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188(1):171–8.CrossRefPubMed
37.
go back to reference McDonald RJ, McDonald JS, Bida JP, Carter RE, Fleming CJ, Misra S, et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon. Radiol. 2013;267(1):106–18.CrossRef McDonald RJ, McDonald JS, Bida JP, Carter RE, Fleming CJ, Misra S, et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon. Radiol. 2013;267(1):106–18.CrossRef
38.
go back to reference McDonald JS, McDonald RJ, Comin J, Williamson EE, Katzberg RW, Murad MH, et al. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiol. 2013;267(1):119–28.CrossRef McDonald JS, McDonald RJ, Comin J, Williamson EE, Katzberg RW, Murad MH, et al. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiol. 2013;267(1):119–28.CrossRef
39.
go back to reference Brown JR, Robb JF, Block CA, Schoolwerth AC, Kaplan AV, O’Connor GT, et al. Does safe dosing of iodinated contrast prevent contrast-induced acute kidney injury? Circ Cardiovasc Interv. 2010;3(4):346–50.CrossRefPubMed Brown JR, Robb JF, Block CA, Schoolwerth AC, Kaplan AV, O’Connor GT, et al. Does safe dosing of iodinated contrast prevent contrast-induced acute kidney injury? Circ Cardiovasc Interv. 2010;3(4):346–50.CrossRefPubMed
Metadata
Title
Validation of a continuous infusion of low dose Iohexol to measure glomerular filtration rate: randomised clinical trial
Authors
John J Dixon
Katie Lane
R Neil Dalton
Charles Turner
R Michael Grounds
Iain AM MacPhee
Barbara J Philips
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0414-3

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.