Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

Open Access 01-12-2022 | Vagus Nerve Stimulation | Research

Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats

Authors: Uk Namgung, Ki-Joong Kim, Byung-Gon Jo, Jong-Min Park

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

Background

Previous studies have shown that vagus nerve stimulation (VNS) can attenuate inflammatory responses in peripheral tissues and also improve some neurological disorders and cognitive function in the brain. However, it is not clear how VNS is involved in neuropathological processes in brain tissues. Here, we investigated the regulatory effects of VNS on the production of proinflammatory cytokines in the hippocampus of an animal model of continuous stress (CS).

Methods

CS was induced by placing rats in cages immersed with water, and acute or chronic electrical stimulation was applied to the cervical vagus nerve of CS animals. Protein levels in the gastric and hippocampal tissues were measured by western blotting and protein signals analyzed by immunofluorescence staining. von Frey test and forced swimming test were performed to assess pain sensitivity and depressive-like behavior in rats, respectively.

Results

Levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues were significantly increased in CS animals compared to the untreated control and downregulated by acute VNS (aVNS). Iba-1-labeled microglial cells in the hippocampus of CS animals revealed morphological features of activated inflammatory cells and then changed to a normal shape by VNS. VNS elevated hippocampal expression of α7 nicotinic acetylcholine receptors (α7 nAChR) in CS animals, and pharmacological blockade of α7 nAChR increased the production of TNF-α, IL-1β, and IL-6, thus suppressing cholinergic anti-inflammatory activity that was mediated by VNS. Chronic VNS (cVNS) down-regulated the hippocampal production of active form of caspase 3 and 5-HT1A receptors and also decreased levels of TNF-α, IL-1β, and IL-6 in the gastric and hippocampal tissues of CS animals. Pain sensitivity and depressive-like behavior, which were increased by CS, were improved by cVNS.

Conclusions

Our data suggest that VNS may be involved in modulating pathophysiological processes caused by CS in the brain.
Literature
1.
go back to reference Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y. Establishment and assessment of a rat model of fatigue. Neurosci Lett. 2003;352(3):159–62.PubMedCrossRef Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y. Establishment and assessment of a rat model of fatigue. Neurosci Lett. 2003;352(3):159–62.PubMedCrossRef
2.
go back to reference Yasui M, Yoshimura T, Takeuchi S, Tokizane K, Tsuda M, Inoue K, et al. A chronic fatigue syndrome model demonstrates mechanical allodynia and muscular hyperalgesia via spinal microglial activation. Glia. 2014;62(9):1407–17.PubMedCrossRef Yasui M, Yoshimura T, Takeuchi S, Tokizane K, Tsuda M, Inoue K, et al. A chronic fatigue syndrome model demonstrates mechanical allodynia and muscular hyperalgesia via spinal microglial activation. Glia. 2014;62(9):1407–17.PubMedCrossRef
3.
go back to reference Yasui M, Menjyo Y, Tokizane K, Shiozawa A, Tsuda M, Inoue K, et al. Hyperactivation of proprioceptors induces microglia-mediated long-lasting pain in a rat model of chronic fatigue syndrome. J Neuroinflamm. 2019;16(1):67.CrossRef Yasui M, Menjyo Y, Tokizane K, Shiozawa A, Tsuda M, Inoue K, et al. Hyperactivation of proprioceptors induces microglia-mediated long-lasting pain in a rat model of chronic fatigue syndrome. J Neuroinflamm. 2019;16(1):67.CrossRef
4.
go back to reference Ogawa T, Sei H, Konishi H, Shishioh-Ikejima N, Kiyama H. The absence of somatotroph proliferation during continuous stress is a result of the lack of extracellular signal-regulated kinase 1/2 activation. J Neuroendocrinol. 2012;24(10):1335–45.PubMedCrossRef Ogawa T, Sei H, Konishi H, Shishioh-Ikejima N, Kiyama H. The absence of somatotroph proliferation during continuous stress is a result of the lack of extracellular signal-regulated kinase 1/2 activation. J Neuroendocrinol. 2012;24(10):1335–45.PubMedCrossRef
5.
go back to reference Shishioh-Ikejima N, Ogawa T, Yamaguti K, Watanabe Y, Kuratsune H, Kiyama H. The increase of alpha-melanocyte-stimulating hormone in the plasma of chronic fatigue syndrome patients. BMC Neurol. 2010;10:73.PubMedPubMedCentralCrossRef Shishioh-Ikejima N, Ogawa T, Yamaguti K, Watanabe Y, Kuratsune H, Kiyama H. The increase of alpha-melanocyte-stimulating hormone in the plasma of chronic fatigue syndrome patients. BMC Neurol. 2010;10:73.PubMedPubMedCentralCrossRef
7.
8.
go back to reference de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.PubMedCrossRef de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.PubMedCrossRef
9.
go back to reference Marrero MB, Bencherif M. Convergence of alpha 7 nicotinic acetylcholine receptor-activated pathways for anti-apoptosis and anti-inflammation: central role for JAK2 activation of STAT3 and NF-kappaB. Brain Res. 2009;1256:1–7.PubMedCrossRef Marrero MB, Bencherif M. Convergence of alpha 7 nicotinic acetylcholine receptor-activated pathways for anti-apoptosis and anti-inflammation: central role for JAK2 activation of STAT3 and NF-kappaB. Brain Res. 2009;1256:1–7.PubMedCrossRef
11.
go back to reference Inoue T, Abe C, Sung SS, Moscalu S, Jankowski J, Huang L, et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Invest. 2016;126(5):1939–52.PubMedPubMedCentralCrossRef Inoue T, Abe C, Sung SS, Moscalu S, Jankowski J, Huang L, et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Invest. 2016;126(5):1939–52.PubMedPubMedCentralCrossRef
12.
go back to reference Jo BG, Kim SH, Namgung U. Vagal afferent fibers contribute to the anti-inflammatory reactions by vagus nerve stimulation in concanavalin A model of hepatitis in rats. Mol Med. 2020;26(1):119.PubMedPubMedCentralCrossRef Jo BG, Kim SH, Namgung U. Vagal afferent fibers contribute to the anti-inflammatory reactions by vagus nerve stimulation in concanavalin A model of hepatitis in rats. Mol Med. 2020;26(1):119.PubMedPubMedCentralCrossRef
13.
go back to reference Woodbury DM, Woodbury JW. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia. 1990;31(Suppl 2):S7–19.PubMedCrossRef Woodbury DM, Woodbury JW. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia. 1990;31(Suppl 2):S7–19.PubMedCrossRef
14.
go back to reference Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res. 2000;42(2–3):203–10.PubMedCrossRef Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res. 2000;42(2–3):203–10.PubMedCrossRef
15.
go back to reference Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci. 1999;2(1):94–8.PubMedCrossRef Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci. 1999;2(1):94–8.PubMedCrossRef
17.
go back to reference Corsi-Zuelli FMDG, Brognara F, Quirino GFDS, Hiroki CH, Fais RS, Del-Ben CM, et al. Neuroimmune interactions in schizophrenia: focus on vagus nerve stimulation and activation of the alpha-7 nicotinic acetylcholine receptor. Front Immunol. 2017;8:618.PubMedPubMedCentralCrossRef Corsi-Zuelli FMDG, Brognara F, Quirino GFDS, Hiroki CH, Fais RS, Del-Ben CM, et al. Neuroimmune interactions in schizophrenia: focus on vagus nerve stimulation and activation of the alpha-7 nicotinic acetylcholine receptor. Front Immunol. 2017;8:618.PubMedPubMedCentralCrossRef
18.
go back to reference Lin H, Hsu FC, Baumann BH, Coulter DA, Lynch DR. Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: implications for neuropsychiatric diseases. Neurobiol Dis. 2014;63:129–40.PubMedCrossRef Lin H, Hsu FC, Baumann BH, Coulter DA, Lynch DR. Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: implications for neuropsychiatric diseases. Neurobiol Dis. 2014;63:129–40.PubMedCrossRef
19.
go back to reference Lin H, Hsu FC, Baumann BH, Coulter DA, Anderson SA, Lynch DR. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia. Mol Cell Neurosci. 2014;61:163–75. Lin H, Hsu FC, Baumann BH, Coulter DA, Anderson SA, Lynch DR. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia. Mol Cell Neurosci. 2014;61:163–75.
20.
go back to reference Frasch MG, Szynkaruk M, Prout AP, Nygard K, Cao M, Veldhuizen R, et al. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway? J Neuroinflamm. 2016;13(1):103.CrossRef Frasch MG, Szynkaruk M, Prout AP, Nygard K, Cao M, Veldhuizen R, et al. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway? J Neuroinflamm. 2016;13(1):103.CrossRef
21.
go back to reference Shin HC, Jo BG, Lee CY, Lee KW, Namgung U. Hippocampal activation of 5-HT1B receptors and BDNF production by vagus nerve stimulation in rats under chronic restraint stress. Eur J Neurosci. 2019;50(1):1820–30.PubMedCrossRef Shin HC, Jo BG, Lee CY, Lee KW, Namgung U. Hippocampal activation of 5-HT1B receptors and BDNF production by vagus nerve stimulation in rats under chronic restraint stress. Eur J Neurosci. 2019;50(1):1820–30.PubMedCrossRef
22.
go back to reference Paxinos GA, Watson C. The rat brain in stereotaxic coordinates. 6th ed. London: Academic Press; 2007. Paxinos GA, Watson C. The rat brain in stereotaxic coordinates. 6th ed. London: Academic Press; 2007.
23.
go back to reference Yalcin M, Aydin C, Savci V. Cardiovascular effect of peripheral injected melittin in normotensive conscious rats: mediation of the central cholinergic system. Prostaglandins Leukot Essent Fatty Acids. 2009;81(5–6):341–7.PubMedCrossRef Yalcin M, Aydin C, Savci V. Cardiovascular effect of peripheral injected melittin in normotensive conscious rats: mediation of the central cholinergic system. Prostaglandins Leukot Essent Fatty Acids. 2009;81(5–6):341–7.PubMedCrossRef
24.
go back to reference Ochi M, Tominaga K, Tanaka F, Tanigawa T, Shiba M, Watanabe T, et al. Effect of chronic stress on gastric emptying and plasma ghrelin levels in rats. Life Sci. 2008;82(15–16):862–8.PubMedCrossRef Ochi M, Tominaga K, Tanaka F, Tanigawa T, Shiba M, Watanabe T, et al. Effect of chronic stress on gastric emptying and plasma ghrelin levels in rats. Life Sci. 2008;82(15–16):862–8.PubMedCrossRef
25.
go back to reference Reyes M, Gary HE Jr, Dobbins JG, Randall B, Steele L, Fukuda K, et al. Surveillance for chronic fatigue syndrome—four U.S. cities, September 1989 through August 1993. MMWR CDC Surveill Summ. 1997;46(2):1–13.PubMed Reyes M, Gary HE Jr, Dobbins JG, Randall B, Steele L, Fukuda K, et al. Surveillance for chronic fatigue syndrome—four U.S. cities, September 1989 through August 1993. MMWR CDC Surveill Summ. 1997;46(2):1–13.PubMed
26.
go back to reference Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci. 2001;21(20):7993–8003.PubMedPubMedCentralCrossRef Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci. 2001;21(20):7993–8003.PubMedPubMedCentralCrossRef
27.
go back to reference Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 2004;89(2):337–43.PubMedCrossRef Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 2004;89(2):337–43.PubMedCrossRef
28.
go back to reference Lawrence JJ, Cobb S. Neuromodulation of hippocampal cells and circuits. In: Cutsuridis V, Graham BP, Cobb S, Vida, I, Editors, Hippocampal microcircuits: A computational modeler's resource book. 2nd edition, Switzerland: Springer; 2018. pp. 227–325. Lawrence JJ, Cobb S. Neuromodulation of hippocampal cells and circuits. In: Cutsuridis V, Graham BP, Cobb S, Vida, I, Editors, Hippocampal microcircuits: A computational modeler's resource book. 2nd edition, Switzerland: Springer; 2018. pp. 227–325.
29.
go back to reference Fujimura K, Sugatani J, Miwa M, Mizuno T, Sameshima Y, Saito K. Serum platelet-activating factor acetylhydrolase activity in rats with gastric ulcers induced by water-immersion stress. Scand J Gastroenterol Suppl. 1989;162:59–62.PubMedCrossRef Fujimura K, Sugatani J, Miwa M, Mizuno T, Sameshima Y, Saito K. Serum platelet-activating factor acetylhydrolase activity in rats with gastric ulcers induced by water-immersion stress. Scand J Gastroenterol Suppl. 1989;162:59–62.PubMedCrossRef
30.
go back to reference Ito M, Shichijo K, Sekine I. Gastric motility and ischemic changes in occurrence of linear ulcer formation induced by restraint-water immersion stress in rat. Gastroenterol Jpn. 1993;28(3):367–73.PubMedCrossRef Ito M, Shichijo K, Sekine I. Gastric motility and ischemic changes in occurrence of linear ulcer formation induced by restraint-water immersion stress in rat. Gastroenterol Jpn. 1993;28(3):367–73.PubMedCrossRef
31.
go back to reference Ogawa T, Shishioh-Ikejima N, Konishi H, Makino T, Sei H, Kiryu-Seo S, et al. Chronic stress elicits prolonged activation of alpha-MSH secretion and subsequent degeneration of melanotroph. J Neurochem. 2009;109(5):1389–99.PubMedCrossRef Ogawa T, Shishioh-Ikejima N, Konishi H, Makino T, Sei H, Kiryu-Seo S, et al. Chronic stress elicits prolonged activation of alpha-MSH secretion and subsequent degeneration of melanotroph. J Neurochem. 2009;109(5):1389–99.PubMedCrossRef
32.
go back to reference Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83.PubMedCrossRef Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83.PubMedCrossRef
34.
go back to reference Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013;30(7):6. Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013;30(7):6.
35.
go back to reference Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990;181(2):101–15.CrossRef Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990;181(2):101–15.CrossRef
37.
go back to reference Hammond EJ, Uthman BM, Reid SA, Wilder BJ, Ramsay RE. Vagus nerve stimulation in humans: neurophysiological studies and electrophysiological monitoring. Epilepsia. 1990;31(Suppl 2):S51–9.PubMedCrossRef Hammond EJ, Uthman BM, Reid SA, Wilder BJ, Ramsay RE. Vagus nerve stimulation in humans: neurophysiological studies and electrophysiological monitoring. Epilepsia. 1990;31(Suppl 2):S51–9.PubMedCrossRef
38.
go back to reference Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al. Reversing pathological neural activity using targeted plasticity. Nature. 2011;470(7332):101–4.PubMedPubMedCentralCrossRef Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al. Reversing pathological neural activity using targeted plasticity. Nature. 2011;470(7332):101–4.PubMedPubMedCentralCrossRef
39.
go back to reference Meneses G, Bautista M, Florentino A, Díaz G, Acero G, Besedovsky H, et al. Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J Inflamm (Lond). 2016;13:33.CrossRef Meneses G, Bautista M, Florentino A, Díaz G, Acero G, Besedovsky H, et al. Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J Inflamm (Lond). 2016;13:33.CrossRef
40.
go back to reference Jiang Y, Cao Z, Ma H, Wang G, Wang X, Wang Z, et al. Auricular vagus nerve stimulation exerts antiinflammatory effects and immune regulatory function in a 6-OHDA model of Parkinson’s disease. Neurochem Res. 2018;43(11):2155–64.PubMedCrossRef Jiang Y, Cao Z, Ma H, Wang G, Wang X, Wang Z, et al. Auricular vagus nerve stimulation exerts antiinflammatory effects and immune regulatory function in a 6-OHDA model of Parkinson’s disease. Neurochem Res. 2018;43(11):2155–64.PubMedCrossRef
41.
go back to reference Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 2019;12(1):19–29.PubMedCrossRef Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 2019;12(1):19–29.PubMedCrossRef
42.
go back to reference Zhang Q, Lu Y, Bian H, Guo L, Zhu H. Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res. 2017;9(3):971–85.PubMedPubMedCentral Zhang Q, Lu Y, Bian H, Guo L, Zhu H. Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res. 2017;9(3):971–85.PubMedPubMedCentral
43.
go back to reference Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17(3):400–6.PubMedCrossRef Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17(3):400–6.PubMedCrossRef
44.
go back to reference Kaczmarczyk R, Tejera D, Simon BJ, Heneka MT. Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer’s disease. J Neurochem. 2018;146:76–85.CrossRef Kaczmarczyk R, Tejera D, Simon BJ, Heneka MT. Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer’s disease. J Neurochem. 2018;146:76–85.CrossRef
45.
go back to reference Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9:917–24.PubMedCrossRef Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9:917–24.PubMedCrossRef
46.
go back to reference Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry. 2020;103:109976.PubMedCrossRef Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry. 2020;103:109976.PubMedCrossRef
47.
go back to reference Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol. 2015;97(4):463–72.PubMedCrossRef Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol. 2015;97(4):463–72.PubMedCrossRef
48.
go back to reference Navarro E, Gonzalez-Lafuente L, Pérez-Liébana I, Buendia I, López-Bernardo E, Sánchez-Ramos C, et al. Heme-oxygenase I and PCG-1α regulate mitochondrial biogenesis via microglial activation of alpha7 nicotinic acetylcholine receptors using PNU282987. Antioxid Redox Signal. 2017;27(2):93–105.PubMedCrossRef Navarro E, Gonzalez-Lafuente L, Pérez-Liébana I, Buendia I, López-Bernardo E, Sánchez-Ramos C, et al. Heme-oxygenase I and PCG-1α regulate mitochondrial biogenesis via microglial activation of alpha7 nicotinic acetylcholine receptors using PNU282987. Antioxid Redox Signal. 2017;27(2):93–105.PubMedCrossRef
Metadata
Title
Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats
Authors
Uk Namgung
Ki-Joong Kim
Byung-Gon Jo
Jong-Min Park
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02396-z

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue