Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Vagus Nerve Stimulation | Research

Heart rate variability and cold-induced vascular dilation after stimulation of two different areas of the ear: a prospective, single-blinded, randomized crossover study

Authors: Emmanuel Sagui, Damien Claverie, Wahiba Bidaut, Laurent Grelot

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

Both noninvasive transauricular vagus nerve stimulation (taVNS) and traditional medical practice (TMP), such as auriculotherapy, use the auricle as a starting point for stimulation, but with two different conceptual frameworks: taVNS depends on vagal afferences to account for its effects, whereas TMP requires stimulation of the ear with high topographical accuracy regardless of the afferent nerves. The aim of this study was to measure heart rate variability (HRV) and cold water–induced vasodilation (CIVD) after puncturing two different ear points with the same afference but that should have opposite effects according to TMP.

Methods

Ten healthy subjects were investigated in this single-blinded crossover study over three sessions. In the first session, sympathetic activation was performed via cold water immersion of the right hand, with recordings taken from multiple fingers. HRV was assessed in the time domain (square root of the mean squared differences of NN intervals (RMSSD)) and frequency domain (low (LF) and high frequencies (HF)). In the second and third sessions, the same skin immersion test was performed, and mechanical stimulation was applied to the ear at two different points on the internal surface of the antitragus, one with alleged parasympathetic activity and the other with alleged sympathetic activity. The stimulation was done with semipermanent needles.

Results

Stimulation of the point with alleged parasympathetic activity immediately resulted in a significant decrease in RMSSD in 75% of the subjects and in LF in 50% of the subjects, while stimulation of the point with alleged sympathetic activity resulted in an increase in HF and RMSSD in 50% of the subjects. Stimulation of these points did not affect the CIVD reflex. The 20 min cold water immersion induced an immediate decrease in LF and the LF/HF ratio and an increase in HF. The skin temperature of the nonimmersed medius significantly decreased when the contralateral hand was immersed, from 34.4 °C to 31.8 °C.

Conclusions

Stimulation of two different ear points innervated by the same afferent nerves elicited different HRV responses, suggesting somatotopy and a vagal effect beyond vagal afferences. These results are not in accordance with the claims of TMP.

Trial registration

NCT04130893 (18/10/2019) clinicaltrials.com.
Literature
1.
go back to reference Aaronson ST, Sears P, Ruvuna F, Bunker M, Conway CR, Dougherty DD, et al. A 5-Year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as Usual: comparison of response, Remission, and suicidality. Am J Psychiatry. 2017;174(7):640–8.CrossRefPubMed Aaronson ST, Sears P, Ruvuna F, Bunker M, Conway CR, Dougherty DD, et al. A 5-Year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as Usual: comparison of response, Remission, and suicidality. Am J Psychiatry. 2017;174(7):640–8.CrossRefPubMed
2.
go back to reference Morris GL 3rd, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;81(16):1453–9.CrossRefPubMedPubMedCentral Morris GL 3rd, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;81(16):1453–9.CrossRefPubMedPubMedCentral
3.
go back to reference Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation devices for the treatment of neurologic disorders. Mayo Clin Proc. 2017;92(9):1427–44.CrossRefPubMed Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation devices for the treatment of neurologic disorders. Mayo Clin Proc. 2017;92(9):1427–44.CrossRefPubMed
4.
go back to reference Spuck S, Tronnier V, Orosz I, Schonweiler R, Sepehrnia A, Nowak G, et al. Operative and technical complications of vagus nerve stimulator implantation. Neurosurgery. 2010;67(2 Suppl Operative):489–94.PubMed Spuck S, Tronnier V, Orosz I, Schonweiler R, Sepehrnia A, Nowak G, et al. Operative and technical complications of vagus nerve stimulator implantation. Neurosurgery. 2010;67(2 Suppl Operative):489–94.PubMed
5.
go back to reference Tassorelli C, Grazzi L, de Tommaso M, Pierangeli G, Martelletti P, Rainero I et al. Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study. Neurology. 2018. Tassorelli C, Grazzi L, de Tommaso M, Pierangeli G, Martelletti P, Rainero I et al. Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study. Neurology. 2018.
6.
go back to reference Di Fiore P, Galli A, D’Arrigo G, Bussone G, Didier H, D’Amico D, et al. Transcutaneous supraorbital neurostimulation for acute treatment of chronic migraine: open-label preliminary data. Neurol Sciences: Official J Italian Neurol Soc Italian Soc Clin Neurophysiol. 2018;39(Suppl 1):163–4.CrossRef Di Fiore P, Galli A, D’Arrigo G, Bussone G, Didier H, D’Amico D, et al. Transcutaneous supraorbital neurostimulation for acute treatment of chronic migraine: open-label preliminary data. Neurol Sciences: Official J Italian Neurol Soc Italian Soc Clin Neurophysiol. 2018;39(Suppl 1):163–4.CrossRef
7.
go back to reference Chen YF, Bramley G, Unwin G, Hanu-Cernat D, Dretzke J, Moore D, et al. Occipital nerve stimulation for chronic migraine–a systematic review and meta-analysis. PLoS ONE. 2015;10(3):e0116786.CrossRefPubMedPubMedCentral Chen YF, Bramley G, Unwin G, Hanu-Cernat D, Dretzke J, Moore D, et al. Occipital nerve stimulation for chronic migraine–a systematic review and meta-analysis. PLoS ONE. 2015;10(3):e0116786.CrossRefPubMedPubMedCentral
8.
go back to reference Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: part II. Headache. 2016;56(2):259–66.CrossRefPubMed Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: part II. Headache. 2016;56(2):259–66.CrossRefPubMed
9.
go back to reference Frangos E, Ellrich J, Komisaruk BR. Non-invasive Access to the vagus nerve Central projections via Electrical Stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–36.CrossRefPubMed Frangos E, Ellrich J, Komisaruk BR. Non-invasive Access to the vagus nerve Central projections via Electrical Stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–36.CrossRefPubMed
10.
go back to reference Kraus T, Kiess O, Hosl K, Terekhin P, Kornhuber J, Forster C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. 2013;6(5):798–804.CrossRefPubMed Kraus T, Kiess O, Hosl K, Terekhin P, Kornhuber J, Forster C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. 2013;6(5):798–804.CrossRefPubMed
11.
go back to reference Peng L, Mu K, Liu A, Zhou L, Gao Y, Shenoy IT, et al. Transauricular vagus nerve stimulation at auricular acupoints Kindey (CO10), Yidan (CO11), liver (CO12) and Shenmen (TF4) can induce auditory and limbic cortices activation measured by fMRI. Hear Res. 2018;359:1–12.CrossRefPubMed Peng L, Mu K, Liu A, Zhou L, Gao Y, Shenoy IT, et al. Transauricular vagus nerve stimulation at auricular acupoints Kindey (CO10), Yidan (CO11), liver (CO12) and Shenmen (TF4) can induce auditory and limbic cortices activation measured by fMRI. Hear Res. 2018;359:1–12.CrossRefPubMed
12.
go back to reference Mercante B, Deriu F, Rangon CM. Auricular Neuromodulation: the emerging Concept beyond the stimulation of Vagus and trigeminal nerves. Med (Basel). 2018;5(1). Mercante B, Deriu F, Rangon CM. Auricular Neuromodulation: the emerging Concept beyond the stimulation of Vagus and trigeminal nerves. Med (Basel). 2018;5(1).
13.
go back to reference Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna). 2013;120(5):821–7.CrossRefPubMed Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna). 2013;120(5):821–7.CrossRefPubMed
14.
go back to reference Rong P, Liu J, Wang L, Liu R, Fang J, Zhao J, et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J Affect Disord. 2016;195:172–9.CrossRefPubMedPubMedCentral Rong P, Liu J, Wang L, Liu R, Fang J, Zhao J, et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J Affect Disord. 2016;195:172–9.CrossRefPubMedPubMedCentral
15.
go back to reference Vanneste S, De Ridder D. Noninvasive and invasive neuromodulation for the treatment of tinnitus: an overview. Neuromodulation: J Int Neuromodulation Soc. 2012;15(4):350–60.CrossRef Vanneste S, De Ridder D. Noninvasive and invasive neuromodulation for the treatment of tinnitus: an overview. Neuromodulation: J Int Neuromodulation Soc. 2012;15(4):350–60.CrossRef
16.
go back to reference Busch V, Zeman F, Heckel A, Menne F, Ellrich J, Eichhammer P. The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul. 2013;6(2):202–9.CrossRefPubMed Busch V, Zeman F, Heckel A, Menne F, Ellrich J, Eichhammer P. The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul. 2013;6(2):202–9.CrossRefPubMed
17.
go back to reference Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, et al. Transcutaneous Vagus nerve stimulation (tVNS) for treatment of Drug-Resistant Epilepsy: a Randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 2016;9(3):356–63.CrossRefPubMed Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, et al. Transcutaneous Vagus nerve stimulation (tVNS) for treatment of Drug-Resistant Epilepsy: a Randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 2016;9(3):356–63.CrossRefPubMed
18.
go back to reference Rong P, Liu A, Zhang J, Wang Y, He W, Yang A et al. Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin Sci (Lond). 2014. Rong P, Liu A, Zhang J, Wang Y, He W, Yang A et al. Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin Sci (Lond). 2014.
19.
go back to reference Cimpianu CL, Strube W, Falkai P, Palm U, Hasan A. Vagus nerve stimulation in psychiatry: a systematic review of the available evidence. J Neural Transm (Vienna). 2017;124(1):145–58.CrossRefPubMed Cimpianu CL, Strube W, Falkai P, Palm U, Hasan A. Vagus nerve stimulation in psychiatry: a systematic review of the available evidence. J Neural Transm (Vienna). 2017;124(1):145–58.CrossRefPubMed
20.
go back to reference Jacobs HI, Riphagen JM, Razat CM, Wiese S, Sack AT. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol Aging. 2015;36(5):1860–7.CrossRefPubMed Jacobs HI, Riphagen JM, Razat CM, Wiese S, Sack AT. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol Aging. 2015;36(5):1860–7.CrossRefPubMed
22.
go back to reference Nogier P. [Acupuncture of the ear pavillon]. Dtsch Zeitschrifte für Akupunktur. 1957;VI:25–35. Nogier P. [Acupuncture of the ear pavillon]. Dtsch Zeitschrifte für Akupunktur. 1957;VI:25–35.
23.
go back to reference Auricular Acupuncture Point (WFAS STANDARD-002. : 2012): Issued by World Federation of Acupuncture-Moxibustion Societies (WFAS) on May, 2013. World Journal of Acupuncture - Moxibustion. 2013;23(3):12–21. Auricular Acupuncture Point (WFAS STANDARD-002. : 2012): Issued by World Federation of Acupuncture-Moxibustion Societies (WFAS) on May, 2013. World Journal of Acupuncture - Moxibustion. 2013;23(3):12–21.
24.
go back to reference Alimi D, Chelly JE. New Universal nomenclature in Auriculotherapy. J Altern Complement Med. 2017. Alimi D, Chelly JE. New Universal nomenclature in Auriculotherapy. J Altern Complement Med. 2017.
25.
go back to reference Alimi D, Geissmann A, Gardeur D. Auricular acupuncture stimulation measured on functional magnetic resonance imaging. Med Acupunct. 2002;13(2):18–21. Alimi D, Geissmann A, Gardeur D. Auricular acupuncture stimulation measured on functional magnetic resonance imaging. Med Acupunct. 2002;13(2):18–21.
26.
go back to reference Romoli M, Allais G, Airola G, Benedetto C, Mana O, Giacobbe M, et al. Ear acupuncture and fMRI: a pilot study for assessing the specificity of auricular points. Neurol Sciences: Official J Italian Neurol Soc Italian Soc Clin Neurophysiol. 2014;35(Suppl 1):189–93.CrossRef Romoli M, Allais G, Airola G, Benedetto C, Mana O, Giacobbe M, et al. Ear acupuncture and fMRI: a pilot study for assessing the specificity of auricular points. Neurol Sciences: Official J Italian Neurol Soc Italian Soc Clin Neurophysiol. 2014;35(Suppl 1):189–93.CrossRef
27.
28.
go back to reference Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2019. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2019.
29.
go back to reference Oleson T. Auriculotherapy manual. Chinese and Westerne systems of ear acupuncture. 4th ed. Churchill Livingstone; 2014. Oleson T. Auriculotherapy manual. Chinese and Westerne systems of ear acupuncture. 4th ed. Churchill Livingstone; 2014.
30.
go back to reference Oleson T. Auriculotherapy Manual. In: Oleson T, editor. Auriculotherapy Manual. London: Elsevier; 2014. p. 291. Oleson T. Auriculotherapy Manual. In: Oleson T, editor. Auriculotherapy Manual. London: Elsevier; 2014. p. 291.
32.
go back to reference Cheung SS. Responses of the hands and feet to cold exposure. Temp (Austin). 2015;2(1):105–20. Cheung SS. Responses of the hands and feet to cold exposure. Temp (Austin). 2015;2(1):105–20.
33.
34.
go back to reference Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV–heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113(1):210–20.CrossRefPubMed Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV–heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113(1):210–20.CrossRefPubMed
35.
go back to reference Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.CrossRef Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.CrossRef
36.
go back to reference Autonomic Assessment Report a comprehensive heart rate variability analysis., (1996). Autonomic Assessment Report a comprehensive heart rate variability analysis., (1996).
37.
go back to reference Haker E, Egekvist H, Bjerring P. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. J Auton Nerv Syst. 2000;79(1):52–9.CrossRefPubMed Haker E, Egekvist H, Bjerring P. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. J Auton Nerv Syst. 2000;79(1):52–9.CrossRefPubMed
38.
go back to reference Arai YC, Sakakima Y, Kawanishi J, Nishihara M, Ito A, Tawada Y, et al. Auricular acupuncture at the shenmen and point zero points induced parasympathetic activation. Evidence-based Complement Altern Medicine: eCAM. 2013;2013:945063.CrossRef Arai YC, Sakakima Y, Kawanishi J, Nishihara M, Ito A, Tawada Y, et al. Auricular acupuncture at the shenmen and point zero points induced parasympathetic activation. Evidence-based Complement Altern Medicine: eCAM. 2013;2013:945063.CrossRef
39.
go back to reference Acharya UR, Kannathal N, Sing OW, Ping LY, Chua T. Heart rate analysis in normal subjects of various age groups. Biomed Eng Online. 2004;3(1):24.CrossRef Acharya UR, Kannathal N, Sing OW, Ping LY, Chua T. Heart rate analysis in normal subjects of various age groups. Biomed Eng Online. 2004;3(1):24.CrossRef
41.
go back to reference Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310.CrossRefPubMed Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310.CrossRefPubMed
42.
go back to reference Adjei T, von Rosenberg W, Nakamura T, Chanwimalueang T, Mandic DP. The ClassA Framework: HRV Based Assessment of SNS and PNS Dynamics without LF-HF controversies. Front Physiol. 2019;10:505.CrossRefPubMedPubMedCentral Adjei T, von Rosenberg W, Nakamura T, Chanwimalueang T, Mandic DP. The ClassA Framework: HRV Based Assessment of SNS and PNS Dynamics without LF-HF controversies. Front Physiol. 2019;10:505.CrossRefPubMedPubMedCentral
43.
go back to reference Boehmer AA, Georgopoulos S, Nagel J, Rostock T, Bauer A, Ehrlich JR. Acupuncture at the auricular branch of the vagus nerve enhances heart rate variability in humans: an exploratory study. Heart Rhythm O2. 2020;1(3):215–21.CrossRefPubMedPubMedCentral Boehmer AA, Georgopoulos S, Nagel J, Rostock T, Bauer A, Ehrlich JR. Acupuncture at the auricular branch of the vagus nerve enhances heart rate variability in humans: an exploratory study. Heart Rhythm O2. 2020;1(3):215–21.CrossRefPubMedPubMedCentral
Metadata
Title
Heart rate variability and cold-induced vascular dilation after stimulation of two different areas of the ear: a prospective, single-blinded, randomized crossover study
Authors
Emmanuel Sagui
Damien Claverie
Wahiba Bidaut
Laurent Grelot
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04392-7

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue