Skip to main content
Top
Published in: BMC Medicine 1/2020

01-12-2020 | Vaccination | Research Article

Short- and long-term impact of vaccination against cytomegalovirus: a modeling study

Authors: Ganna Rozhnova, Mirjam E. Kretzschmar, Fiona van der Klis, Debbie van Baarle, Marjolein Korndewal, Ann C. Vossen, Michiel van Boven

Published in: BMC Medicine | Issue 1/2020

Login to get access

Abstract

Background

Infection with cytomegalovirus (CMV) is highly prevalent worldwide and can cause severe disease in immunocompromised persons and congenitally infected infants. The disease burden caused by congenital CMV infection is high, especially in resource-limited countries. Vaccines are currently under development for various target groups.

Methods

We evaluated the impact of vaccination strategies and hygiene intervention using transmission models. Model parameters were estimated from a cross-sectional serological population study (n=5179) and a retrospective birth cohort (n=31,484), providing information on the age- and sex-specific CMV prevalence and on the birth prevalence of congenital CMV (cCMV).

Results

The analyses show that vertical transmission and infectious reactivation are the main drivers of transmission. Vaccination strategies aimed at reducing transmission from mother to child (vaccinating pregnant women or women of reproductive age) can yield substantial reductions of cCMV in 20 years (31.7–71.4% if 70% of women are effectively vaccinated). Alternatively, hygiene intervention aimed at preventing CMV infection and re-infection of women of reproductive age from young children is expected to reduce cCMV by less than 2%. The effects of large-scale vaccination on CMV prevalence can be substantial, owing to the moderate transmissibility of CMV at the population level. However, as CMV causes lifelong infection, the timescale on which reductions in CMV prevalence are expected is in the order of several decades. Elimination of CMV infection in the long run is only feasible for a vaccine with a long duration of protection and high vaccination coverage.

Conclusions

Vaccination is an effective intervention to reduce the birth prevalence of cCMV. Population-level reductions in CMV prevalence can only be achieved on a long timescale. Our results stress the value of vaccinating pregnant women and women of childbearing age and provide support for the development of CMV vaccines and early planning of vaccination scenarios and rollouts.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol. 2010; 20(4):202–13.PubMedCrossRef Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol. 2010; 20(4):202–13.PubMedCrossRef
2.
go back to reference Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007; 17(5):355–63.PubMedCrossRef Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007; 17(5):355–63.PubMedCrossRef
3.
go back to reference Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev. 2013; 26(1):86–102.PubMedPubMedCentralCrossRef Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev. 2013; 26(1):86–102.PubMedPubMedCentralCrossRef
5.
go back to reference Styczynski J. Who is the patient at risk of CMV recurrence: a review of the current scientific evidence with a focus on hematopoietic cell transplantation. Infect Dis Ther. 2018; 7(1):1–16.PubMedCrossRef Styczynski J. Who is the patient at risk of CMV recurrence: a review of the current scientific evidence with a focus on hematopoietic cell transplantation. Infect Dis Ther. 2018; 7(1):1–16.PubMedCrossRef
6.
go back to reference Gkrania-Klotsas E, Langenberg C, Sharp SJ, Luben R, Khaw KT, Wareham NJ. Higher immunoglobulin G antibody levels against cytomegalovirus are associated with incident ischemic heart disease in the population-based EPIC-Norfolk cohort. J Infect Dis. 2012; 206(12):1897–903.PubMedCrossRef Gkrania-Klotsas E, Langenberg C, Sharp SJ, Luben R, Khaw KT, Wareham NJ. Higher immunoglobulin G antibody levels against cytomegalovirus are associated with incident ischemic heart disease in the population-based EPIC-Norfolk cohort. J Infect Dis. 2012; 206(12):1897–903.PubMedCrossRef
8.
go back to reference Klenerman P, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol. 2016; 16(6):367–77.PubMedCrossRef Klenerman P, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol. 2016; 16(6):367–77.PubMedCrossRef
9.
go back to reference Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of aging and cytomegalovirus on immunological response to influenza vaccination and infection. Front Immunol. 2017; 8:784.PubMedPubMedCentralCrossRef Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of aging and cytomegalovirus on immunological response to influenza vaccination and infection. Front Immunol. 2017; 8:784.PubMedPubMedCentralCrossRef
10.
go back to reference Griffiths PD. Burden of disease associated with human cytomegalovirus and prospects for elimination by universal immunisation. Lancet Infect Dis. 2012; 12:790–98.PubMedCrossRef Griffiths PD. Burden of disease associated with human cytomegalovirus and prospects for elimination by universal immunisation. Lancet Infect Dis. 2012; 12:790–98.PubMedCrossRef
12.
go back to reference Ludwig A HH. Epidemiological impact and disease burden of congenital cytomegalovirus infection in Europe. Euro Surveill. 2009; 14(9):1–7. Ludwig A HH. Epidemiological impact and disease burden of congenital cytomegalovirus infection in Europe. Euro Surveill. 2009; 14(9):1–7.
14.
go back to reference Morton C, Nance W. Newborn hearing screening — a silent revolution. N Engl J Medl. 2006; 354:2151–64.CrossRef Morton C, Nance W. Newborn hearing screening — a silent revolution. N Engl J Medl. 2006; 354:2151–64.CrossRef
15.
go back to reference Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin Infect Dis. 2006; 43(9):1143–51.PubMedCrossRef Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin Infect Dis. 2006; 43(9):1143–51.PubMedCrossRef
16.
go back to reference Staras SA, Flanders WD, Dollard SC, Pass RF, McGowan JE, Cannon MJ. Cytomegalovirus seroprevalence and childhood sources of infection: a population-based study among pre-adolescents in the United States. J Clin Virol. 2008; 43(3):266–71.PubMedCrossRef Staras SA, Flanders WD, Dollard SC, Pass RF, McGowan JE, Cannon MJ. Cytomegalovirus seroprevalence and childhood sources of infection: a population-based study among pre-adolescents in the United States. J Clin Virol. 2008; 43(3):266–71.PubMedCrossRef
17.
go back to reference Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis. 2010; 50(11):1439–47.PubMedCrossRef Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis. 2010; 50(11):1439–47.PubMedCrossRef
18.
go back to reference Griffiths P, Plotkin S, Mocarski E, Pass R, Schleiss M, Krause P, Bialek S. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine. 2013; 31 Suppl 2:197–203.CrossRef Griffiths P, Plotkin S, Mocarski E, Pass R, Schleiss M, Krause P, Bialek S. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine. 2013; 31 Suppl 2:197–203.CrossRef
19.
go back to reference Bernstein DI. Congenital cytomegalovirus: a “now” problem-no really. Now Clin Vaccine Immunol. 2017; 24(1). Bernstein DI. Congenital cytomegalovirus: a “now” problem-no really. Now Clin Vaccine Immunol. 2017; 24(1).
21.
go back to reference Bialas KM, Permar SR. The march towards a vaccine for congenital CMV: rationale and models. PLoS Pathog. 2016; 12(2):1005355.CrossRef Bialas KM, Permar SR. The march towards a vaccine for congenital CMV: rationale and models. PLoS Pathog. 2016; 12(2):1005355.CrossRef
24.
go back to reference Vauloup-Fellous C, Picone O, Cordier A-G, Parent-du-Châtelet I, Senat M-V, Frydman R, Grangeot-Keros L. Does hygiene counseling have an impact on the rate of CMV primary infection during pregnancy?: results of a 3-year prospective study in a french hospital. J Clin Virol. 2009; 46:49–53. https://doi.org/10.1016/j.jcv.2009.09.003.CrossRef Vauloup-Fellous C, Picone O, Cordier A-G, Parent-du-Châtelet I, Senat M-V, Frydman R, Grangeot-Keros L. Does hygiene counseling have an impact on the rate of CMV primary infection during pregnancy?: results of a 3-year prospective study in a french hospital. J Clin Virol. 2009; 46:49–53. https://​doi.​org/​10.​1016/​j.​jcv.​2009.​09.​003.CrossRef
27.
go back to reference Cannon MJ, Hyde TB, Schmid DS. Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol. 2011; 21(4):240–55.PubMedPubMedCentralCrossRef Cannon MJ, Hyde TB, Schmid DS. Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol. 2011; 21(4):240–55.PubMedPubMedCentralCrossRef
28.
go back to reference Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007; 17(4):253–76.PubMedCrossRef Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007; 17(4):253–76.PubMedCrossRef
29.
go back to reference Pass RF, Anderson B. Mother-to-child transmission of cytomegalovirus and prevention of congenital infection. J Pediatric Infect Dis Soc. 2014; 3 Suppl 1:2–6.CrossRef Pass RF, Anderson B. Mother-to-child transmission of cytomegalovirus and prevention of congenital infection. J Pediatric Infect Dis Soc. 2014; 3 Suppl 1:2–6.CrossRef
30.
go back to reference Hamprecht K, Maschmann J, Vochem M, Dietz K, Speer CP, Jahn G. Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet. 2001; 357(9255):513–8.PubMedCrossRef Hamprecht K, Maschmann J, Vochem M, Dietz K, Speer CP, Jahn G. Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet. 2001; 357(9255):513–8.PubMedCrossRef
31.
go back to reference Prendergast AJ, Goga AE, Waitt C, Gessain A, Taylor GP, Rollins N, Abrams EJ, Lyall EH, de Perre PV. Transmission of CMV, HTLV-1, and HIV through breastmilk. Lancet Child Adolesc Health. 2019; 3(4):264–73.PubMedCrossRef Prendergast AJ, Goga AE, Waitt C, Gessain A, Taylor GP, Rollins N, Abrams EJ, Lyall EH, de Perre PV. Transmission of CMV, HTLV-1, and HIV through breastmilk. Lancet Child Adolesc Health. 2019; 3(4):264–73.PubMedCrossRef
32.
go back to reference Boppana SB, Fowler KB. Persistence in the population: epidemiology and transmisson In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K, editors. Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge: Cambridge University Press: 2007. Boppana SB, Fowler KB. Persistence in the population: epidemiology and transmisson In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K, editors. Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge: Cambridge University Press: 2007.
34.
39.
go back to reference Hogea C, Dieussaert I, Effelterre TV, Guignard A, Mols J. A dynamic transmission model with age-dependent infectiousness and reactivation for cytomegalovirus in the United States: potential impact of vaccination strategies on congenital infection. Hum Vaccines Immunotherapeutics. 2015; 11(7):1788–802. https://doi.org/10.1080/21645515.2015.1016665. PMID: 25984886.CrossRef Hogea C, Dieussaert I, Effelterre TV, Guignard A, Mols J. A dynamic transmission model with age-dependent infectiousness and reactivation for cytomegalovirus in the United States: potential impact of vaccination strategies on congenital infection. Hum Vaccines Immunotherapeutics. 2015; 11(7):1788–802. https://​doi.​org/​10.​1080/​21645515.​2015.​1016665. PMID: 25984886.CrossRef
42.
go back to reference Korndewal MJ, Oudesluys-Murphy AM, Kroes ACM, van der Sande MAB, de Melker HE, Vossen ACTM. Long-term impairment attributable to congenital cytomegalovirus infection: a retrospective cohort study. 1261–1268; 59(12). https://doi.org/10.1111/dmcn.13556. Korndewal MJ, Oudesluys-Murphy AM, Kroes ACM, van der Sande MAB, de Melker HE, Vossen ACTM. Long-term impairment attributable to congenital cytomegalovirus infection: a retrospective cohort study. 1261–1268; 59(12). https://​doi.​org/​10.​1111/​dmcn.​13556.
43.
go back to reference van der Klis FR, Mollema L, Berbers GA, de Melker HE, Coutinho RA. Second national serum bank for population-based seroprevalence studies in the Netherlands. Neth J Med. 2009; 67:301–8.PubMed van der Klis FR, Mollema L, Berbers GA, de Melker HE, Coutinho RA. Second national serum bank for population-based seroprevalence studies in the Netherlands. Neth J Med. 2009; 67:301–8.PubMed
44.
go back to reference van de Kassteele J, van Eijkeren J, Wallinga J. Efficient estimation of age-specific social contact rates between men and women. Ann Appl Stat. 2017; 11:320–39.CrossRef van de Kassteele J, van Eijkeren J, Wallinga J. Efficient estimation of age-specific social contact rates between men and women. Ann Appl Stat. 2017; 11:320–39.CrossRef
45.
go back to reference Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding infectious disease dynamics: Princeton University Press; 2013. Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding infectious disease dynamics: Princeton University Press; 2013.
49.
go back to reference Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface. 2010; 7(47):873–85. https://doi.org/10.1098/rsif.2009.0386 http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2009.0386.PubMedCrossRef Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface. 2010; 7(47):873–85. https://​doi.​org/​10.​1098/​rsif.​2009.​0386 http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2009.0386.PubMedCrossRef
51.
go back to reference Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu YL, C̆ic̆in-S̆ain L, Dechanet-Merville J, Derhovanessian E, Ferrando-Martinez S, Franceschi C, Frasca D, Fulop T, Furman D, Gkrania-Klotsas E, Goodrum F, Grubeck-Loebenstein B, Hurme M, Kern F, Lilleri D, Lopez-Botet M, Maier AB, Marandu T, Marchant A, Mathei C, Moss P, Muntasell A, Remmerswaal EB, Riddell NE, Rothe K, Sauce D, Shin EC, Simanek AM, Smithey MJ, Soderberg-Naucler C, Solana R, Thomas PG, van Lier R, Pawelec G, Nikolich-Zugich J. New advances in CMV and immunosenescence. Exp Gerontol. 2014; 55:54–62.PubMedCrossRef Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu YL, C̆ic̆in-S̆ain L, Dechanet-Merville J, Derhovanessian E, Ferrando-Martinez S, Franceschi C, Frasca D, Fulop T, Furman D, Gkrania-Klotsas E, Goodrum F, Grubeck-Loebenstein B, Hurme M, Kern F, Lilleri D, Lopez-Botet M, Maier AB, Marandu T, Marchant A, Mathei C, Moss P, Muntasell A, Remmerswaal EB, Riddell NE, Rothe K, Sauce D, Shin EC, Simanek AM, Smithey MJ, Soderberg-Naucler C, Solana R, Thomas PG, van Lier R, Pawelec G, Nikolich-Zugich J. New advances in CMV and immunosenescence. Exp Gerontol. 2014; 55:54–62.PubMedCrossRef
52.
go back to reference de Bourcy CF, Angel CJ, Vollmers C, Dekker CL, Davis MM, Quake SR. Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc Natl Acad Sci U S A. 2017; 114(5):1105–10.PubMedPubMedCentralCrossRef de Bourcy CF, Angel CJ, Vollmers C, Dekker CL, Davis MM, Quake SR. Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc Natl Acad Sci U S A. 2017; 114(5):1105–10.PubMedPubMedCentralCrossRef
Metadata
Title
Short- and long-term impact of vaccination against cytomegalovirus: a modeling study
Authors
Ganna Rozhnova
Mirjam E. Kretzschmar
Fiona van der Klis
Debbie van Baarle
Marjolein Korndewal
Ann C. Vossen
Michiel van Boven
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Vaccination
Published in
BMC Medicine / Issue 1/2020
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-020-01629-3

Other articles of this Issue 1/2020

BMC Medicine 1/2020 Go to the issue