Skip to main content
Top
Published in: Immunologic Research 6/2022

18-08-2022 | Vaccination | Original Article

The effect of the BNT162b2 vaccine on antinuclear antibody and antiphospholipid antibody levels

Authors: Hussein A. Noureldine, Julian Maamari, Mohamad Othman El Helou, Georges Chedid, Anna Farra, Roula Husni, Jacques E. Mokhbat

Published in: Immunologic Research | Issue 6/2022

Login to get access

Abstract

The Food and Drug Administration (FDA) approved the first SARS-CoV-2 mRNA vaccine (Pfizer-BioNTech) in December 2020. New adverse events have emerged since these vaccines have reached market. Although no clear association between messenger ribonucleic acid (mRNA) vaccines and autoimmunity has emerged, the significance of such an association warrants further exploration. After obtaining consent, a standardized survey on baseline characteristics and other relevant variables was conducted on unvaccinated individuals who were scheduled for vaccination and had not previously contracted COVID-19. Blood samples were collected from participants prior to the first dose, prior to the second dose, and 1 month after the second dose. All collected samples were tested for antinuclear antibody (ANA) titers using indirect immunofluorescence microscopy kits, and antiphospholipid (APS) immunoglobulin M (IgM) and immunoglobulin G (IgG) levels using an enzyme-linked immunoassay (ELISA) technique. ANA titers were positive for 9 participants out of 101 (8.9%) in the first pre-vaccination draw. For the second draw, the number of participants testing positive for ANA decreased to 5 (5%). For the last draw, 6 (5.9%) participants tested positive for ANA titers. One participant tested positive for APS IgM at the first pre-vaccination draw, 2 tested positive at the second draw, and 2 at the third draw. As for APS IgG titers, all participants tested negative in the three draws. McNemar’s test for two dependent categorical outcomes was conducted on all variables and did not show a statistical significance. The McNemar test of these two composite variables (i.e., ANA/APS, first draw vs. ANA/APS, second and third draws) did not show statistical significance. The 2-sided exact significance of the McNemar test was 1.0. The Friedman test also showed no significance (p = 0.459). No association was found between BNT162b2 vaccine administration and changes in APS and ANA titers. The benefits of the BNT162b2 vaccine significantly outweigh any possible risk of autoimmune dysregulation considering the current evidence.
Literature
1.
go back to reference Pollard C, De Koker S, Saelens X, Vanham G, Grooten J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol Med. 2013;19(12):705–13.PubMedCrossRef Pollard C, De Koker S, Saelens X, Vanham G, Grooten J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol Med. 2013;19(12):705–13.PubMedCrossRef
2.
go back to reference Meyer M, Huang E, Yuzhakov O, Ramanathan P, Ciaramella G, Bukreyev A. Modified mRNA-based vaccines elicit robust immune responses and protect guinea pigs from Ebola virus disease. J Infect Dis. 2018;217(3):451–5.PubMedCrossRef Meyer M, Huang E, Yuzhakov O, Ramanathan P, Ciaramella G, Bukreyev A. Modified mRNA-based vaccines elicit robust immune responses and protect guinea pigs from Ebola virus disease. J Infect Dis. 2018;217(3):451–5.PubMedCrossRef
3.
go back to reference John S, Yuzhakov O, Woods A, et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018;36(12):1689–99.PubMedCrossRef John S, Yuzhakov O, Woods A, et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018;36(12):1689–99.PubMedCrossRef
4.
go back to reference Oliver SE, Gargano JW, Marin M, et al. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine—United States, December 2020. Morb Mortal Wkly Rep. 2020;69(50):1922.CrossRef Oliver SE, Gargano JW, Marin M, et al. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine—United States, December 2020. Morb Mortal Wkly Rep. 2020;69(50):1922.CrossRef
5.
go back to reference Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef
6.
go back to reference Shoenfeld Y, Aharon-Maor A, Sherer Y. Vaccination as an additional player in the mosaic of autoimmunity. Clin Exp Rheumatol. 2000;18(2):181–4.PubMed Shoenfeld Y, Aharon-Maor A, Sherer Y. Vaccination as an additional player in the mosaic of autoimmunity. Clin Exp Rheumatol. 2000;18(2):181–4.PubMed
7.
go back to reference Tudela P, Martí S, Bonal J. Systemic lupus erythematosus and vaccination against hepatitis B. Nephron. 1992;62(2):236.PubMedCrossRef Tudela P, Martí S, Bonal J. Systemic lupus erythematosus and vaccination against hepatitis B. Nephron. 1992;62(2):236.PubMedCrossRef
9.
go back to reference Ascherio A, Zhang SM, Hernán MA, et al. Hepatitis B vaccination and the risk of multiple sclerosis. N Engl J Med. 2001;344(5):327–32.PubMedCrossRef Ascherio A, Zhang SM, Hernán MA, et al. Hepatitis B vaccination and the risk of multiple sclerosis. N Engl J Med. 2001;344(5):327–32.PubMedCrossRef
10.
go back to reference Tourbah A, Gout O, Liblau R, et al. Encephalitis after hepatitis B vaccination: recurrent disseminated encephalitis or MS? Neurology. 1999;53(2):396–401.PubMedCrossRef Tourbah A, Gout O, Liblau R, et al. Encephalitis after hepatitis B vaccination: recurrent disseminated encephalitis or MS? Neurology. 1999;53(2):396–401.PubMedCrossRef
11.
go back to reference Yu O, Bohlke K, Hanson CA, et al. Hepatitis B vaccine and risk of autoimmune thyroid disease: a Vaccine Safety Datalink study. Pharmacoepidemiol Drug Saf. 2007;16(7):736–45.PubMedCrossRef Yu O, Bohlke K, Hanson CA, et al. Hepatitis B vaccine and risk of autoimmune thyroid disease: a Vaccine Safety Datalink study. Pharmacoepidemiol Drug Saf. 2007;16(7):736–45.PubMedCrossRef
12.
go back to reference Lasky T, Terracciano GJ, Magder L, et al. The Guillain-Barré syndrome and the 1992–1993 and 1993–1994 influenza vaccines. N Engl J Med. 1998;339(25):1797–802.PubMedCrossRef Lasky T, Terracciano GJ, Magder L, et al. The Guillain-Barré syndrome and the 1992–1993 and 1993–1994 influenza vaccines. N Engl J Med. 1998;339(25):1797–802.PubMedCrossRef
13.
go back to reference Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J. 2017;8(3):295–311.PubMedPubMedCentralCrossRef Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J. 2017;8(3):295–311.PubMedPubMedCentralCrossRef
14.
go back to reference Lerner A, Jeremias P, Matthias T. The world incidence and prevalence of autoimmune diseases is increasing. Int J Celiac Dis. 2015;3(4):151–5. Lerner A, Jeremias P, Matthias T. The world incidence and prevalence of autoimmune diseases is increasing. Int J Celiac Dis. 2015;3(4):151–5.
15.
go back to reference Wraith DC, Goldman M, Lambert P-H. Vaccination and autoimmune disease: what is the evidence? Lancet. 2003;362(9396):1659–66.PubMedCrossRef Wraith DC, Goldman M, Lambert P-H. Vaccination and autoimmune disease: what is the evidence? Lancet. 2003;362(9396):1659–66.PubMedCrossRef
17.
go back to reference Todd JA, Wicker LS. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity. 2001;15(3):387–95.PubMedCrossRef Todd JA, Wicker LS. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity. 2001;15(3):387–95.PubMedCrossRef
18.
go back to reference Pascolini S, Vannini A, Deleonardi G, et al. COVID-19 and immunological dysregulation: can autoantibodies be useful? Clin Transl Sci. 2021;14(2):502–8.PubMedPubMedCentralCrossRef Pascolini S, Vannini A, Deleonardi G, et al. COVID-19 and immunological dysregulation: can autoantibodies be useful? Clin Transl Sci. 2021;14(2):502–8.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (α/β) in immunity and autoimmunity. Annu Rev Immunol. 2005;23:307–35.PubMedCrossRef Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (α/β) in immunity and autoimmunity. Annu Rev Immunol. 2005;23:307–35.PubMedCrossRef
21.
go back to reference Nestle FO, Conrad C, Tun-Kyi A, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. Exp Med. 2005;202(1):135–43.CrossRef Nestle FO, Conrad C, Tun-Kyi A, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. Exp Med. 2005;202(1):135–43.CrossRef
23.
25.
go back to reference Racoubian E, Zubaid RM, Shareef MA, Almawi WY. Prevalence of antinuclear antibodies in healthy Lebanese subjects, 2008–2015: a cross-sectional study involving 10,814 subjects. Rheumatol Int. 2016;36(9):1231–6.PubMedCrossRef Racoubian E, Zubaid RM, Shareef MA, Almawi WY. Prevalence of antinuclear antibodies in healthy Lebanese subjects, 2008–2015: a cross-sectional study involving 10,814 subjects. Rheumatol Int. 2016;36(9):1231–6.PubMedCrossRef
27.
go back to reference Agmon-Levin N, Damoiseaux J, Kallenberg C, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. 2014;73(1):17–23.PubMedCrossRef Agmon-Levin N, Damoiseaux J, Kallenberg C, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. 2014;73(1):17–23.PubMedCrossRef
28.
go back to reference Toplak N, Kveder T, Trampuš-Bakija A, Šubelj V, Čučnik S, Avčin T. Autoimmune response following annual influenza vaccination in 92 apparently healthy adults. Autoimmun Rev. 2008;8(2):134–8.PubMedCrossRef Toplak N, Kveder T, Trampuš-Bakija A, Šubelj V, Čučnik S, Avčin T. Autoimmune response following annual influenza vaccination in 92 apparently healthy adults. Autoimmun Rev. 2008;8(2):134–8.PubMedCrossRef
29.
go back to reference Gatto M, Agmon-Levin N, Soriano A, et al. Human papillomavirus vaccine and systemic lupus erythematosus. Clin Rheumatol. 2013;32(9):1301–7.PubMedCrossRef Gatto M, Agmon-Levin N, Soriano A, et al. Human papillomavirus vaccine and systemic lupus erythematosus. Clin Rheumatol. 2013;32(9):1301–7.PubMedCrossRef
30.
go back to reference Palmieri B, Poddighe D, Vadala M, Laurino C, Carnovale C, Clementi E. Severe somatoform and dysautonomic syndromes after HPV vaccination: case series and review of literature. Immunol Res. 2017;65(1):106–16.PubMedCrossRef Palmieri B, Poddighe D, Vadala M, Laurino C, Carnovale C, Clementi E. Severe somatoform and dysautonomic syndromes after HPV vaccination: case series and review of literature. Immunol Res. 2017;65(1):106–16.PubMedCrossRef
31.
go back to reference Khamaisi M, Shoenfeld Y, Orbach H. Guillain-Barre syndrome following hepatitis B vaccination. Clin Exp Rheumatol. 2004;22(6):767–70.PubMed Khamaisi M, Shoenfeld Y, Orbach H. Guillain-Barre syndrome following hepatitis B vaccination. Clin Exp Rheumatol. 2004;22(6):767–70.PubMed
32.
go back to reference Genovese C, La Fauci V, Squeri A, Trimarchi G, Squeri R. HPV vaccine and autoimmune diseases: systematic review and meta-analysis of the literature. J Prev Med Public Health. 2018;59(3):E194. Genovese C, La Fauci V, Squeri A, Trimarchi G, Squeri R. HPV vaccine and autoimmune diseases: systematic review and meta-analysis of the literature. J Prev Med Public Health. 2018;59(3):E194.
33.
go back to reference Liu EY, Smith LM, Ellis AK, et al. Quadrivalent human papillomavirus vaccination in girls and the risk of autoimmune disorders: the Ontario Grade 8 HPV Vaccine Cohort Study. CMAJ. 2018;190(21):E648–55.PubMedPubMedCentralCrossRef Liu EY, Smith LM, Ellis AK, et al. Quadrivalent human papillomavirus vaccination in girls and the risk of autoimmune disorders: the Ontario Grade 8 HPV Vaccine Cohort Study. CMAJ. 2018;190(21):E648–55.PubMedPubMedCentralCrossRef
34.
go back to reference Miranda S, Chaignot C, Collin C, Dray-Spira R, Weill A, Zureik M. Human papillomavirus vaccination and risk of autoimmune diseases: a large cohort study of over 2 million young girls in France. Vaccine. 2017;35(36):4761–8.PubMedCrossRef Miranda S, Chaignot C, Collin C, Dray-Spira R, Weill A, Zureik M. Human papillomavirus vaccination and risk of autoimmune diseases: a large cohort study of over 2 million young girls in France. Vaccine. 2017;35(36):4761–8.PubMedCrossRef
35.
go back to reference Soldevilla H, Briones S, Navarra S. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21(2):158–61.PubMedCrossRef Soldevilla H, Briones S, Navarra S. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21(2):158–61.PubMedCrossRef
36.
go back to reference Poddighe D, Castelli L, Marseglia GL, Bruni P. A sudden onset of a pseudo-neurological syndrome after HPV-16/18 AS04-adjuvated vaccine: might it be an autoimmune/inflammatory syndrome induced by adjuvants (ASIA) presenting as a somatoform disorder? Immunol Res. 2014;60(2):236–46.PubMedCrossRef Poddighe D, Castelli L, Marseglia GL, Bruni P. A sudden onset of a pseudo-neurological syndrome after HPV-16/18 AS04-adjuvated vaccine: might it be an autoimmune/inflammatory syndrome induced by adjuvants (ASIA) presenting as a somatoform disorder? Immunol Res. 2014;60(2):236–46.PubMedCrossRef
37.
go back to reference Bobba RS, Johnson SR, Davis AM. A review of the Sapporo and revised Sapporo criteria for the classification of antiphospholipid syndrome Where do the revised Sapporo criteria add value? J Rheumatol. 2007;34(7):1522–7.PubMed Bobba RS, Johnson SR, Davis AM. A review of the Sapporo and revised Sapporo criteria for the classification of antiphospholipid syndrome Where do the revised Sapporo criteria add value? J Rheumatol. 2007;34(7):1522–7.PubMed
38.
go back to reference Blank R HR, Castillo R, Samanovic m, Vasudevanpillai Girija P, Rackoff P, Solomon G, Azar N, Rosenthal P, Izmirly P, Samuels J, Golden B, Reddy S, Abramson S, Mulligan M, Scher J. Low incidence and transient elevation of autoantibodies post mRNA COVID-19 vaccination [abstract]. Abstract presented at American College of Rheumatology, Empowering Rheumatology Professionals; Tuesday, November 9, 2021, 2021. Blank R HR, Castillo R, Samanovic m, Vasudevanpillai Girija P, Rackoff P, Solomon G, Azar N, Rosenthal P, Izmirly P, Samuels J, Golden B, Reddy S, Abramson S, Mulligan M, Scher J. Low incidence and transient elevation of autoantibodies post mRNA COVID-19 vaccination [abstract]. Abstract presented at American College of Rheumatology, Empowering Rheumatology Professionals; Tuesday, November 9, 2021, 2021.
39.
40.
41.
go back to reference Gupta RK, Ellis BK. Concurrent antiglomerular basement membrane nephritis and antineutrophil cytoplasmic autoantibody–mediated glomerulonephritis after second dose of SARS-CoV-2 mRNA vaccination. Kidney Int Rep. 2022;7(1):127–8.PubMedCrossRef Gupta RK, Ellis BK. Concurrent antiglomerular basement membrane nephritis and antineutrophil cytoplasmic autoantibody–mediated glomerulonephritis after second dose of SARS-CoV-2 mRNA vaccination. Kidney Int Rep. 2022;7(1):127–8.PubMedCrossRef
42.
go back to reference Thurm C, Reinhold A, Borucki K, et al. Homologous and heterologous anti-COVID-19 vaccination does not induce new-onset formation of autoantibodies typically accompanying lupus erythematodes, rheumatoid arthritis, celiac disease and antiphospholipid syndrome. Vaccines. 2022;10(2):333.PubMedPubMedCentralCrossRef Thurm C, Reinhold A, Borucki K, et al. Homologous and heterologous anti-COVID-19 vaccination does not induce new-onset formation of autoantibodies typically accompanying lupus erythematodes, rheumatoid arthritis, celiac disease and antiphospholipid syndrome. Vaccines. 2022;10(2):333.PubMedPubMedCentralCrossRef
43.
go back to reference Agmon-Levin N, Paz Z, Israeli E, Shoenfeld Y. Vaccines and autoimmunity. Nat Rev Rheumatol. 2009;5(11):648–52.PubMedCrossRef Agmon-Levin N, Paz Z, Israeli E, Shoenfeld Y. Vaccines and autoimmunity. Nat Rev Rheumatol. 2009;5(11):648–52.PubMedCrossRef
44.
go back to reference Edwards DK, Jasny E, Yoon H, et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med. 2017;15(1):1–18.PubMedPubMedCentralCrossRef Edwards DK, Jasny E, Yoon H, et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med. 2017;15(1):1–18.PubMedPubMedCentralCrossRef
45.
go back to reference Pepini T, Pulichino A-M, Carsillo T, et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J Immunol. 2017;198(10):4012–24.PubMedPubMedCentralCrossRef Pepini T, Pulichino A-M, Carsillo T, et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J Immunol. 2017;198(10):4012–24.PubMedPubMedCentralCrossRef
46.
go back to reference Marć MA, Domínguez-Álvarez E, Gamazo C. Nucleic acid vaccination strategies against infectious diseases. Expert Opin Drug Deliv. 2015;12(12):1851–65.PubMedCrossRef Marć MA, Domínguez-Álvarez E, Gamazo C. Nucleic acid vaccination strategies against infectious diseases. Expert Opin Drug Deliv. 2015;12(12):1851–65.PubMedCrossRef
48.
go back to reference Sjöwall J, Azharuddin M, Frodlund M, et al. SARS-CoV-2 antibody isotypes in systemic lupus erythematosus patients prior to vaccination: associations with disease activity, antinuclear antibodies, and immunomodulatory drugs during the first year of the pandemic. Front Immunol. 2021:3373. Sjöwall J, Azharuddin M, Frodlund M, et al. SARS-CoV-2 antibody isotypes in systemic lupus erythematosus patients prior to vaccination: associations with disease activity, antinuclear antibodies, and immunomodulatory drugs during the first year of the pandemic. Front Immunol. 2021:3373.
49.
go back to reference Huang J, Teoh JY-C, Wong SH, Wong M. The potential impact of previous exposure to SARS or MERS on control of the COVID-19 pandemic. Eur J Epidemiol. 2020;35(11):1099–103.PubMedPubMedCentralCrossRef Huang J, Teoh JY-C, Wong SH, Wong M. The potential impact of previous exposure to SARS or MERS on control of the COVID-19 pandemic. Eur J Epidemiol. 2020;35(11):1099–103.PubMedPubMedCentralCrossRef
50.
go back to reference Greenberg SB. Update on human rhinovirus and coronavirus infections. Semin Respir Crit Care. 2016;37(4):555–71.CrossRef Greenberg SB. Update on human rhinovirus and coronavirus infections. Semin Respir Crit Care. 2016;37(4):555–71.CrossRef
51.
go back to reference Castells MC, Phillips EJ. Maintaining safety with SARS-CoV-2 vaccines. N Engl J Med. 2021;384(7):643–9.PubMedCrossRef Castells MC, Phillips EJ. Maintaining safety with SARS-CoV-2 vaccines. N Engl J Med. 2021;384(7):643–9.PubMedCrossRef
53.
go back to reference Koizumi T, Awaya T, Yoshioka K, et al. Myocarditis after COVID-19 mRNA vaccines. QJM. 2021;114(10):741–3.PubMedCrossRef Koizumi T, Awaya T, Yoshioka K, et al. Myocarditis after COVID-19 mRNA vaccines. QJM. 2021;114(10):741–3.PubMedCrossRef
54.
go back to reference Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202–6.PubMedCrossRef Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6(10):1202–6.PubMedCrossRef
55.
go back to reference Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. N Engl J Med. 2021;385(23):2140–9.PubMedCrossRef Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. N Engl J Med. 2021;385(23):2140–9.PubMedCrossRef
56.
go back to reference Ghielmetti M, Schaufelberger HD, Mieli-Vergani G, et al. Acute autoimmune-like hepatitis with atypical anti-mitochondrial antibody after mRNA COVID-19 vaccination: a novel clinical entity? J Autoimmun. 2021;123:102706.PubMedPubMedCentralCrossRef Ghielmetti M, Schaufelberger HD, Mieli-Vergani G, et al. Acute autoimmune-like hepatitis with atypical anti-mitochondrial antibody after mRNA COVID-19 vaccination: a novel clinical entity? J Autoimmun. 2021;123:102706.PubMedPubMedCentralCrossRef
57.
go back to reference Goulas A, Kafiri G, Kranidioti H, Manolakopoulos S. A typical autoimmune hepatitis (AIH) case following COVID-19 mRNA vaccination More than a coincidence? Liver Int. 2022;42(1):254–5.PubMedCrossRef Goulas A, Kafiri G, Kranidioti H, Manolakopoulos S. A typical autoimmune hepatitis (AIH) case following COVID-19 mRNA vaccination More than a coincidence? Liver Int. 2022;42(1):254–5.PubMedCrossRef
58.
go back to reference Li NL, Coates PT, Rovin BH. COVID-19 vaccination followed by activation of glomerular diseases: does association equal causation? Kidney Int. 2021;100(5):959–65.PubMedPubMedCentralCrossRef Li NL, Coates PT, Rovin BH. COVID-19 vaccination followed by activation of glomerular diseases: does association equal causation? Kidney Int. 2021;100(5):959–65.PubMedPubMedCentralCrossRef
59.
go back to reference Mudie LI, Zick JD, Dacey MS, Palestine AG. Panuveitis following vaccination for COVID-19. Ocul Immunol Inflamm. 2021;29(4):741–2.PubMedCrossRef Mudie LI, Zick JD, Dacey MS, Palestine AG. Panuveitis following vaccination for COVID-19. Ocul Immunol Inflamm. 2021;29(4):741–2.PubMedCrossRef
60.
go back to reference Oster ME, Shay DK, Su JR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA. 2022;327(4):331–40.PubMedPubMedCentralCrossRef Oster ME, Shay DK, Su JR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA. 2022;327(4):331–40.PubMedPubMedCentralCrossRef
61.
go back to reference Noureldine H, Nour-Eldine W, Hodroj M, Noureldine M, Taher A, Uthman I. Hematological malignancies in connective tissue diseases. Lupus. 2020;29(3):225–35.PubMedCrossRef Noureldine H, Nour-Eldine W, Hodroj M, Noureldine M, Taher A, Uthman I. Hematological malignancies in connective tissue diseases. Lupus. 2020;29(3):225–35.PubMedCrossRef
63.
go back to reference Alessandri C, Conti F, Conigliaro P, Mancini R, Massaro L, Valesini G. Seronegative autoimmune diseases. Ann N Y Acad Sci. 2009;1173(1):52–9.PubMedCrossRef Alessandri C, Conti F, Conigliaro P, Mancini R, Massaro L, Valesini G. Seronegative autoimmune diseases. Ann N Y Acad Sci. 2009;1173(1):52–9.PubMedCrossRef
64.
go back to reference Tan E, Feltkamp T, Smolen J, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 1997;40(9):1601–11.PubMedCrossRef Tan E, Feltkamp T, Smolen J, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 1997;40(9):1601–11.PubMedCrossRef
65.
go back to reference Arbuckle MR, McClain MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349(16):1526–33.PubMedCrossRef Arbuckle MR, McClain MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349(16):1526–33.PubMedCrossRef
66.
go back to reference Edwards C, Syddall H, Jameson K, et al. The presence of anticardiolipin antibodies in adults may be influenced by infections in infancy. QJM. 2008;101(1):41–7.PubMedCrossRef Edwards C, Syddall H, Jameson K, et al. The presence of anticardiolipin antibodies in adults may be influenced by infections in infancy. QJM. 2008;101(1):41–7.PubMedCrossRef
67.
go back to reference Li Q-Z, Karp DR, Quan J, et al. Risk factors for ANA positivity in healthy persons. Arthritis Res Ther. 2011;13(2):1–11.CrossRef Li Q-Z, Karp DR, Quan J, et al. Risk factors for ANA positivity in healthy persons. Arthritis Res Ther. 2011;13(2):1–11.CrossRef
68.
go back to reference Guo Y-P, Wang C-G, Liu X, et al. The prevalence of antinuclear antibodies in the general population of china: a cross-sectional study. Curr Ther Res. 2014;76:116–9.PubMedPubMedCentralCrossRef Guo Y-P, Wang C-G, Liu X, et al. The prevalence of antinuclear antibodies in the general population of china: a cross-sectional study. Curr Ther Res. 2014;76:116–9.PubMedPubMedCentralCrossRef
Metadata
Title
The effect of the BNT162b2 vaccine on antinuclear antibody and antiphospholipid antibody levels
Authors
Hussein A. Noureldine
Julian Maamari
Mohamad Othman El Helou
Georges Chedid
Anna Farra
Roula Husni
Jacques E. Mokhbat
Publication date
18-08-2022
Publisher
Springer US
Published in
Immunologic Research / Issue 6/2022
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-022-09309-5

Other articles of this Issue 6/2022

Immunologic Research 6/2022 Go to the issue