Skip to main content
Top
Published in: Pediatric Radiology 4/2015

01-04-2015 | Original Article

Use of PET/CT instead of CT-only when planning for radiation therapy does not notably increase life years lost in children being treated for cancer

Authors: Josefine S. Kornerup, Patrik Brodin, Charlotte Birk Christensen, Thomas Björk-Eriksson, Anne Kiil-Berthelsen, Lise Borgwardt, Per Munck af Rosenschöld

Published in: Pediatric Radiology | Issue 4/2015

Login to get access

Abstract

Background

PET/CT may be more helpful than CT alone for radiation therapy planning, but the added risk due to higher doses of ionizing radiation is unknown.

Objective

To estimate the risk of cancer induction and mortality attributable to the [F-18]2-fluoro-2-deoxyglucose (FDG) PET and CT scans used for radiation therapy planning in children with cancer, and compare to the risks attributable to the cancer treatment.

Materials and methods

Organ doses and effective doses were estimated for 40 children (2–18 years old) who had been scanned using PET/CT as part of radiation therapy planning. The risk of inducing secondary cancer was estimated using the models in BEIR VII. The prognosis of an induced cancer was taken into account and the reduction in life expectancy, in terms of life years lost, was estimated for the diagnostics and compared to the life years lost attributable to the therapy. Multivariate linear regression was performed to find predictors for a high contribution to life years lost from the radiation therapy planning diagnostics.

Results

The mean contribution from PET to the effective dose from one PET/CT scan was 24% (range: 7–64%). The average proportion of life years lost attributable to the nuclear medicine dose component from one PET/CT scan was 15% (range: 3–41%). The ratio of life years lost from the radiation therapy planning PET/CT scans and that of the cancer treatment was on average 0.02 (range: 0.01–0.09). Female gender was associated with increased life years lost from the scans (P < 0.001).

Conclusion

Using FDG-PET/CT instead of CT only when defining the target volumes for radiation therapy of children with cancer does not notably increase the number of life years lost attributable to diagnostic examinations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505CrossRefPubMedCentralPubMed Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505CrossRefPubMedCentralPubMed
2.
go back to reference International Commission on Radiological Protection (ICRP) (2007) ICRP publication 103. The 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP 37:1–332 International Commission on Radiological Protection (ICRP) (2007) ICRP publication 103. The 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP 37:1–332
3.
go back to reference International Commission on Radiological Protection (ICRP) (1991) ICRP publication 60. The 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP 21:1–3CrossRef International Commission on Radiological Protection (ICRP) (1991) ICRP publication 60. The 1990 recommendations of the International Commission on Radiological Protection. Ann ICRP 21:1–3CrossRef
4.
go back to reference Goske MJ, Applegate KE, Boylan J et al (2008) The ‘Image Gently’ campaign: increasing CT radiation dose awareness through a national education and awareness program. Pediatr Radiol 38:265–269CrossRefPubMed Goske MJ, Applegate KE, Boylan J et al (2008) The ‘Image Gently’ campaign: increasing CT radiation dose awareness through a national education and awareness program. Pediatr Radiol 38:265–269CrossRefPubMed
5.
go back to reference Puderbach M, Kauczor H (2008) Can lung MR replace lung CT? Pediatr Radiol 38:439–451CrossRef Puderbach M, Kauczor H (2008) Can lung MR replace lung CT? Pediatr Radiol 38:439–451CrossRef
7.
go back to reference Schinagl DAX, Kaanders JHAM, Oyen WJG (2006) From anatomical to biological target volumes: the role of PET in radiation treatment planning. Cancer Imaging 6:S107–S116CrossRefPubMedCentralPubMed Schinagl DAX, Kaanders JHAM, Oyen WJG (2006) From anatomical to biological target volumes: the role of PET in radiation treatment planning. Cancer Imaging 6:S107–S116CrossRefPubMedCentralPubMed
8.
go back to reference Troost EGC, Schinagl DAX, Bussink J et al (2010) Clinical evidence on PET-CT for radiation therapy planning in head and neck tumours. Radiother Oncol 96:328–334CrossRefPubMed Troost EGC, Schinagl DAX, Bussink J et al (2010) Clinical evidence on PET-CT for radiation therapy planning in head and neck tumours. Radiother Oncol 96:328–334CrossRefPubMed
9.
go back to reference Van Baardwijk A, Baumert BG, Bosmans G et al (2006) The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 32:245–260CrossRefPubMed Van Baardwijk A, Baumert BG, Bosmans G et al (2006) The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 32:245–260CrossRefPubMed
10.
go back to reference Jarritt P, Carson K, Hounsell A et al (2006) The role of PET/CT scanning in radiotherapy planning. Br J Radiol 79:S27–S35CrossRefPubMed Jarritt P, Carson K, Hounsell A et al (2006) The role of PET/CT scanning in radiotherapy planning. Br J Radiol 79:S27–S35CrossRefPubMed
11.
go back to reference Eakin R, Foster J, Hanna G et al (2007) The role of PET/CT in radiotherapy planning. Imaging 1:13–15 Eakin R, Foster J, Hanna G et al (2007) The role of PET/CT in radiotherapy planning. Imaging 1:13–15
12.
go back to reference Wegner EA, Barrington SF, Kingston JE et al (2005) The impact of PET scanning on management of paediatric oncology patients. Eur J Nucl Med Mol Imaging 32:23–30CrossRefPubMed Wegner EA, Barrington SF, Kingston JE et al (2005) The impact of PET scanning on management of paediatric oncology patients. Eur J Nucl Med Mol Imaging 32:23–30CrossRefPubMed
13.
go back to reference Arush MW, Israel O, Postovsky S et al (2007) Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 49:901–905CrossRefPubMed Arush MW, Israel O, Postovsky S et al (2007) Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 49:901–905CrossRefPubMed
14.
go back to reference Völker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441CrossRefPubMed Völker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441CrossRefPubMed
15.
go back to reference Franzius C, Juergens KU, Schober O (2006) Is PET/CT necessary in paediatric oncology? Eur J Nucl Med Mol Imaging 33:960–965CrossRefPubMed Franzius C, Juergens KU, Schober O (2006) Is PET/CT necessary in paediatric oncology? Eur J Nucl Med Mol Imaging 33:960–965CrossRefPubMed
16.
go back to reference Bárdi E, Csóka M, Garai I et al (2013) Value of FDG-PET/CT examinations in different cancers of children, focusing on lymphomas. Pathol Oncol Res 20:139–143CrossRefPubMed Bárdi E, Csóka M, Garai I et al (2013) Value of FDG-PET/CT examinations in different cancers of children, focusing on lymphomas. Pathol Oncol Res 20:139–143CrossRefPubMed
17.
go back to reference Kleis M, Daldrup-Link H, Matthay K et al (2009) Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36:23–36CrossRefPubMed Kleis M, Daldrup-Link H, Matthay K et al (2009) Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36:23–36CrossRefPubMed
18.
go back to reference Cheuk DKL, Sabin ND, Hossain M et al (2012) PET/CT for staging and follow-up of pediatric nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 39:1097–1106CrossRefPubMedCentralPubMed Cheuk DKL, Sabin ND, Hossain M et al (2012) PET/CT for staging and follow-up of pediatric nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 39:1097–1106CrossRefPubMedCentralPubMed
19.
go back to reference Riad R, Omar W, Kotb M et al (2010) Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging 37:319–329CrossRefPubMed Riad R, Omar W, Kotb M et al (2010) Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging 37:319–329CrossRefPubMed
20.
go back to reference Robertson VL, Anderson CS, Keller FG et al (2011) Role of FDG-PET in the definition of involved-field radiation therapy and management for pediatric Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 80:324–332CrossRefPubMed Robertson VL, Anderson CS, Keller FG et al (2011) Role of FDG-PET in the definition of involved-field radiation therapy and management for pediatric Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 80:324–332CrossRefPubMed
21.
go back to reference UK National Health Service (2011) ImPACT (Imaging Performance Assessment of CT Scanners) CT patient dosimetry calculator, version 1.0.4 (2011-05-27). www.impactscan.org UK National Health Service (2011) ImPACT (Imaging Performance Assessment of CT Scanners) CT patient dosimetry calculator, version 1.0.4 (2011-05-27). www.​impactscan.​org
22.
go back to reference Khatonabadi M, Zhang D, Mathieu K et al (2012) A comparison of methods to estimate organ doses in CT when utilizing approximations to the tube current modulation function. Med Phys 39:5212–5228CrossRefPubMedCentralPubMed Khatonabadi M, Zhang D, Mathieu K et al (2012) A comparison of methods to estimate organ doses in CT when utilizing approximations to the tube current modulation function. Med Phys 39:5212–5228CrossRefPubMedCentralPubMed
23.
go back to reference International Commission on Radiological Protection (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication106. Approved by the Commission in October 2007. 38:1–197 International Commission on Radiological Protection (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication106. Approved by the Commission in October 2007. 38:1–197
24.
go back to reference National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII, Phase 2. National Academies Press, Washington, DC National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII, Phase 2. National Academies Press, Washington, DC
26.
go back to reference Mertens ACA, Liu Q, Neglia JJPJ et al (2008) Cause-specific late mortality among 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst 100:1368–1379CrossRefPubMedCentralPubMed Mertens ACA, Liu Q, Neglia JJPJ et al (2008) Cause-specific late mortality among 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst 100:1368–1379CrossRefPubMedCentralPubMed
28.
go back to reference Brodin NP, Vogelius IR, Maraldo MV et al (2012) Life years lost — comparing potentially fatal late complications after radiotherapy for pediatric medulloblastoma on a common scale. Cancer 118:5432–5440CrossRefPubMed Brodin NP, Vogelius IR, Maraldo MV et al (2012) Life years lost — comparing potentially fatal late complications after radiotherapy for pediatric medulloblastoma on a common scale. Cancer 118:5432–5440CrossRefPubMed
31.
go back to reference Yeh J, Nekhlyudov L, Goldie S et al (2010) A model-based estimate of cumulative excess mortality in survivors of childhood cancer. Ann Intern Med 152:409–417CrossRefPubMedCentralPubMed Yeh J, Nekhlyudov L, Goldie S et al (2010) A model-based estimate of cumulative excess mortality in survivors of childhood cancer. Ann Intern Med 152:409–417CrossRefPubMedCentralPubMed
32.
go back to reference Brenner DJ, Georgsson MA (2005) Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology 129:328–337CrossRefPubMed Brenner DJ, Georgsson MA (2005) Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology 129:328–337CrossRefPubMed
33.
go back to reference Kim S, Yoshizumi TT, Frush DP et al (2010) Radiation dose from cone beam CT in a pediatric phantom: risk estimation of cancer incidence. AJR Am J Roentgenol 194:186–190CrossRefPubMed Kim S, Yoshizumi TT, Frush DP et al (2010) Radiation dose from cone beam CT in a pediatric phantom: risk estimation of cancer incidence. AJR Am J Roentgenol 194:186–190CrossRefPubMed
34.
go back to reference Mesbahi A, Seyednejad F, Gasemi-Jangjoo A (2010) Estimation of organs doses and radiation-induced secondary cancer risk from scattered photons for conventional radiation therapy of nasopharynx: a Monte Carlo study. Jpn J Radiol 28:398–403CrossRefPubMed Mesbahi A, Seyednejad F, Gasemi-Jangjoo A (2010) Estimation of organs doses and radiation-induced secondary cancer risk from scattered photons for conventional radiation therapy of nasopharynx: a Monte Carlo study. Jpn J Radiol 28:398–403CrossRefPubMed
35.
go back to reference Bezrukov I, Mantlik F, Schmidt H et al (2013) MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med 43:45–59CrossRefPubMed Bezrukov I, Mantlik F, Schmidt H et al (2013) MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med 43:45–59CrossRefPubMed
36.
go back to reference Kalemis A, Delattre BMA, Heinzer S (2013) Sequential whole-body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer’s perspective. Magn Reson Mater Phys 26:5–23CrossRef Kalemis A, Delattre BMA, Heinzer S (2013) Sequential whole-body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer’s perspective. Magn Reson Mater Phys 26:5–23CrossRef
37.
go back to reference Johansson A, Karlsson M, Yu J et al (2012) Voxel-wise uncertainty in CT substitute derived from MRI. Med Phys 39:3283–3290CrossRefPubMed Johansson A, Karlsson M, Yu J et al (2012) Voxel-wise uncertainty in CT substitute derived from MRI. Med Phys 39:3283–3290CrossRefPubMed
38.
go back to reference Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18 F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34:630–637CrossRefPubMed Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18 F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34:630–637CrossRefPubMed
39.
go back to reference Borgwardt L, Loft A, Hojgaard L (2007). Special considerations in pediatric PET/CT and SPECT/CT scanning. In: von Schultess G (ed) Clinical molecular anatomic imaging, 2nd edn. Lippincotte, Williams & Wilkins, pp 574–582 Borgwardt L, Loft A, Hojgaard L (2007). Special considerations in pediatric PET/CT and SPECT/CT scanning. In: von Schultess G (ed) Clinical molecular anatomic imaging, 2nd edn. Lippincotte, Williams & Wilkins, pp 574–582
40.
go back to reference Holm S, Borgwardt L, Loft A et al (2007) Paediatric doses — a critical appraisal of the EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 34:1713–1718CrossRefPubMed Holm S, Borgwardt L, Loft A et al (2007) Paediatric doses — a critical appraisal of the EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 34:1713–1718CrossRefPubMed
41.
go back to reference Alessio AM, Kinahan PE, Manchanda V et al (2009) Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med 50:1570–1578CrossRefPubMed Alessio AM, Kinahan PE, Manchanda V et al (2009) Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med 50:1570–1578CrossRefPubMed
42.
go back to reference Chawla S, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686CrossRefPubMedCentralPubMed Chawla S, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686CrossRefPubMedCentralPubMed
43.
go back to reference Huang B, Wai-Ming Law M, Khong P-L (2009) Whole-Body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251:166–174CrossRefPubMed Huang B, Wai-Ming Law M, Khong P-L (2009) Whole-Body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251:166–174CrossRefPubMed
44.
go back to reference Martin C (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647CrossRefPubMed Martin C (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647CrossRefPubMed
45.
go back to reference Brenner DJ, Shuryak I, Einstein A (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261:193–198CrossRefPubMed Brenner DJ, Shuryak I, Einstein A (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261:193–198CrossRefPubMed
46.
go back to reference Knäusl B, Lütgendorf-Caucig C, Hopfgartner J et al (2013) Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy? Strahlenther Onkol 189:54–61CrossRefPubMed Knäusl B, Lütgendorf-Caucig C, Hopfgartner J et al (2013) Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy? Strahlenther Onkol 189:54–61CrossRefPubMed
47.
go back to reference Hendee W, O’Connor M (2012) Radiation risks of medical imaging: separating fact from fantasy. Radiology 264:312–321CrossRefPubMed Hendee W, O’Connor M (2012) Radiation risks of medical imaging: separating fact from fantasy. Radiology 264:312–321CrossRefPubMed
Metadata
Title
Use of PET/CT instead of CT-only when planning for radiation therapy does not notably increase life years lost in children being treated for cancer
Authors
Josefine S. Kornerup
Patrik Brodin
Charlotte Birk Christensen
Thomas Björk-Eriksson
Anne Kiil-Berthelsen
Lise Borgwardt
Per Munck af Rosenschöld
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 4/2015
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-014-3197-4

Other articles of this Issue 4/2015

Pediatric Radiology 4/2015 Go to the issue