Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2016

01-03-2016

Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties

Author: Robert M. Hoffman

Published in: Cancer and Metastasis Reviews | Issue 1/2016

Login to get access

Abstract

Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.
Literature
1.
go back to reference Verkhusha, V., & Lukyanov, K. A. (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnology, 22, 289–296.CrossRefPubMed Verkhusha, V., & Lukyanov, K. A. (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnology, 22, 289–296.CrossRefPubMed
2.
go back to reference Zimmer, M. (2002). Green fluorescent protein (GFP), applications, structure and related photophysical behavior. Chemistry Review, 102, 759–781.CrossRef Zimmer, M. (2002). Green fluorescent protein (GFP), applications, structure and related photophysical behavior. Chemistry Review, 102, 759–781.CrossRef
3.
go back to reference Levenson, R., Yang, M., & Hoffman, R. M. (2004). Whole-body dual-color differential fluorescence imaging of tumor angiogenesis enhanced by spectral unmixing. Proceedings of the American Association for Cancer Research, 45, 46. Levenson, R., Yang, M., & Hoffman, R. M. (2004). Whole-body dual-color differential fluorescence imaging of tumor angiogenesis enhanced by spectral unmixing. Proceedings of the American Association for Cancer Research, 45, 46.
4.
go back to reference Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., et al. (2007). Bright far-red fluorescent protein for whole-body imaging. Nature Methods, 4, 741–746.CrossRefPubMed Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., et al. (2007). Bright far-red fluorescent protein for whole-body imaging. Nature Methods, 4, 741–746.CrossRefPubMed
5.
go back to reference Yang, M., Luiken, G., Baranov, E., et al. (2005). Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. Biotechniques, 39, 170–172.CrossRefPubMed Yang, M., Luiken, G., Baranov, E., et al. (2005). Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight. Biotechniques, 39, 170–172.CrossRefPubMed
6.
go back to reference Yang, M., Baranov, E., Jiang, P., et al. (2000). Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proceedings of the National Academy of Sciences of the United States of America, 97, 1206–1211.CrossRefPubMedPubMedCentral Yang, M., Baranov, E., Jiang, P., et al. (2000). Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proceedings of the National Academy of Sciences of the United States of America, 97, 1206–1211.CrossRefPubMedPubMedCentral
7.
go back to reference Hiroshima, Y., Maawy, A., Sato, S., et al. (2014). Hand-held high-resolution fluorescence imaging system for fluorescence-guided surgery of patient and cell-line pancreatic tumors growing orthotopically in nude mice. Journal of Surgical Research, 187, 510–517.CrossRefPubMedPubMedCentral Hiroshima, Y., Maawy, A., Sato, S., et al. (2014). Hand-held high-resolution fluorescence imaging system for fluorescence-guided surgery of patient and cell-line pancreatic tumors growing orthotopically in nude mice. Journal of Surgical Research, 187, 510–517.CrossRefPubMedPubMedCentral
8.
go back to reference Yamauchi, K., Yang, M., Jiang, P., et al. (2006). Development of real-time subcellular dynamic multicolor imaging of cancer cell-trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Research, 66, 4208–4214.CrossRefPubMed Yamauchi, K., Yang, M., Jiang, P., et al. (2006). Development of real-time subcellular dynamic multicolor imaging of cancer cell-trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Research, 66, 4208–4214.CrossRefPubMed
9.
go back to reference Yang, M., Jiang, P., & Hoffman, R. M. (2007). Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Research, 67, 5195–5200.CrossRefPubMed Yang, M., Jiang, P., & Hoffman, R. M. (2007). Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Research, 67, 5195–5200.CrossRefPubMed
10.
go back to reference Uchugonova, A., Duong, J., Zhang, N., König, K., & Hoffman, R. M. (2011). The bulge area is the origin of nestin-expressing pluripotent stem cells of the hair follicle. Journal of Cellular Biochemistry, 112, 2046–2050.CrossRefPubMed Uchugonova, A., Duong, J., Zhang, N., König, K., & Hoffman, R. M. (2011). The bulge area is the origin of nestin-expressing pluripotent stem cells of the hair follicle. Journal of Cellular Biochemistry, 112, 2046–2050.CrossRefPubMed
11.
go back to reference Denk, W., Strickler, J. H., & Webb, W. W. (1999). Two-photon laser scanning fluorescence microscopy. Science, 248, 73–76.CrossRef Denk, W., Strickler, J. H., & Webb, W. W. (1999). Two-photon laser scanning fluorescence microscopy. Science, 248, 73–76.CrossRef
12.
go back to reference Chishima, T., Miyagi, Y., Wang, X., et al. (1997). Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Research, 57, 2042–2047.PubMed Chishima, T., Miyagi, Y., Wang, X., et al. (1997). Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Research, 57, 2042–2047.PubMed
13.
go back to reference Fukumura, D., Yuan, F., Monsky, W. L., et al. (1997). Effect of host microenvironment on the microcirculation of human colon adenocacinoma. American Journal of Pathology, 151, 679–688.PubMedPubMedCentral Fukumura, D., Yuan, F., Monsky, W. L., et al. (1997). Effect of host microenvironment on the microcirculation of human colon adenocacinoma. American Journal of Pathology, 151, 679–688.PubMedPubMedCentral
14.
go back to reference Fukumura, D., Xavier, R., Sugiura, T., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94, 715–725.CrossRefPubMed Fukumura, D., Xavier, R., Sugiura, T., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94, 715–725.CrossRefPubMed
15.
go back to reference Yang, M., Baranov, E., Wang, J.-W., et al. (2002). Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proceedings of the National Academy of Sciences of the United States of America, 99, 3824–3829.CrossRefPubMedPubMedCentral Yang, M., Baranov, E., Wang, J.-W., et al. (2002). Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proceedings of the National Academy of Sciences of the United States of America, 99, 3824–3829.CrossRefPubMedPubMedCentral
16.
go back to reference Jain, R. K., Munn, L. L., & Fukumura, D. (2002). Dissecting tumor pathopysiology using intravital microscopy. Nature Reviews Cancer, 2, 266–276.CrossRefPubMed Jain, R. K., Munn, L. L., & Fukumura, D. (2002). Dissecting tumor pathopysiology using intravital microscopy. Nature Reviews Cancer, 2, 266–276.CrossRefPubMed
17.
go back to reference Naumov, G. N., Wilson, S. M., MacDonald, I. C., et al. (1999). Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. Journal of Cell Science, 112, 1835–1842.PubMed Naumov, G. N., Wilson, S. M., MacDonald, I. C., et al. (1999). Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. Journal of Cell Science, 112, 1835–1842.PubMed
18.
go back to reference Farina, K. L., Wyckoff, J. B., Rivera, J., et al. (1998). Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Research, 58, 2528–2532.PubMed Farina, K. L., Wyckoff, J. B., Rivera, J., et al. (1998). Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Research, 58, 2528–2532.PubMed
19.
go back to reference Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumors. Nature Reviews Cancer, 3, 921–930.CrossRefPubMed Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumors. Nature Reviews Cancer, 3, 921–930.CrossRefPubMed
20.
go back to reference Yamauchi, K., Yang, M., Jiang, P., et al. (2005). Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Research, 65, 4246–4252.CrossRefPubMed Yamauchi, K., Yang, M., Jiang, P., et al. (2005). Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Research, 65, 4246–4252.CrossRefPubMed
21.
go back to reference Wolf, K., te Lindert, M., Krause, M., et al. (2013). Physical limits of cell migration, control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 201, 1069–1084.CrossRefPubMedPubMedCentral Wolf, K., te Lindert, M., Krause, M., et al. (2013). Physical limits of cell migration, control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 201, 1069–1084.CrossRefPubMedPubMedCentral
22.
go back to reference Suetsugu, A., Jiang, P., Moriwaki, H., et al. (2013). Imaging nuclear-cytoplasm dynamics of cancer cells in the intravascular niche of live mice. Anticancer Research, 33, 4229–4236.PubMed Suetsugu, A., Jiang, P., Moriwaki, H., et al. (2013). Imaging nuclear-cytoplasm dynamics of cancer cells in the intravascular niche of live mice. Anticancer Research, 33, 4229–4236.PubMed
23.
go back to reference Hayashi, K., Jiang, P., Yamauchi, K., et al. (2007). Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Research, 67, 8223–8228.CrossRefPubMed Hayashi, K., Jiang, P., Yamauchi, K., et al. (2007). Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Research, 67, 8223–8228.CrossRefPubMed
24.
go back to reference Glinsky, G. V., Glinskii, A. B., Berezovskaya, O., et al. (2006). Dual-color-coded imaging of viable circulating prostate carcinoma cells reveals genetic exchange between tumor cells in vivo, contributing to highly metastatic phenotypes. Cell Cycle, 5, 191–197.CrossRefPubMed Glinsky, G. V., Glinskii, A. B., Berezovskaya, O., et al. (2006). Dual-color-coded imaging of viable circulating prostate carcinoma cells reveals genetic exchange between tumor cells in vivo, contributing to highly metastatic phenotypes. Cell Cycle, 5, 191–197.CrossRefPubMed
25.
go back to reference Berezovskaya, O., Schimmer, A. D., Glinskii, A. B., et al. (2005). Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Research, 65, 2378–2386.CrossRefPubMed Berezovskaya, O., Schimmer, A. D., Glinskii, A. B., et al. (2005). Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Research, 65, 2378–2386.CrossRefPubMed
26.
go back to reference Tome, Y., Tsuchiya, H., Hayashi, K., et al. (2009). In vivo gene transfer between interacting human osteosarcoma cell lines is associated with acquisition of enhanced metastatic potential. Journal of Cellular Biochemistry, 108, 362–367.CrossRefPubMed Tome, Y., Tsuchiya, H., Hayashi, K., et al. (2009). In vivo gene transfer between interacting human osteosarcoma cell lines is associated with acquisition of enhanced metastatic potential. Journal of Cellular Biochemistry, 108, 362–367.CrossRefPubMed
27.
go back to reference Mukhopadhyay, K. D., Bandyopadhyay, A., Chang, T. T., et al. (2011). Isolation and characterization of a metastatic hybrid cell line generated by ER negative and ER positive breast cancer cells in mouse bone marrow. PLoS One, 6, e20473.CrossRefPubMedPubMedCentral Mukhopadhyay, K. D., Bandyopadhyay, A., Chang, T. T., et al. (2011). Isolation and characterization of a metastatic hybrid cell line generated by ER negative and ER positive breast cancer cells in mouse bone marrow. PLoS One, 6, e20473.CrossRefPubMedPubMedCentral
28.
go back to reference Yamamoto, N., Yang, M., Jiang, P., et al. (2003). Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Research, 63, 7785–7790.PubMed Yamamoto, N., Yang, M., Jiang, P., et al. (2003). Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Research, 63, 7785–7790.PubMed
29.
go back to reference Zhang, Y., Miwa, S., Zhang, N., Hoffman, R. M., & Zhao, M. (2015). Tumor-targeting Salmonella typhimurium A1-R arrests growth of breast-cancer brain metastasis. Oncotarget, 6, 2615–2622.CrossRefPubMedPubMedCentral Zhang, Y., Miwa, S., Zhang, N., Hoffman, R. M., & Zhao, M. (2015). Tumor-targeting Salmonella typhimurium A1-R arrests growth of breast-cancer brain metastasis. Oncotarget, 6, 2615–2622.CrossRefPubMedPubMedCentral
30.
go back to reference Hoffman, R. M., & Zhao, M. (2014). Methods for the development of tumor-targeting bacteria. Expert Opinion on Drug Discovery, 9(7), 741–750.CrossRefPubMed Hoffman, R. M., & Zhao, M. (2014). Methods for the development of tumor-targeting bacteria. Expert Opinion on Drug Discovery, 9(7), 741–750.CrossRefPubMed
31.
go back to reference Yam, C., Zhao, M., Hayashi, K., et al. (2010). Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. Journal of Surgical Research, 164, 248–255.CrossRefPubMedPubMedCentral Yam, C., Zhao, M., Hayashi, K., et al. (2010). Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. Journal of Surgical Research, 164, 248–255.CrossRefPubMedPubMedCentral
32.
go back to reference Metildi, C. A., Kaushal, S., Hoffman, R. M., & Bouvet, M. (2013). In vivo serial selection of human pancreatic cancer cells in orthotopic mouse models produces high metastatic variants irrespective of Kras status. Journal of Surgical Research, 184, 290–298.CrossRefPubMedPubMedCentral Metildi, C. A., Kaushal, S., Hoffman, R. M., & Bouvet, M. (2013). In vivo serial selection of human pancreatic cancer cells in orthotopic mouse models produces high metastatic variants irrespective of Kras status. Journal of Surgical Research, 184, 290–298.CrossRefPubMedPubMedCentral
33.
go back to reference Tome, Y., Kimura, H., Maehara, H., et al. (2013). High lung-metastatic variant of human osteosarcoma cells, selected by passage of lung metastasis in nude mice, is associated with increased expression of αvβ3 integrin. Anticancer Research, 33, 3623–3628.PubMed Tome, Y., Kimura, H., Maehara, H., et al. (2013). High lung-metastatic variant of human osteosarcoma cells, selected by passage of lung metastasis in nude mice, is associated with increased expression of αvβ3 integrin. Anticancer Research, 33, 3623–3628.PubMed
34.
go back to reference Liu, T., Ding, Y., Xie, W., et al. (2007). An imageable metastatic treatment model of nasopharyngeal carcinoma. Clinical Cancer Research, 13, 3960–3967.CrossRefPubMed Liu, T., Ding, Y., Xie, W., et al. (2007). An imageable metastatic treatment model of nasopharyngeal carcinoma. Clinical Cancer Research, 13, 3960–3967.CrossRefPubMed
35.
go back to reference Bouvet, M., Tsuji, K., Yang, M., et al. (2006). In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Research, 66, 11293–11297.CrossRefPubMed Bouvet, M., Tsuji, K., Yang, M., et al. (2006). In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Research, 66, 11293–11297.CrossRefPubMed
36.
go back to reference Sakaue-Sawano, A., Kurokawa, H., Morimura, T., et al. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, 132, 487–498.CrossRefPubMed Sakaue-Sawano, A., Kurokawa, H., Morimura, T., et al. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, 132, 487–498.CrossRefPubMed
37.
go back to reference Yano, S., Zhang, Y., Miwa, S., et al. (2014). Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness. Cell Cycle, 13, 2110–2119.CrossRefPubMedPubMedCentral Yano, S., Zhang, Y., Miwa, S., et al. (2014). Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness. Cell Cycle, 13, 2110–2119.CrossRefPubMedPubMedCentral
38.
go back to reference Schmitt, C. A., Fridman, J. S., Yang, M., et al. (2002). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell, 1, 289–298.CrossRefPubMed Schmitt, C. A., Fridman, J. S., Yang, M., et al. (2002). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell, 1, 289–298.CrossRefPubMed
39.
go back to reference Schmitt, C. A., Yang, M., Fridman, J. S., et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109, 335–346.CrossRefPubMed Schmitt, C. A., Yang, M., Fridman, J. S., et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109, 335–346.CrossRefPubMed
40.
go back to reference Suetsugu, A., Honma, K., Saji, S., et al. (2013). Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude mouse models. Advanced Drug Delivery Reviews, 65, 383–390.CrossRefPubMed Suetsugu, A., Honma, K., Saji, S., et al. (2013). Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude mouse models. Advanced Drug Delivery Reviews, 65, 383–390.CrossRefPubMed
41.
go back to reference Suetsugu, S., Osawa, Y., Nagaki, M., et al. (2010). Simultaneous color-coded imaging to distinguish cancer “stem-like” and non-stem cells in the same tumor. Journal of Cellular Biochemistry, 111, 1035–1041.CrossRefPubMed Suetsugu, S., Osawa, Y., Nagaki, M., et al. (2010). Simultaneous color-coded imaging to distinguish cancer “stem-like” and non-stem cells in the same tumor. Journal of Cellular Biochemistry, 111, 1035–1041.CrossRefPubMed
42.
go back to reference Ray, P., De, A., Min, J. J., et al. (2004). Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Research, 64, 1323–1330.CrossRefPubMedPubMedCentral Ray, P., De, A., Min, J. J., et al. (2004). Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Research, 64, 1323–1330.CrossRefPubMedPubMedCentral
43.
go back to reference Hoffman, R. M., & Yang, M. (2006). Whole-body imaging with fluorescent proteins. Nature Protocols, 1, 1429–1438.CrossRefPubMed Hoffman, R. M., & Yang, M. (2006). Whole-body imaging with fluorescent proteins. Nature Protocols, 1, 1429–1438.CrossRefPubMed
44.
go back to reference Hoffman, R. M. (2005). The multiple uses of fluorescent proteins to visualize cancerin vivo. Nature Reviews Cancer, 5, 796–806.CrossRefPubMed Hoffman, R. M. (2005). The multiple uses of fluorescent proteins to visualize cancerin vivo. Nature Reviews Cancer, 5, 796–806.CrossRefPubMed
45.
go back to reference Burgos, J. S., Rosol, M., Moats, R. A., et al. (2003). Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques, 34, 1184–1188.PubMed Burgos, J. S., Rosol, M., Moats, R. A., et al. (2003). Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques, 34, 1184–1188.PubMed
46.
go back to reference Hoffman, R. M. (2013). Fluorescent proteins as visible in vivo sensors. In M. C. Morris (Ed.), Progress in molecular biology and translational science (Vol. 113, pp. 389–402). Burlington: Academic. Hoffman, R. M. (2013). Fluorescent proteins as visible in vivo sensors. In M. C. Morris (Ed.), Progress in molecular biology and translational science (Vol. 113, pp. 389–402). Burlington: Academic.
47.
go back to reference Kocher, B., & Piwnica-Worms, D. (2013). Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discovery, 3, 616–629.CrossRefPubMedPubMedCentral Kocher, B., & Piwnica-Worms, D. (2013). Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discovery, 3, 616–629.CrossRefPubMedPubMedCentral
48.
go back to reference Yang, M., Reynoso, J., Jiang, P., et al. (2004). Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Cancer Research, 64, 8651–8656.CrossRefPubMed Yang, M., Reynoso, J., Jiang, P., et al. (2004). Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Cancer Research, 64, 8651–8656.CrossRefPubMed
49.
go back to reference Yang, M., Reynoso, J., Bouvet, M., et al. (2009). A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment. Journal of Cellular Biochemistry, 106, 279–284.CrossRefPubMedPubMedCentral Yang, M., Reynoso, J., Bouvet, M., et al. (2009). A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment. Journal of Cellular Biochemistry, 106, 279–284.CrossRefPubMedPubMedCentral
Metadata
Title
Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties
Author
Robert M. Hoffman
Publication date
01-03-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9610-8

Other articles of this Issue 1/2016

Cancer and Metastasis Reviews 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine